Reachability-based packing of arborescences: Algorithmic aspects

Zoltán Szigeti

Combinatorial Optimization Group, G-SCOP Univ. Grenoble Alpes, Grenoble INP, CNRS, France

Joint work with :

Csaba Király (EGRES, Budapest), Shin-ichi Tanigawa (University of Tokyo).

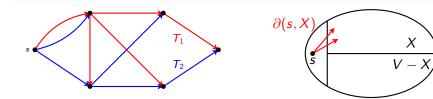
Outline

- Packing of arborescences :
 - spanning
 - reachability
 - matroid-based
 - reachability-based
- Algorithmic aspects : weighted case with matroid intersection for
 - matroid-based
 - reachability-based
- Related problems
 - reachability-based matroid-restricted
 - matroid-based spanning
 - polymatroid-based
 - reachability-based hyperarborescences

Packing of spanning s-arborescences : Definitions

Definition

- Let D = (V + s, A) be a digraph, $X \subseteq V$ and $v \in V$.
 - packing of subgraphs : arc-disjoint subgraphs,
 - **2** spanning subgraph of D: subgraph that contains all the vertices of D,
 - **3** *s*-arborescence : directed tree, indegree of every vertex except s is 1,
 - root arc : arc leaving s,
 - **(a)** $\partial(s, X)$: root arcs entering X,
 - **(b)** $\partial(v)$: set of arcs entering of v.



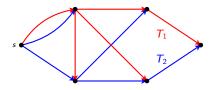
Packing of spanning s-arborescences : Results

Results

- Characterization (Edmonds 1973).
- Algorithmic aspects :
 - Unweighted case : Algorithmic proof (E; Lovász 1976).
 - Weighted case : Weighted matroid intersection (Edmonds 1979) + Unweighted case.

Let D = (V + s, A) and G be the underlying undirected graph of D.

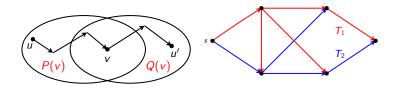
- $\vec{F} \subseteq A$ is a packing of k spanning s-arborescences of D
- F is a packing of k spanning trees of G and $|\partial_{\vec{F}}(v)| = k \ \forall v \in V \iff$
- F is a common base of M₁ = k-sum of the graphic matroid of G and M₂=⊕_{v∈V}U_{|∂(v)|,k}.



Packing of reachability s-arborescences : Definitions

Definition

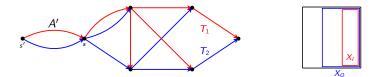
- Let D = (V + s, A) be a digraph and $v \in V$.
 - $P(v) = \{u \in V : v \text{ is reachable from } u \text{ in } D\},\$
 - $Q(v) = \{u' \in V : u' \text{ is reachable from } v \text{ in } D\},$
 - **③** reachability *s*-arborescence T_i for $ss_i : V(T_i) = Q_D(s_i) \cup s$,
 - packing of reachability *s*-arborescences $\{T_1, \ldots, T_t\}$ $(t = |\partial(s, V)|)$:
 - for each root arc ss_i , T_i is a reachability *s*-arborescence \iff
 - $\{ss_i \in A : s_i \in P_{T_i}(v)\} = \{ss_i \in A : s_i \in P_D(v)\} \quad \forall v \in V.$



Packing of reachability s-arborescences : Results

Results

- Characterization (Kamiyama, Katoh, Takizawa 2009).
- Short proof using bi-sets (Bérczi, Frank 2008).
- Algorithmic aspects :
 - Unweighted case : Algorithmic proof (KKT).
 - Weighted case : Matroid intersection (Bérczi, Frank 2009).
- Extension : A packing of reachability s'-arborescences in D' gives a packing of k spanning s-arborescences in D if the condition of Edmonds is satisfied.

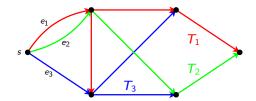


Motivation

Motivated by Katoh and Tanigawa's problem on matroid-based packing of rooted trees (introduced to solve a rigidity problem).

Definition

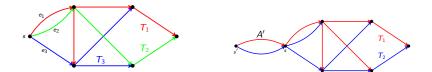
Let D = (V + s, A) be a digraph and \mathcal{M} a matroid on the set of root arcs. Matroid-based packing of *s*-arborescences $\{T_1, \ldots, T_t\}$ $(t = |\partial(s, V)|)$: $\{ss_i \in A : s_i \in P_{T_i}(v)\}$ is a base of $\{ss_i \in A : s_i \in V\}$ $\forall v \in V$.



Matroid-based packing of s-arborescences : Results

Results

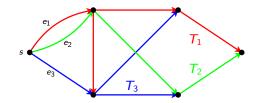
- Characterization (Durand de Gevigney, Nguyen, Szigeti 2013).
- Algorithmic aspects :
 - Unweighted case : Algorithmic proof (DdGNSz).
 - Weighted case : Polyhedral description (DdGNSz) + Ellipsoid method (GLS) + submodular function minimization (GLS, S, IFF).
- Extension : An *M'*-based packing of *s'*-arborescences in *D'* (*M'* free matroid on *A'*) gives a packing of *k* spanning *s*-arborescences in *D*.



Reachability-based packing of s-arborescences

Definition

Let D = (V + s, A) be a digraph and \mathcal{M} a matroid on the set of root arcs. Reachability-based packing of *s*-arborescences $\{T_1, \ldots, T_t\}$ $(t = |\partial(s, V)|)$: $\{ss_i \in A : s_i \in P_{T_i}(v)\}$ is a base of $\{ss_i \in A : s_i \in P_D(v)\}$ $\forall v \in V$.



Remark

A reachability-based packing of *s*-arborescences doesn't necessarily contain reachability *s*-arborescences.

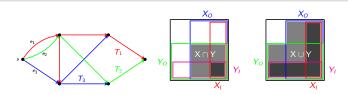
Z. Szigeti (G-SCOP, Grenoble)

Arborescences and matroids

Reachability-based packing of s-arborescences

Results

- Characterization (Cs. Király 2016).
- Algorithmic aspects :
 - Unweighted case : Algorithmic proof (K).
 - Weighted case : Submodular flows defined by an intersecting supermodular bi-set function (Bérczi, T. Király, Kobayashi 2016).
- Extension :
 - For free matroid, back to packing of reachability s-arborescences.
 - An *M*-reachability-based packing of *s*-arborescences is an *M*-based packing of *s*-arborescences if the condition of DdGNSz is satisfied.



Theorem (Edmonds-Rota 1966)

• D := (V, A) a digraph,

f: 2^A → Z₊ a monotone intersecting submodular set function,
I := {B ⊆ A : |H| ≤ f(H) ∀H ⊆ B}.

Then \mathcal{I} forms the family of independent sets of a matroid on A.

Theorem (Frank 2009; Cs. Király, Szigeti, Tanigawa)

- D := (V, A) a digraph,
- \mathcal{F} an intersecting bi-set family on V,
- $b: \mathcal{F} \to \mathbb{Z}_+$ an intersecting submodular bi-set function,
- $\mathcal{I} := \{ B \subseteq A : i_B(\mathsf{X}) \le b(\mathsf{X}) \ \forall \mathsf{X} \in \mathcal{F} \}.$

Then \mathcal{I} forms the family of independent sets of a matroid on A.

Theorem (Cs. Király, Szigeti, Tanigawa)

The arc sets of matroid-based/reachability-based packings of *s*-arborescences can be written as common bases of \mathcal{M}' and \mathcal{M}'' , where

- matroid-based : \mathcal{M}' by $f(H) = k|V(H) s| k + r(H \cap \partial(s, V))$, $\mathcal{M}'' = \bigoplus_{v \in V} U_{|\partial(v)|,k}$.
- Preachability-based : \mathcal{M}' by $b(X) = m(X_I) p(X)$,
 $\mathcal{M}'' = \bigoplus_{v \in V} U_{|\partial(v)|, r(\partial(s, P(v)))}$.

Corollary : in polynomial time one can

- decide if an instance has a solution,
- find a minimum weight arc set that can be decomposed into a reachability-based packing of s-arborescences,
- find a minimum weight reachability-based packing of *s*-arborescences.

Matroid-restricted packing of spanning s-arborescences

Definition

Let D = (V + s, A) be a digraph and $\mathcal{M} = (A, \mathcal{I})$ a matroid. Matroid-restricted packing of *s*-arborescences $T_1, \ldots, T_k : \bigcup_{i=1}^k A(T_i) \in \mathcal{I}$.

Results

- **①** For general matroid \mathcal{M} , the problem is NP-complete, even for k = 1.
- **2** For $\mathcal{M} = \bigoplus_{v \in V} \mathcal{M}_v$, where \mathcal{M}_v is a matroid on $\partial(v)$,
 - O Characterization (Frank 2009; Bernáth, T. Király 2016).
 - **2** Algorithmic aspects : Weighted case : weighted matroid intersection.
 - Section Section Section 2. For free matroid, packing of spanning *s*-arborescences.

Theorem (Cs. Király, Szigeti, Tanigawa)

For $\mathcal{M} = \bigoplus_{v \in V} \mathcal{M}_v$, where \mathcal{M}_v is a matroid on $\partial(v)$, the results on matroid-based/reachability-based packings can be extended to matroid-based/reachability-based matroid-restricted packings.

Other related problems

Theorem (Fortier, Cs. Király, Szigeti, Tanigawa 2016+)

Matroid-based packing of spanning s-arborescences :

- NP-complete for general matroids,
- solvable for rank 2/graphic/transversal matroids.

Theorem (Matsuoka, Szigeti 2017+)

Polymatroid-based packing of s-arborescences :

- Characterization,
- Algorithmic aspects : unweighted capacitated case.

Theorem (Fortier, Cs. Király, Léonard, Szigeti, Talon 2018)

Reachability-based packing of s-hyperarborescences :

- Characterization,
- 2 Algorithmic aspects : weighted case.

Thank you for your attention !