Packing of arborescences versus matroid intersection

Zoltán Szigeti
Laboratoire G-SCOP
INP Grenoble, France

October 2016

Joint work with :
Csaba Király (EGRES Group, Eötvös University, Budapest)

Outline

- Matroids
- Basic notion
- Matroid intersection
- Packing of arborescences
- spanning
- matroid-restricted
- matroid-based
- reachability
- reachability-based
- New result
- matroid-based matroid-restricted
- reachability-based matroid-restricted

- Algorithmic aspects
- Conclusion

Matroids

Definition

For $\mathcal{I} \subseteq 2^{E}, \mathcal{M}=(E, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Examples

(1) Linear matroid: Sets of linearly independent vectors in a vector space,
(2) Graphic matroid: Edge-sets of forests of a graph,
(3) Uniform matroid $U_{n, k}:\{X \subseteq E:|X| \leq k\}$ where $|E|=n$,
(3) Free matroid: $U_{n, n}$.

Matroid intersection

Notion

(1) independent: sets in \mathcal{I},
(2) base : maximal independent set,
(3) bridge: an element contained in all bases,
(9) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$,
(1) submodular $(r(X)+r(Y) \geq r(X \cap Y)+r(X \cup Y) \forall X, Y \subseteq E)$,
(2) $X \in \mathcal{I}$ if and only if $r(X)=|X|$.

Theorem (Edmonds 1970)

Two matroids $\mathcal{M}_{1}=\left(E, r_{1}\right)$ and $\mathcal{M}_{2}=\left(E, r_{2}\right)$ have a common independent set of size $k \Longleftrightarrow r_{1}(X)+r_{2}(E-X) \geq k \forall X \subseteq E$.

Matroid Operations

Definition

$\mathcal{M}=(E, \mathcal{I})$ matroid, $e \in E, \mathcal{M}^{\prime}=\left(E^{\prime}, \mathcal{I}^{\prime}\right)$ matroid with $E \cap E^{\prime}=\emptyset$.
(1) deletion of $e: \mathcal{M}-e=(E-e,\{I \subseteq E-e: I \in \mathcal{I}\})$,
(2) contraction of $e: \mathcal{M} / e=(E-e,\{I \subseteq E-e: I \cup e \in \mathcal{I}\})$,
(3) k-sum : $k \mathcal{M}=\left(E,\left\{\cup_{1}^{k} I_{i}: l_{i} \in \mathcal{I}\right\}\right)$,
(9) direct sum : $\mathcal{M} \oplus \mathcal{M}^{\prime}=\left(E \cup E^{\prime},\left\{I \cup I^{\prime}: I \in \mathcal{I}, I^{\prime} \in \mathcal{I}^{\prime}\right\}\right)$.

Example

Graphic matroids of $G=(V, E), G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $V \cap V^{\prime}=\emptyset, e \in E$.
(1) Graphic matroid of $G-e$,
(2) Graphic matroid of G / e,
(3) Unions of edge sets of k edge-disjoint forests,
(9) Graphic matroid of $\left(V \cup V^{\prime}, E \cup E^{\prime}\right)$.

Packing of spanning s-arborescences

Definition

(1) s-arborescence : directed tree, indegree of every vertex except s is 1 ,
(2) spanning subgraph of D : subgraph that contains all the vertices of D,
(3) packing of arborescences : arc-disjoint arborescences,

Packing of spanning s-arborescences

Definition

(1) s-arborescence : directed tree, indegree of every vertex except s is 1 ,
(2) spanning subgraph of D : subgraph that contains all the vertices of D,
(3) packing of arborescences: arc-disjoint arborescences,
(9) $\partial(Z, X)$: set of arcs from Z to X, for $Z \subseteq V(D)-X$,
(3) $|\partial(X)|$: indegree of X.

Theorem (Edmonds 1973)

Let $D=(V+s, A), k \in \mathbb{Z}_{+}$.

- D has a packing of k spanning s-arborescences
\Longleftrightarrow
- $|\partial(X)| \geq k \quad \forall \emptyset \neq X \subseteq V$.

Packing spanning arborescences with matroid intersection

Remark

Let $D=(V+s, A)$ and G be the underlying undirected graph of D.
(1) $\vec{F} \subseteq A$ is a packing of k spanning s-arborescences of $D \Longleftrightarrow$
(2) F is a packing of k spanning trees of $G,\left|\partial^{\vec{F}}(v)\right|=k \forall v \in V \Longleftrightarrow$
(3) F is a common base of $\mathcal{M}_{1}=k$-sum of the graphic matroid of G and $\mathcal{M}_{2}=\oplus_{v \in V} U_{|\partial(v)|, k}$.

Matroid-restricted packing of spanning s-arborescences

Definition

Given a digraph $D=(V+s, A)$ and a matroid $\mathcal{M}=(A, \mathcal{I})$, a packing of spanning s-arborescences T_{1}, \ldots, T_{k} is matroid-restricted if $\cup_{1}^{k} A\left(T_{i}\right) \in \mathcal{I}$.

Theorem

Given a digraph $D=(V+s, A), k \in \mathbb{Z}_{+}$and a matroid (\mathcal{M}, r) which is the direct sum of the matroids $\mathcal{M}_{v}=\left(\partial(v), r_{v}\right) \forall v \in V$.

- D has an \mathcal{M}-restricted packing of k spanning s-arborescences \Longleftrightarrow
- $r(\partial(X)) \geq k \forall \emptyset \neq X \subseteq V$.

Remarks

(1) For free matroid, we are back to packing of k spanning s-arborescen.
(2) This problem can also be formulated as matroid intersection.
(3) For general matroid \mathcal{M}, the problem is NP-complete, even for $k=1$.

Matroid-based packing of s-one-arborescences

Definition

Let $D=(V+s, A)$ be a digraph and \mathcal{M} a matroid on $\partial(s, V)$.
(1) s-one-arborescence : s-arborescence containing one arc leaving s.
(2) A packing of s-one-arborescences $\left\{T_{1}, \ldots, T_{t}\right\}$ is matroid-based if $\left\{A\left(T_{i}\right) \cap \partial(V): v \in V\left(T_{i}\right)\right\}$ is a base of $\mathcal{M} \forall v \in V$.

Matroid-based packing of s-one-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $D=(V+s, A)$ be a digraph and $\mathcal{M}=(\partial(s, V), r)$ a matroid.

- There exists an \mathcal{M}-based packing of s-one-arborescences in $D \Longleftrightarrow$ - $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\partial(s, V)) \forall X \subseteq V$.

Remark

A packing of k spanning s-arborescences in $D=(V+s, A)$ can be obtained as an \mathcal{M}-based packing of s^{\prime}-one-arborescences in $D^{\prime}=\left(V+s+s^{\prime}, A \cup A^{\prime}\right)$, where $A^{\prime}=\left\{k \times s^{\prime} s\right\}$ and free matroid \mathcal{M} on A^{\prime}.

\mathcal{M}_{1}-based \mathcal{M}_{2}-restricted packing of s-one-arborescences

Theorem (Cs. Király, Szigeti 2016-)

Let $D=(V+s, A), \mathcal{M}_{1}=\left(\partial(s, V), r_{1}\right), \mathcal{M}_{2}=\left(A, r_{2}\right)=\oplus_{v \in V} \mathcal{M}_{v}$.

- D has an \mathcal{M}_{1}-based \mathcal{M}_{2}-restricted packing of s-one-arborescen. \Longleftrightarrow
- $r_{1}(F)+r_{2}(\partial(X)-F) \geq r_{1}(\partial(s, V)) \quad \forall X \subseteq V, F \subseteq \partial(s, X)$.

Remarks

(1) It contains matroid-restricted packing of spanning s-arborescences, even matroid intersection. For matroids \mathcal{M}_{1} and \mathcal{M}_{2} on S, our problem on $\left(D=(\{s, v\},\{|S| \times s v\}), \mathcal{M}_{1}, \mathcal{M}_{2}\right)$ reduces to it.
(2) For free \mathcal{M}_{2}, we are back to \mathcal{M}_{1}-based packing of s-one-arborescen.

Algorithmic aspects

Remark : Our condition

$$
r_{1}(F)+r_{2}(\partial(X)-F) \geq r_{1}(\partial(s, V)) \forall X \subseteq V, F \subseteq \partial(s, X) \Longleftrightarrow
$$

$\min _{X \subseteq V}\left\{\min _{F \subseteq \partial(s, X)}\left\{r_{1}(F)+r_{2}(\partial(X)-F)\right\}\right\} \geq r_{1}(\partial(s, V))$

Remark: How to check it in polynomial time

(1) $b_{1}(F)=r_{1}(F)+r_{2}(\partial(X)-F)$ for $F \subseteq \partial(s, X)$ is submodular.
(2) $b_{2}(X)=\min \left\{b_{1}(F): F \subseteq \partial(s, X)\right\}$ for $X \subseteq V$ is submodular.
(3) By submodular function minimization (Iwata, Fleischer, Fujishige (2001)/Schrijver(2000)), we are done.

Algorithmic aspects

Algorithm

Input : $\left(D, \mathcal{M}_{1}, \mathcal{M}_{2}\right)$.

Output : Either the required packing or a pair violating our condition.
(1) If $\left(D, \mathcal{M}_{1}, \mathcal{M}_{2}\right)$ doesn't satisfy our condition then stop with the pair violating our condition.
(3) If \mathcal{M}_{2} is the free matroid then use Durand de Gevigney, Nguyen, Szigeti's algorithm for \mathcal{M}_{1}-based packing of s-one-arborescences and stop with the packing.
(0) Otherwise, let e be a non-bridge edge in \mathcal{M}_{2}.
(1) If $\left(D-e, \mathcal{M}_{1}-e, \mathcal{M}_{2}-e\right)$ satisfies our condition and e is not a bridge in \mathcal{M}_{1} then use recursively our algorithm for it and stop with the packing.

- Otherwise, $\left(D, \mathcal{M}_{1}, \mathcal{M}_{2}^{\prime}=\left(\mathcal{M}_{2} / e\right) \oplus e\right)$ satisfies our condition. Use recursively our algorithm for ($D, \mathcal{M}_{1}, \mathcal{M}_{2}^{\prime}$) and stop with the packing.

Conclusion

Summary

- A theorem on matroid-based matroid-restricted packing of s-one-arborescences that generalizes
- Durand de Gevigney, Nguyen, Szigeti's result on matroid-based packing of s-one-arborescences,
- Edmonds' result on matroid intersection.
- A polynomial algorithm to solve our problem.
- The problem of reachability-based matroid-restricted packing of s-one-arborescences can also be solved.

Open problem

Algorithm for finding a matroid-based matroid-restricted packing of s-one-arborescences of minimum weight?

Thank you for your attention!

