Packing of arborescences versus matroid intersection

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

October 2016

Joint work with : Csaba Király (EGRES Group, Eötvös University, Budapest)

Outline

- Matroids
 - Basic notion
 - Matroid intersection
- Packing of arborescences
 - spanning
 - matroid-restricted
 - matroid-based
 - reachability
 - reachability-based
- New result
 - matroid-based matroid-restricted
 - reachability-based matroid-restricted
 - Algorithmic aspects
- Conclusion

matroid intersection

reachability-based

matroid-restricted

matroid-based

spanning

reachability-based

matroid-based

matroid-restricted

Matroids

Definition

For
$$\mathcal{I} \subseteq 2^{\mathcal{E}}, \ \mathcal{M} = (\mathcal{E}, \mathcal{I})$$
 is a matroid if

$$2 If X \subseteq Y \in \mathcal{I} then X \in \mathcal{I},$$

③ If *X*, *Y* ∈ \mathcal{I} with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

Linear matroid : Sets of linearly independent vectors in a vector space,

- Graphic matroid : Edge-sets of forests of a graph,
- **3** Uniform matroid $U_{n,k}$: $\{X \subseteq E : |X| \le k\}$ where |E| = n,
- Free matroid : $U_{n,n}$.

Matroid intersection

Notion

- independent : sets in \mathcal{I} ,
- base : maximal independent set,
- In the second second
- rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\},$
 - submodular $(r(X) + r(Y) \ge r(X \cap Y) + r(X \cup Y) \ \forall X, Y \subseteq E)$, • $X \in \mathcal{I}$ if and only if r(X) = |X|.

Theorem (Edmonds 1970)

Two matroids $\mathcal{M}_1 = (E, r_1)$ and $\mathcal{M}_2 = (E, r_2)$ have a common independent set of size $k \iff r_1(X) + r_2(E - X) \ge k \ \forall \ X \subseteq E$.

Matroid Operations

Definition

$$\mathcal{M}=(E,\mathcal{I})$$
 matroid, $e\in E,~\mathcal{M}'=(E',\mathcal{I}')$ matroid with $E\cap E'=\emptyset.$

- deletion of $e : \mathcal{M} e = (E e, \{I \subseteq E e : I \in \mathcal{I}\}),$
- ② contraction of $e : \mathcal{M}/e = (E e, \{I \subseteq E e : I \cup e \in \mathcal{I}\}),$
- direct sum : $\mathcal{M} \oplus \mathcal{M}' = (E \cup E', \{I \cup I' : I \in \mathcal{I}, I' \in \mathcal{I}'\}).$

Example

Graphic matroids of G = (V, E), G' = (V', E') with $V \cap V' = \emptyset$, $e \in E$.

- Graphic matroid of G e,
- 2 Graphic matroid of G/e,
- \bigcirc Unions of edge sets of k edge-disjoint forests,
- Graphic matroid of $(V \cup V', E \cup E')$.

Packing of spanning s-arborescences

Definition

- **•** *s*-arborescence : directed tree, indegree of every vertex except *s* is 1,
- **2** spanning subgraph of D: subgraph that contains all the vertices of D,
- packing of arborescences : arc-disjoint arborescences,

Packing of spanning s-arborescences

Definition

- **1** *s*-arborescence : directed tree, indegree of every vertex except *s* is 1,
- **2** spanning subgraph of D: subgraph that contains all the vertices of D,
- packing of arborescences : arc-disjoint arborescences,
- $\ \, {\bf O}(Z,X): \text{ set of arcs from } Z \text{ to } X, \text{ for } Z \subseteq V(D)-X,$
- $(\partial(X) | : indegree of X.$

Theorem (Edmonds 1973)

Let D = (V + s, A), $k \in \mathbb{Z}_+$.

- D has a packing of k spanning s-arborescences
- $|\partial(X)| \ge k \quad \forall \ \emptyset \neq X \subseteq V.$

 \Leftrightarrow

Packing spanning arborescences with matroid intersection

Remark

Let D = (V + s, A) and G be the underlying undirected graph of D.
If ⊆ A is a packing of k spanning s-arborescences of D ⇔
F is a packing of k spanning trees of G, |∂^F(v)| = k ∀ v ∈ V ⇔
F is a common base of M₁ = k-sum of the graphic matroid of G and M₂ = ⊕_{v∈V} U_{|∂(v)|,k}.

Matroid-restricted packing of spanning s-arborescences

Definition

Given a digraph D = (V + s, A) and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences $\mathcal{T}_1, \ldots, \mathcal{T}_k$ is matroid-restricted if $\bigcup_1^k A(\mathcal{T}_i) \in \mathcal{I}$.

Theorem

Given a digraph D = (V + s, A), $k \in \mathbb{Z}_+$ and a matroid (\mathcal{M}, r) which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

D has an *M*-restricted packing of k spanning s-arborescences ⇒
r(∂(X)) ≥ k ∀ ∅ ≠ X ⊆ V.

Remarks

- For free matroid, we are back to packing of *k* spanning *s*-arborescen.
- ② This problem can also be formulated as matroid intersection.
- **③** For general matroid \mathcal{M} , the problem is NP-complete, even for k = 1.

Matroid-based packing of s-one-arborescences

Definition

Let D = (V + s, A) be a digraph and \mathcal{M} a matroid on $\partial(s, V)$.

- **s**-one-arborescence : *s*-arborescence containing one arc leaving *s*.
- ② A packing of *s*-one-arborescences $\{T_1, ..., T_t\}$ is matroid-based if $\{A(T_i) \cap \partial(V) : v \in V(T_i)\}$ is a base of $\mathcal{M} \forall v \in V$.

Matroid-based packing of s-one-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let D = (V + s, A) be a digraph and $\mathcal{M} = (\partial(s, V), r)$ a matroid.

There exists an *M*-based packing of *s*-one-arborescences in *D* ⇐
r(∂(s,X)) + |∂(V - X, X)| ≥ r(∂(s,V)) ∀X ⊆ V.

Remark

A packing of k spanning s-arborescences in D = (V + s, A) can be obtained as an \mathcal{M} -based packing of s'-one-arborescences in $D' = (V + s + s', A \cup A')$, where $A' = \{k \times s's\}$ and free matroid \mathcal{M} on A'.

\mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-one-arborescences

Theorem (Cs. Király, Szigeti 2016-)

Let
$$D = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

- D has an \mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of s-one-arborescen. \iff
- $r_1(F) + r_2(\partial(X) F) \ge r_1(\partial(s, V)) \quad \forall X \subseteq V, F \subseteq \partial(s, X).$

Remarks

- It contains matroid-restricted packing of spanning s-arborescences, even matroid intersection. For matroids M₁ and M₂ on S, our problem on (D = ({s, v}, {|S| × sv}), M₁, M₂) reduces to it.
- **2** For free \mathcal{M}_2 , we are back to \mathcal{M}_1 -based packing of *s*-one-arborescen.

Remark : Our condition

$$r_{1}(F) + r_{2}(\partial(X) - F) \ge r_{1}(\partial(s, V)) \ \forall X \subseteq V, F \subseteq \partial(s, X) \iff$$
$$\min_{X \subseteq V} \left\{ \min_{F \subseteq \partial(s, X)} \left\{ r_{1}(F) + r_{2}(\partial(X) - F) \right\} \right\} \ge r_{1}(\partial(s, V))$$

Remark : How to check it in polynomial time

- $b_1(F) = r_1(F) + r_2(\partial(X) F)$ for $F \subseteq \partial(s, X)$ is submodular.
- $b_2(X) = \min\{b_1(F) : F \subseteq \partial(s, X)\} \text{ for } X \subseteq V \text{ is submodular.}$

 By submodular function minimization (lwata, Fleischer, Fujishige (2001)/Schrijver(2000)), we are done.

Algorithmic aspects

Algorithm

- INPUT : $(D, \mathcal{M}_1, \mathcal{M}_2)$.
- Output : Either the required packing or a pair violating our condition.
 - If $(D, \mathcal{M}_1, \mathcal{M}_2)$ doesn't satisfy our condition then stop with the pair violating our condition.
 - If M₂ is the free matroid then use Durand de Gevigney, Nguyen, Szigeti's algorithm for M₁-based packing of *s*-one-arborescences and stop with the packing.
 - **③** Otherwise, let e be a non-bridge edge in \mathcal{M}_2 .
 - If (D − e, M₁ − e, M₂ − e) satisfies our condition and e is not a bridge in M₁ then use recursively our algorithm for it and stop with the packing.
 - **③** Otherwise, $(D, \mathcal{M}_1, \mathcal{M}'_2 = (\mathcal{M}_2/e) \oplus e)$ satisfies our condition. Use recursively our algorithm for $(D, \mathcal{M}_1, \mathcal{M}'_2)$ and stop with the packing.

Conclusion

Summary

- A theorem on matroid-based matroid-restricted packing of *s*-one-arborescences that generalizes
 - Durand de Gevigney, Nguyen, Szigeti's result on matroid-based packing of s-one-arborescences,
 - Edmonds' result on matroid intersection.
- A polynomial algorithm to solve our problem.
- The problem of reachability-based matroid-restricted packing of *s*-one-arborescences can also be solved.

Open problem

Algorithm for finding a matroid-based matroid-restricted packing of *s*-one-arborescences of minimum weight ?

Thank you for your attention !