@ Second talk in Bonn

Orientations with given in-degree :
Remark : The in-degree vector characterizes the arc-connectivity properties.
@) If m is the in-degree vector of G (m(v)=p_G(v) v veV), then m(X)-i_G(X)=p_G (X).
(& The in-degree vector characterizes the in-degree function.

& The in-degree function characterizes the connectivity properties.

Theorem of Hakimi
Given an undirected graph G= (V,E) and a vector m: V — Z_+,
there exists an orientation G of G with in-degree vector m &
W mX)=i_ G(X)vXcV,
& m(v) = [E|.

Proof :
() Take an arbitrary orientation Gof G.
Wi p_é(v)Sm(v) v v, then it is an m-orientation, Stop.
(Indeed, |A|=Z_(veV)p_(_§ (V)=>_(veV)m(v)=m(V)=|E|=]A].)
& Otherwise, take a big vertex v : p_G(v)>m(v).
(&) Let X be the set of vertices u from which there exists a path P_u to v.
() Take a small vertex ueX : p_é(u)<m(u).
(It exists : L(xeX)m(x)=m(X)Zi_G(X)=i_G(X)+p_(_§ (X) =L(xeX)p_(_§ (x).)
& Let G' be obtained from G by reorienting P_u. Go to T}
(Itis better : > _(weV) |p_é (w)-m(w)| = > _(weV) |p_(_§(w)—m(w)|—2.)
(2 This algorithm finds an m-orientation in polynomial time.
(053 _(weV) [p_G(w) - m(w)| < 2IE|.)

Exercice : Prove Hakimi’s theorem by uncrossing technique.

Applications :
& Eulerian orientation of an undirected graph : [m(v)=d_G(v)/2 v veV],
(& Eulerian orientation of a mixed graph : [m(v)=( d_E (v)+3 _A (v)+p _A(v) )/2-p_A(V) V veV],
(&) Perfect matching in a bipartite graph : [m(u)=1 vueU, m(w)=d(w)-1 vueW],
(& f-factor in a bipartite graph : [m(u)=f(u) vueU, m(w)=d(w)—f(w) vueW].

Exercice : Derive from Hakimi’s theorem the corresponding theorems.

() Theorem (Euler) : There exists an Eulerian orientation of G < d_G(v) is even v veV.
& Theorem (Ford-Fulkerson) : There exists an Eulerian orientation of a mixed graph (V,EUA) &
W) d_E(v)+5_A(v)+p_A(v) is even v veV,



@ o AX)-5_A(X)sd_E(X) v XcV.
&) Theorem (Hall, Frobenius) : There exists a perfect matching in a bipartite graph (U,WE) &
& [(¥)2[X] vXeW,
& u=Iw).
) Theorem (Ore) : There exists an 7-factor in a bipartite graph (U,W;E) &
i E(X)=f(X)-f(UUW)/2 v XcUUW.

Theorem (Frank) :
Given an undirected graph G=(V,E) and a vector m: V — Z+ with m(V)=|E|,
there exists an orientation G of G with in-degree vector m that is
&) root-connected (p_é(X) =21 vXcV-s, s fixed, p_é( V)=0) & m(X)-i_G(X) =1 v XcV-s.
& k-root-connected (p_G(X) 2k vXcV-s, s fixed, p_G (V)=0) & m(X)-i_G(X) 2 k v XcV-s.
& strongly connected (p_G(X) 2 1 vXcV, p_G (V)=0) e mX)-i_G (X)21vXcV.

&) k-arc-connected  (p_G(X) =k vXcV, p_G (V)=0) e mX)-i_G (X) 2k v XcV.

“The univers is so well-balanced that the mere fact that you have a problem also serves as a sign that

there is a solution.” Steve Maraboli

Well-balanced orientation :
Exercise :
An orientation G of an eulerian graph G is eulerian < )\_é(u, v) = 1/2A_G(u,v) v(u,v)eVxV. Proof
Definition :
Well-balanced orientation G of G : A_G(u, v) = L1/2A_G(u, v) v(u,v)eVxV.
Exercise : G is well-balanced & p_G(X)-5_G(X) < d_G(X)-2 LR_G(X)/2] vX ¢ V. Proof
&) Well-balanced orientation Theorem of Nash-Williams :
Every graph G admits a well-balanced orientation.
Remark : Strong orientation implies weak orientation.
Proof : A_G(u, v) = L1/2A_G(u, v) = L 1/2x2k ] =k v(u,v)eVxV.
& Smooth well-balanced orientation Theorem of Nash-Williams :
There exists a pairing M of T_G and there exists an eulerian orientation G +-M of G+M
such that G is well-balanced.
&) Strong Pairing Theorem of Nash-Williams :
There exists a pairing M of T_G such that for every eulerian orientation G+-M of G+M
such that G is well-balanced.
Feasible Pairing Theorem of Nash-Williams :
There exists a pairing M of T_G such that
Q for every orientation of M, there exists an eulerian orientation of G+M,

Q for every eulerian orientation G+-M of G+M, G is well-balanced.



Exercise : Prove it is equivalentto d_M(X)<d_G(X)-2 LR_G(X))2] vX c V.

Applications of the pairing theorem :
& Theorem of Kiraly-Szigeti : For every pairing M of T_G,
there exists an eulerian orientation G +-M of G+M such that G is well-balanced.
&) Theorem of Kiraly-Szigeti : Every Eulerian graph G has an Eulerian orientation é
such that G-v is a well-balanced orientation of G-v for all veV.
Corollary : An Eulerian graph G has an Eulerian orientation G so that G-v is
k-arc-connected vveV & G-v is 2k-edge-connected vveV.
Corollary (Berg-Jordan) : An Eulerian graph G has a 2-vertex-connected
Eulerian orientation & G-v is 2-edge-connected vveV.
& Subgraph Theorem of Nash-Williams :
For every subgraph H of G, 3 G:Gand é(H) are well-balanced.
8] Edge-partition Theorem of Kiraly-Szigeti :
For every partition {E_1, . . . ,E_k} of E(G), there exists GofG:
G and (_.“;(E_i) vi are well-balanced orientations of the corresponding graphs.
Vertex-partition Theorem of Kiraly-Szigeti :
For every partition {V_1, . .. ,V_k} of V(G), there exists GofG:
G and é/(V—V_i) vi are well-balanced orientations of the corresponding graphs.

Exercices : Prove Q implies @ G @ Q .

Exercices : Prove : pairing theorem for global edge-connectivity is easy. (by Lovasz and Mader)

Weighted problems :
Theorem : Minimum weight in-degree-constrained orientation problem can be solved in polynomial
time. (min-cost flow)
& Theorem of Edmonds : Minimum weight k-rooted-connected orientation problem can be solved in
polynomial time. (submodular flow)

& Theorem of Frank : Minimum weight k-arc-connected orientation problem can be solved in
polynomial time. (submodular flow)

&J Theorem of Bernath, Iwata, T. Kiraly, Z. Kiraly, Szigeti :

Minimum weight well-balanced orientation problem is NP-complete.

k-vertex-connected orientation :
Theorem of Thomassen : G has a 2-vertex-connected orientation <
G is 4-edge-conneted and G-v is 2-edge-connected vveV.

& Theorem of Durand de Gevigney : k-vertex-connected orientation problem is NP-complete for k=3.



