Recent results on packing arborescences

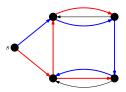
Zoltán Szigeti

Combinatorial Optimization Group, Laboratory G-SCOP, Grenoble INP-Grenoble Alpes University, France

Packing spanning s-arborescences

Definitions

- **1** s-arborescence: tree + in-degree of every vertex except s is 1.
- **2** spanning subgraph of D: subgraph containing all the vertices of D.
- **o** packing subgraphs: pairwise arc-disjoint subgraphs.

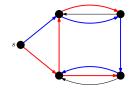


Tool 1: Matroid intersection

 $\vec{B} \subseteq \vec{E}$ is the arc set of a packing of k spanning s-arborescences in $\vec{G} \iff$ (a) B is the edge set of a packing of k spanning trees in G, (b) $d_{\vec{B}}^{-}(v) = k$ for all $v \in V - s$.

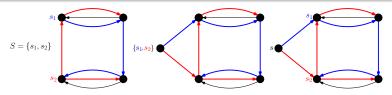
Theorem 1 (Edmonds 1973)

Let D = (V, A) be a digraph, $s \in V$ and $k \in \mathbb{Z}_+$. There exists a packing of k spanning s-arborescences $d_A^-(X) \ge k$ for all $\emptyset \ne X \subseteq V \setminus s$.

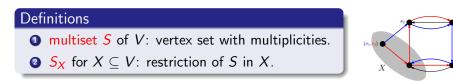


Theorem 2 (Edmonds 1973)

Let D = (V, A) be a digraph and S a multiset of vertices in V. There exists a packing of spanning s-arborescences $(s \in S) \iff |S_X| + d_A^-(X) \ge |S|$ for all $\emptyset \ne X \subseteq V$.



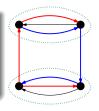
Theorems 1 and 2 are equivalent.



Packing spanning arborescences : flexible roots

Theorem 3 (Frank 1978)

Let D = (V, A) be a digraph and $k \in \mathbb{Z}_+$. There exists a packing of k spanning arborescences $\iff k \ge \sum_{X \in \mathcal{P}} (k - d_A^-(X))$ for every subpartition \mathcal{P} of V.



Theorem 3 implies Theorem 1.

Tool 2: generalized polymatroids (Frank)

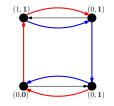
- The root vectors of packings of *k* spanning arborescences are exactly the integer points of a generalized polymatroid.
- On-empty intersection of a generalized polymatroid and a box is a generalized polymatroid.

root vector $x : V \to \mathbb{Z}_+$ of a packing: x(s) = number of *s*-arborescences in the packing for all $s \in V$.

(f, g)-bounded packing of spanning arborescences

Definition

(f,g)-bounded packing of arborescences: number of *v*-arborescences in the packing is at least f(v) and at most $g(v) \ \forall v \in V$.



Theorem 4 (Frank 1978, Cai 1983)

Let D = (V, A) be a digraph, $f, g : V \to \mathbb{Z}_+$ functions and $k \in \mathbb{Z}_+$. There exists an (f, g)-bounded packing of k spanning arborescences \iff

$$g(v) \ge f(v) \text{ for every } v \in V,$$

- $k \geq \sum_{X \in \mathcal{P}} (k d_A^-(X)) + f(\overline{\cup \mathcal{P}})$ for every subpartition \mathcal{P} of V,
- **③** $g(X) + d_A^-(X) \ge k$ for every $\emptyset \neq X \subseteq V$.

Theorem 4 implies Theorem 3.

Matroid-rooted packing of spanning arborescences

Definition

M-rooted packing of arborescences: roots of the arborescences form a basis of a given matroid M.

Theorem 5

Let D = (V, A) be a digraph, S a multiset in V, $M = (S, r_M)$ a matroid. There exists an M-rooted packing of spanning arborescences \iff $r_M(S_{\cup P}) \ge \sum_{X \in P} (r_M(S) - d_A^-(X))$ for every subpartition P of V.

Theorem 5 implies Theorem 3.

Packing spanning mixed arborescences : fixed root

Definition

• mixed *s*-arborescence:

it can be oriented to obtain an s-arborescence.

• $e_E(\mathcal{P})$: number of edges entering at least one member of a subpartition \mathcal{P} of V.

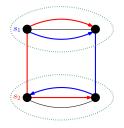
Theorem 6 (Frank 1978)

Let $F = (V, E \cup A)$ be a mixed graph, $s \in V$ and $k \in \mathbb{Z}_+$. There exists a packing of k spanning mixed s-arborescences $e_E(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} (k - d_A^-(X))$ for every subpartition \mathcal{P} of V - s.

Theorem 6 implies Theorem 1.

Theorem 7

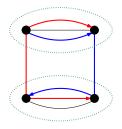
Let $F = (V, E \cup A)$ be a mixed graph and S a multiset of vertices in V. There exists a packing of spanning mixed s-arborescences $(s \in S) \iff e_E(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} (|S_{\overline{X}}| - d_A^-(X))$ for every subpartition \mathcal{P} of V.



Theorems 6 and 7 are equivalent.

Theorem 8 (Gao, Yang 2021)

Let $F = (V, E \cup A)$ be a mixed graph and $k \in \mathbb{Z}_+$. There exists a packing of k spanning mixed arborescences $e_E(\mathcal{P}) + k \ge \sum_{X \in \mathcal{P}} (k - d_A^-(X))$ for every subpartition \mathcal{P} of V.



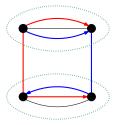
Theorem 8 implies Theorem 6.

(f, g)-bounded packing spanning mixed arborescences

Theorem 9 (Gao, Yang 2021)

Let $F = (V, E \cup A)$ be a mixed graph, $f, g : V \to \mathbb{Z}$ functions and $k \in \mathbb{Z}_+$. An (f, g)-bounded packing of k spanning mixed arborescences exists \iff

- $g(v) \ge f(v)$ for every $v \in V$,
- ② $e_E(\mathcal{P}) + \min\{k f(\overline{\cup \mathcal{P}}), g(\cup \mathcal{P})\} \ge \sum_{X \in \mathcal{P}} (k d_A^-(X))$ for every subpartition \mathcal{P} of V.



Theorem 9 implies Theorems 4 and 8.

k-regular packing of arborescences: each vertex belongs to *k* arborescences in the packing.

Theorem 10

Let D = (V, A) be a digraph, S a multiset of vertices in V and $k \in \mathbb{Z}_+$. There exists a *k*-regular packing of *s*-arborescences ($s \in S' \subseteq S$) \iff $|S_X| + |d_A^-(X)| \ge k$ for all $\emptyset \ne X \subseteq V$.

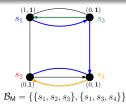
Theorem 10 implies Theorem 2.

Matroid-rooted (f, g)-bounded regular packing of mixed arborescences

Theorem 11 (Szigeti)

Let $F = (V, E \cup A)$ be a mixed graph, $k \in \mathbb{Z}_+$, $f, g : V \to \mathbb{Z}$ functions, S a multiset of vertices in V and $M = (S, r_M)$ a matroid. There exists an M-rooted (f, g)-bounded k-regular packing of mixed arborescences \iff

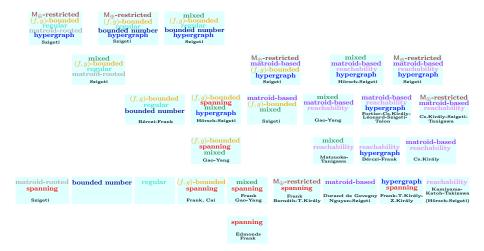
- $g_k(v) = \min\{k, g(v)\} \ge f(v) \text{ for all } v \in V,$
- ② $e_E(\mathcal{P}) + r_M(S_X) + g_k(Y X) \ge \sum_{X' \in \mathcal{P}} (k d_A^-(X')) + f(X Y)$ for all X, Y ⊆ V and subpartition \mathcal{P} of Y,
- $I r_{\mathsf{M}}(S_X) + g_k(\overline{X}) \ge r_{\mathsf{M}}(S) \text{ for all } X \subseteq V.$



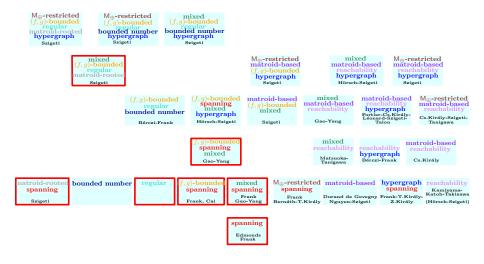
Theorem 11 implies Theorems 1-10.

Sketch of the proof

- The root vectors of M-rooted (f, g)-bounded k-regular packings of arborescences are exactly the integer points of the intersection of two generalized polymatroids C(k − d⁻_A(·)) ∩ T(−∞, k) ∩ T(f, g) and B(r_M(S_(·))).
- Frank's theorem on intersection of two generalized polymatroids provides the result for digraphs.
- **③** The mixed graph version is obtained by a new orientation theorem.



Results seen so far



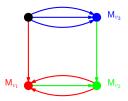
Z. Szigeti (G-SCOP, Grenoble)

Extensions

Definition

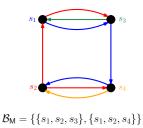
M_{\oplus} -restricted arc set A':

 $\rho_{A'}(v)$ is independent in a given matroid M_v on $\rho_A(v)$ for all $v \in V$.

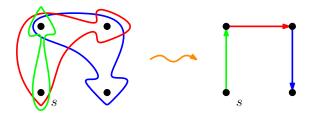


matroid-based packing of arborescences:

for every $v \in V$, roots of arborescences containing v in the packing form a basis of a given matroid M.

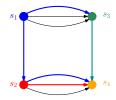


- hyperarborescence: directed hypergraph that can be trimmed to an arborescence.
- spanning s-hyperarborescence: directed hypergraph that can be trimmed to a spanning s-arborescence.



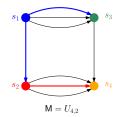
reachability *s*-arborescence of *D*:

s-arborescence containing all vertices reachable from s in D.



matroid-reachability-based packing of arborescences:

for every $v \in V$, roots of arborescences containing v in the packing form a basis of the set of elements from which v is reachable in D.



Theorem

The following problems are NP-complete:

- packing of a spanning *s*-arborescence and a spanning *s*-in-arborescence (Thomassen),
- 2 f-factor packing of s-arborescences (Szigeti),
- **③** packing of k *s*-arborescences, each of size ℓ (Hörsch),
- (f,g)-bounded packing of k reachability arborescences (Bérczi, Frank),
- matroid-based packing of spanning s-arborescences in the extended framework (Fortier, Cs. Király, Szigeti, Tanigawa),
 - in the framework of this talk it is equivalent to matroid-rooted packing of spanning arborescences that can be solved,
- o packing of 2 Steiner s-arborescences (Cheriyan, Salavatipour).

Open problems

Open problems

1 Matroid-based packing of ℓ arborescences.

- for $\ell = |S|$, it is equivalent to the original matroid-based packing of arborescences that can be solved,
- for $\ell = r_M(S)$, it is equivalent to matroid-rooted packing of spanning arborescences that can be solved,
- **2** (f,g)-bounded, matroid-based packing of mixed hyperarborescences.
- (f,g)-bounded, matroid-rooted, regular packing of mixed hyperarborescences.

