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Abstract

We show that the problem of deciding whether a given graph G has a
well-balanced orientation G⃗ such that d+

G⃗
(v) ≤ ℓ(v) for all v ∈ V (G) for a

given function ℓ : V (G) → Z≥0 is NP-complete. We also prove a similar
result for best-balanced orientations. This improves a result of Bernáth,
Iwata, Király, Király and Szigeti and answers a question of Frank.

1 Introduction

This article contains a negative result concerning the possibility of deciding
whether a given graph has a well-balanced or best-balanced orientation with a
certain extra property. Any undefined notions can be found in Section 2.

During the history of graph orientations, the problem of characterizing graphs
admitting orientations with certain connectivity properties has played a decisive
role. The first important theorem due to Robbins [12] states that a graph has
a strongly connected orientation if and only if it is 2-edge-connected. In 1960,
Nash-Williams [11] proved several theorems generalizing the result of Robbins.
The first one is the following natural generalization of the result of Robbins to
higher global arc-connectivity.

Theorem 1. Let G be a graph and k a positive integer. Then G has a k-arc-
connected orientation if and only if G is 2k-edge-connected.

While Theorem 1 resolves the problem of finding graph orientations of high
global arc-connectivity, Nash-Williams also considered orientations satisfying
local arc-connectivity conditions. We say that an orientation G⃗ of a graph

G is well-balanced if λG⃗(u, v) ≥ ⌊λG(u,v)
2 ⌋ for all (u, v) ∈ V (G) × V (G). If

additionally d+
G⃗
(v) ∈ {⌊dG(v)

2 ⌋, ⌈dG(v)
2 ⌉} holds for all v ∈ V (G), then G⃗ is called

best-balanced. Nash-Williams proved the following result in [11].

Theorem 2. Every graph has a best-balanced orientation.

Observe that Theorem 2 implies Theorem 1. In the last decades, numerous
attempts have been made to develop theory surrounding Theorems 1 and 2.
These attempts turned out to be much more successful when concerning Theo-
rem 1 than when concerning Theorem 2. For example, while a relatively simple
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proof of Theorem 1 relying on a splitting off theorem of Lovász has been found
by Frank [6], no simple proof of Theorem 2 is known. Even though since the
original, very complicated proof of Nash-Williams new proofs have been found
by Mader [9] and Frank [5], all of them are pretty involved.

Another branch of research in the theory sorrounding Theorems 1 and 2
consists in characterizing graphs which admit orientations satisfying some extra
properties in addition to the connectivity conditions. These problems turn out
to be much more tractable when trying to generalize Theorem 1 than when
trying to generalize Theorem 2.

For generalizing Theorem 1, polymatroid theory has proven to be a valuable
tool. It allowed Frank [6] to solve the problem of deciding whether a mixed
graph has a k-arc-connected orientation for some given positive integer k and
to solve the more general problem of finding a minimum cost k-arc-connected
orientation of a given graph where a cost is given for both possible orientations
of each edge.

In [2], Bernáth et al. attempted to obtain similar generalizations for The-
orem 2 which yielded several negative results, see also [1]. For example, the
problems of finding well-balanced and best-balanced orientations minimizing a
given weight function were proven to be NP-complete in [2]. The problem of
deciding whether a mixed graph has a best-balanced orientation has also been
proven to be NP-complete in [2]. A proof that the problem of deciding whether
a mixed graph has a well-balanced orientation is NP-complete has been found
by Bernáth and Joret [3].

Another extra property which can be imposed on the orientation is degree
constraints. Here a generalization of Theorem 1 has been obtained by Frank
[7] using comparatively elementary methods. As its proof is constructive, we
obtain the following result.

Theorem 3. There is a polynomial time algorithm which, given a graph G, a
positive integer k and two functions ℓ1, ℓ2 : V (G) → Z≥0, decides whether there

is a k-arc-connected orientation G⃗ of G such that ℓ1(v) ≤ d+
G⃗
(v) ≤ ℓ2(v) for all

v ∈ V (G).

Yet again, a similar generalization of Theorem 2 was proven to be out of
reach in [2].

Theorem 4. The problem of deciding whether, given a graph G and two func-
tions ℓ1, ℓ2 : V (G) → Z≥0, there is a well-balanced orientation G⃗ of G such that
ℓ1(v) ≤ d+

G⃗
(v) ≤ ℓ2(v) for all v ∈ V (G), is NP-complete.

A similar result for best-balanced orientations is also proven in [2].

In this article, we deal with the question whether a version of the above
problem with milder restrictions on the vertex degrees is better tractable. We
are interested in the case when instead of imposing an upper and a lower bound
on the out-degree of every vertex only an upper bound is imposed.

More concretely, we consider the following two problems:

Upper-bounded well-balanced orientation (UBWBO):

Input: A graph G, a function ℓ : V (G) → Z≥0.

Question: Is there a well-balanced orientation G⃗ of G such that d+
G⃗
(v) ≤ ℓ(v)

for all v ∈ V (G)?
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Upper-bounded best-balanced orientation (UBBBO):

Input: A graph G, a function ℓ : V (G) → Z≥0.

Question: Is there a best-balanced orientation G⃗ of G such that d+
G⃗
(v) ≤ ℓ(v)

for all v ∈ V (G)?

Observe that any orientation obtained from a well-balanced (best-balanced)
orientation by reversing the orientation of all arcs is again well-balanced (best-
balanced). Hence imposing lower bounds instead of upper bounds on the out-
degree would lead to equivalent problems. Similarly, the bounds could be im-
posed on the in-degrees instead of the out-degrees.

The question of the complexity of UBBBO can be found in various sources.
It is mentioned by Frank in [6], by Bernáth et al. in [2] and there is an online
posting on it in the open problem collection of the Egerváry Research group [4].
The contribution of this article is to prove that even these problems involving
milder restrictions remain hard. We prove the following two results:

Theorem 5. UBWBO is NP-complete.

Theorem 6. UBBBO is NP-complete.

Observe that Theorem 5 implies Theorem 4. Theorems 5 and 6 can be
considered yet another indication of the isolated position that Theorem 2 has
in the theory of graph orientations.

After a collection of formal definitions and preliminary results in Section 2,
we prove Theorems 5 and 6 in Section 3 using a reduction from Vertex Cover.
While our reduction is inspired by the one used in [2] to prove Theorem 4, it is
more involved.

2 Preliminaries

This section is dedicated to providing the background for the proof of the main
results in Section 3. We first define all important terms in Section 2.1 and then
give some preliminary results in Section 2.2.

2.1 Definitions

We first give some basic notions of graph theory. A mixed graph F consists of
a vertex set V (F ), an edge set E(F ), and an arc set A(F ). We also say that
F contains V (F ), E(F ) and A(F ). An edge e = uv ∈ E(F ) is a set containing
the vertices u and v. We say that e links u and v and e is incident to u and
v. More generally, we say that e links two disjoint sets X,Y ⊆ V (F ) if u ∈ X
and v ∈ Y . For some X ⊆ V (F ) with u ∈ X and v ∈ V (F )−X, we say that e
enters X. An arc a = uv ∈ A(F ) is an ordered tuple of the vertices u, v ∈ V (F )
where u is called the tail of a and v is called the head of a. We also say that
a goes from u to v. More generally, we say that a goes from X to Y for two
disjoint sets X,Y ⊆ V (F ) if u ∈ X and v ∈ Y . For some X ⊆ V (F ) with
u ∈ X and v ∈ V (F ) −X, we say that e enters V (F ) −X and leaves X. For
some e = uv ∈ E(F ) ∪ A(F ), we say that u and v are the endvertices of e. A
subgraph F ′ of F is a mixed graph F ′ with V (F ′) ⊆ V (F ), E(F ′) ⊆ E(F ), and
A(F ′) ⊆ A(F ). For some X ⊆ V (F ), we let F [X] denote the subgraph of F

3



whose vertex set is X and that contains all the edges in E(F ) and all the arcs
in A(F ) whose both endvertices are in X.

A mixed graph G without arcs is called a graph. For a graph G and some
X ⊆ V (G), we let dG(X) denote the number of edges in E(G) that have exactly
one endvertex in X and we let iG(X) denote the number of edges in E(G)
that have both endvertices in X. For a single vertex v ∈ V (G), we abbreviate
dG({v}) to dG(v) and call this number the degree of v in G. If dG(v) = 3 for
all v ∈ V (G), we say that G is cubic. For two vertices u, v ∈ V (G), we use
λG(u, v) for minu∈X⊆V (G)−v dG(X). Observe that λG(u, v) = λG(v, u). For
some positive integer k, we say that G is k-edge-connected if λG(u, v) ≥ k for
all u, v ∈ V (G). A 1-edge-connected graph which contains two vertices u, v of
degree 1 and in which all other vertices are of degree 2 is called a uv-path. We
also say that u and v are the endvertices of the path. Two graphs whose edge
sets are disjoint are called edge-disjoint.

A mixed graph D without edges is called a digraph. For a digraph D and
some X ⊆ V (D), we let d+D(X) denote the number of arcs whose tail is in X
and whose head is in V (D)−X. We use d−D(X) for d+D(V (D)−X). For a single
vertex v ∈ V (D), we abbreviate d+D({v})(d−D({v})) to d+D(v)(d−D(v)) and call this
number the out-degree (in-degree) of v in D. If d+D(v) = d−D(v) for all v ∈ V (D),
we say that D is eulerian. Given a function ℓ : V (D) → Z≥0, we say that D
is ℓ-bounded if d+D(v) ≤ ℓ(v) for all v ∈ V (D). For two vertices u, v ∈ V (D),
we use λD(u, v) for minv∈X⊆V (D)−u d

−
D(X). For some positive integer k, we say

that D is k-arc-connected if λD(u, v) ≥ k for all u, v ∈ V (D). We abbreviate
1-arc-connected to strongly connected. The operation of exchanging the head
and the tail of an arc is called reversing the arc. Two digraphs whose arc sets
are disjoint are called arc-disjoint.

A mixed graph F ′ is called a partial orientation of another mixed graph F if
F ′ can be obtained from F by replacing some of the edges in E(F ) by an arc with
the same two endvertices. This operation is called orienting the edge. If F ′ is a
digraph, then F ′ is called an orientation of F . The unique graph G such that F
is an orientation of G is called the underlying graph of F . A strongly connected
orientation of a graph all of whose vertices are of degree 2 is called a circuit. An
orientation T of a uv-path with λT (u, v) = 1 is called a directed uv-path. We

say that an orientation G⃗ of a graph G is well-balanced if λG⃗(u, v) ≥ ⌊λG(u,v)
2 ⌋

for all (u, v) ∈ V (G) × V (G). If additionally d+
G⃗
(v) ∈ {⌊dG(v)

2 ⌋, ⌈dG(v)
2 ⌉} holds

for all v ∈ V (G), then G⃗ is called best-balanced. We also say that a digraph is
well-balanced (best-balanced) if it is a well-balanced (best-balanced) orientation
of its underlying graph.

For basic notions of complexity theory, see [8]. Given a graph H, a vertex
cover of H is a subset U of V (H) such that every e ∈ E(H) is incident to at
least one vertex in U . We consider the following algorithmic problem:

Cubic Vertex Cover (CVC):

Input: A cubic graph H, a positive integer k.
Question: Is there a vertex cover of H of size at most k?

2.2 Preliminary results

For proving the correctness of our reduction, we need a few preliminaries.
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The first classic result is due to Menger [10] and fundamental to graph
connectivity.

Theorem 7. Let D be a digraph and s1, s2 ∈ V (D). Then the maximum number
of pairwise arc-disjoint directed paths from s1 to s2 in D is λD(s1, s2).

The next result is helpful when proving that a given orientation is well-
balanced.

Proposition 1. Let G = (V,E) be a graph and a ∈ V . Let G⃗ be an orientation

of G such that λG⃗(a, s) ≥ ⌊dG(s)
2 ⌋ and λG⃗(s, a) ≥ ⌊dG(s)

2 ⌋ hold for all s ∈ V − a.

Then G⃗ is well-balanced.

Proof. For all s1, s2 ∈ V, we have λG⃗(s1, s2) = min{mina,s2∈R⊆V−s1 d
−
G⃗
(R),

mins2∈R⊆V−s1−a d
−
G⃗
(R)} ≥ min{λG⃗(s1, a), λG⃗(a, s2)} ≥ min{⌊dG(s1)

2 ⌋, ⌊dG(s2)
2 ⌋}

≥ ⌊λG(s1,s2)
2 ⌋. Hence G⃗ is well-balanced.

The next simple result allows to modify orientations maintaining important
properties.

Proposition 2. Let G = (V,E) be a graph, ℓ : V → Z≥0 a function, G⃗0 an

orientation of G, D an eulerian directed subgraph of G⃗0 and G⃗1 the orientation
of G which is obtained by reversing all the arcs of D. If G⃗0 is ℓ-bounded and
well-balanced, then so is G⃗1.

Proof. Since D is a eulerian, we have d+
G⃗1

(s) = d+
G⃗0

(s) for all s ∈ V . Hence

if G⃗0 is ℓ-bounded, then so is G⃗1. Similarly, we have d−
G⃗1

(s) = d−
G⃗0

(s) for

all s ∈ V . We then have d−
G⃗1

(R) =
∑

s∈R d−
G⃗1

(s) − iG(R) =
∑

s∈R d−
G⃗0

(s) −
iG(R) = d−

G⃗0
(R) for all R ⊆ V . Hence λG⃗1

(s1, s2) = mins2∈R⊆V−s1 d
−
G⃗1

(R) =

mins2∈R⊆V−s1 d
−
G⃗0

(R) = λG⃗0
(s1, s2) for all (s1, s2) ∈ V × V . Thus if G⃗0 is

well-balanced, then so is G⃗1.

Finally, we need the following result to justify the usefulness of our reduction.
It can be found in [8].

Theorem 8. Cubic Vertex Cover is NP-complete.

3 The reduction

In this section, we give the reduction we need to prove Theorems 5 and 6. We
first give a reduction for Theorem 5 and then show how to adapt it to prove
Theorem 6. In Section 3.1, we describe the instance (G, ℓ) of UBWBO we
create from a given instance (H, k) of CVC. In the remaining part of the paper
(H, k) and (G, ℓ) are fixed. In Section 3.2, we describe a particular kind of
orientations, called convenient orientations that play a crucial role in the proof
of the reduction. In Section 3.3, we give the first direction of the reduction
showing how to obtain an ℓ-bounded, well-balanced orientation of G from a
vertex cover of H. The other direction is divided in two parts. First, we show
in Section 3.4 how an ℓ-bounded, well-balanced orientation of G can be turned
into one that additionally has the property of being convenient. After, in Section
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3.5, we show how an orientation with this extra property yields a vertex cover
of H. In Section 3.6, we show how to adapt our construction for the proof of
Theorem 6. Finally, in Section 3.7, we conclude our proof.

3.1 The construction

We here show how to create an instance of UBWBO from an instance of CVC.
Let (H, k) be an instance of CVC. Since H is cubic, |V (H)| = 2n and |E(H)| =
3n for some integer n ≥ 2.

We first describe, for every v ∈ V (H), a vertex gadget Gv that contains
6 vertices: pv0, p

v
1, p

v
2, q

v
0 , q

v
1 , q

v
2 and 5 edges: pv0p

v
1, p

v
1p

v
2, q

v
0q

v
1 , q

v
1q

v
2 , p

v
0q

v
0 . We

next describe, for every e ∈ E(H), an edge gadget Ge that contains 6 vertices
xe, ye, ze1, z

e
2, z

e
3, z

e
4 and 5 edges: xeye, xeze1, y

eze2, y
eze3, y

eze4. An illustration of
these gadgets can be found in Figure 1.

xe

ze1 ze2 ze3 ze4 pv0 pv1 pv2

qv0 qv1 qv2ye

Figure 1: An edge gadget for an edge e and a vertex gadget for a vertex v.

We are now ready to describe G. For every v ∈ V (H), we let G contain a ver-
tex gadget Gv and for every e ∈ E(H), we let G contain an edge gadget Ge. Let
P =

⋃
v∈V (H) V (Gv), X =

⋃
e∈E(H){xe, ye} and Z =

⋃
e∈E(H){ze1, ze2, ze3, ze4}.

We let V (G) contain two more vertices a and b. We now finish the description
of G by linking these components by some additional edges. For every z ∈ Z, we
let E(G) contain an edge az and an edge bz. Further, for every v ∈ V (H), we add
the edges apv0, aq

v
0 , p

v
1y

e1 , pv2y
e2 , pv2y

e3 , qv1x
e1 , qv2x

e2 , and qv2x
e3 , where e1, e2, e3 is

an arbitrary ordering of the edges in E(H) which are incident to v in H. This
finishes the construction of G.

Observe that dG(a) = 4|E(H)| + 2|V (H)| = 16n, dG(b) = 4|E(H)| =
12n, dG(s) = 3 for all s ∈ P ∪ Z, and dG(x

e) = 4 and dG(y
e) = 6 for all

e ∈ E(H). An illustration can be found in Figure 2.
We now define ℓ. We set ℓ(a) = 8n + k and ℓ(z) = 1 for all z ∈ Z. For all

s ∈ V (G)− (Z ∪ a), we set the trivial bound ℓ(s) = dG(s).

It is easy to check the following property of G. It is enough to show that
there exist dG(s) edge-disjoint paths in G from s to a for all s ∈ V (G)− a.

Proposition 3. λG(s, a) = dG(s) for all s ∈ V (G)− a.

By Propositions 1 and 3, we have the following characterization of well-
balanced orientations of G.

Corollary 1. The following hold for the orientations G⃗ of G.

(a) G⃗ is well-balanced if and only if λG⃗(a, s) ≥ ⌊dG(s)
2 ⌋ and λG⃗(s, a) ≥ ⌊dG(s)

2 ⌋
for all s ∈ V (G)− a.
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a

b

pu0 pu1

qu0 qu1

qv0 qv1

pv0 pv1

qu2

pu2

qv2

pv2

xe

ye

xe′

ye
′

xe′′

ye
′′

Z

X

P

Figure 2: An example for the graph G created from a graph H where V (H)
contains two vertices u and v and E(H) contains two parallel edges e, f linking
u and v. All the edges belonging to a vertex gadget are marked in red while all
the edges belonging to an edge gadget are marked in blue. The names of the
vertices in Z have been omitted due to space restrictions. They are from left to
right: ze1, z

e
2, z

e
3, z

e
4, z

f
1 , z

f
2 , z

f
3 , z

f
4 . See also Figure 1.

(b) If G⃗ is well-balanced, then d+
G⃗
(s) = d−

G⃗
(s) = dG(s)

2 = λG⃗(a, s) = λG⃗(s, a)

for all s ∈ X ∪ {b}.

3.2 Convenient orientations

In order to prove that the reduction works indeed, we wish to consider a cer-
tain restricted class of orientations. We now define a mixed graph F which is
obtained as a partial orientation of G.

First for every e ∈ E(H) and i ∈ {1, 2}, let the edge azei be oriented from
a to zei and the edge bzei be oriented from zei to b. For every e ∈ E(H) and
i ∈ {3, 4}, let the edge azei be oriented from zei to a and the edge bzei be oriented
from b to zei . Let all the edges linking X and Z be oriented from X to Z. For
every e ∈ E(H), let the edge xeye be oriented from xe to ye. Next, let all the
edges linking P and X be oriented from P to X. For every v ∈ V (H) and
i ∈ {0, 1}, let the edge pvi p

v
i+1 be oriented from pvi to pvi+1 and let the edge

qvi q
v
i+1 be oriented from qvi to qvi+1. We denote the obtained partial orientation

of G by F . Observe that the edge set of F consists of the 3 edges aqv0 , ap
v
0, p

v
0q

v
0
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for every v ∈ V (H). An illustration of F can be found in Figure 3.

a

b

pu0 pu1

qu0 qu1

qv0 qv1

pv0 pv1

qu2

pu2

qv2

pv2

xe

ye

xe′

ye
′

xe′′

ye
′′

Z

X

P

Figure 3: An example for the mixed graph F created from the same graph H
as considered in Figure 2. The edges of F are marked in green.

We now say that an orientation G⃗ of G is convenient if G⃗ is also an ori-
entation of F . The following lemma contains a characterization of convenient,
well-balanced orientations of G which is a crucial ingredient for proving the
correctness of our reduction.

Lemma 1. A convenient orientation G⃗ of G is well-balanced if and only if for
every uv ∈ E(H),

(i) either the edges from a to {pu0 , qu0 } are oriented from a to {pu0 , qu0 } or the
edges from a to {pv0, qv0} are oriented from a to {pv0, qv0},

(ii) there is a directed path in G⃗[{a, pu0 , qu0 , pv0, qv0}] from a to each vertex.

Proof. First suppose that G⃗ is well-balanced and let e = uv ∈ E(H). Consider
the set R = V (Gu)∪V (Gv)∪{xe, ye}. Then, by Proposition 3 and dG(y

e) = 6,

we have λG⃗(a, y
e) ≥ 3. We hence obtain that d−

G⃗
(R) ≥ 3. As G⃗ is convenient,

it follows that the only arcs entering R in G⃗ have the tail a. Since the edge set
from a to R consists of four edges apu0 , aq

u
0 , ap

v
0, and aqv0 , we get that either the

arcs apu0 , aq
u
0 exist in G⃗ or the arcs apv0, aq

v
0 exist in G⃗.

Since G⃗ is well-balanced, by Corollary 1(a) and Theorem 7, there exists a

directed path G⃗ from a to each vertex in {pu0 , qu0 , pv0, qv0}. Since G⃗ is convenient,

this path is in G⃗[{a, pu0 , qu0 , pv0, qv0}].
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For the other direction, we will use that G⃗ is convenient several times without

explicit mention. By Corollary 1(a), it suffices to prove that λG⃗(a, s) ≥ ⌊dG(s)
2 ⌋

and λG⃗(s, a) ≥ ⌊dG(s)
2 ⌋ for all s ∈ V (G)− a.

First we consider b. For every e ∈ E(H) and i ∈ {1, 2}, azei b is a directed

path in G⃗ from a to b. We obtain, by Theorem 7, that λG⃗(a, b) ≥ 2|E(H)| =
⌊dG(b)

2 ⌋. Similarly, we get λG⃗(b, a) ≥ ⌊dG(b)
2 ⌋.

We next consider the vertices in X. Take some e = uv ∈ E(H) and indices

i, j ∈ {1, 2} such that G⃗ contains the arcs pui y
e, qui x

e, pvjy
e, and qvj x

e. By (ii),

there is a directed path Ts in G⃗[{a, pu0 , qu0 , pv0, qv0}] from a to each vertex s.
Since T1 = Tqu0

qu1 . . . qui x
e and T2 = Tqv0

qv1 . . . q
v
i x

e are two arc-disjoint di-

rected paths from a to xe, by Theorem 7, we obtain λG⃗(a, x
e) ≥ 2 = ⌊dG(xe)

2 ⌋.
Since the paths T1 = xeze1bz

e
3a and T2 = xeyeze4a are two arc-disjoint directed

paths from xe to a, by Theorem 7, we obtain λG⃗(x
e, a) ≥ 2 = ⌊dG(xe)

2 ⌋.
Next consider the paths T1 = yeze2bz

e′

3 a, T2 = yeze3a and T3 = yeze4a, where
e′ ∈ E(H)− e is chosen arbitrarily. These are three arc-disjoint directed paths

from ye to a, so by Theorem 7, we have λG⃗(y
e, a) ≥ 3 = ⌊dG(ye)

2 ⌋. For the next

part, by (i) and symmetry, we may suppose that the arcs apu0 , aq
u
0 exist in G⃗.

Since the paths T1 = apu0 . . . p
u
i y

e, T2 = aqu0 . . . qui y
e, and T3 = Tpv

0
pv1 . . . p

v
jy

e

are three arc-disjoint directed paths from a to ye, by Theorem 7, we obtain

λG⃗(a, y
e) ≥ 3 = ⌊dG(ye)

2 ⌋.
Since the paths considered above contain P ∪Z, it follows that G⃗ is strongly

connected. This yields λG⃗(a, s) ≥ 1 = ⌊dG(s)
2 ⌋ and λG⃗(s, a) ≥ 1 = ⌊dG(s)

2 ⌋ for
all s ∈ P ∪ Z.

3.3 From vertex cover to orientation

In this section, we give the first direction of the reduction. More formally, we
prove the following result.

Lemma 2. If there exists a vertex cover of size at most k of H, then there
exists an ℓ-bounded, well-balanced orientation of G.

Proof. Let U be a vertex cover of size at most k of H. Let G⃗ be the unique
convenient orientation of G in which for every v ∈ V (H), the edges apv0, p

v
0q

v
0

are oriented to a directed path apv0q
v
0 ; further the edge aqv0 is oriented from

a to qv0 if and only if v ∈ U . By Lemma 1 and as U is a vertex cover, we

obtain that G⃗ is well-balanced. By construction, we have d+
G⃗
(s) ≤ ℓ(s) for all

s ∈ V (G) − a. Finally, G⃗ contains 2|E(H)| arcs from a to Z, one arc from a
to pv0 for all v ∈ V (H) and one arc from a to qv0 for all v ∈ U . This yields

d+
G⃗
(a) = 2|E(H)|+ |V (H)|+ |U | ≤ 6n+ 2n+ k = ℓ(a), so G⃗ is ℓ-bounded.

3.4 Making a well-balanced orientation convenient

In this section, we give a slightly technical lemma that shows that if an ℓ-
bounded, well-balanced orientation of G exists, we can also find one which is
additionally convenient. We will do it in two steps. More formally, we prove
the following results.

9



Lemma 3. If there exists a well-balanced, ℓ-bounded orientation of G, then
there also exists a convenient, well-balanced, ℓ-bounded orientation of G.

Proof. Let G⃗0 be a well-balanced, ℓ-bounded orientation of G. By Corollary

1(b), λG⃗0
(b, a) = d+

G⃗0
(b) = dG(b)

2 = 6n. By Theorem 7, there is a set T of 6n

pairwise arc-disjoint directed paths from b to a contained in G⃗0. Then every
arc leaving b in G⃗0 is contained in exactly one of the directed paths in T . Let
Z− be the set of all z ∈ Z such that G⃗0 contains the arc bz and Z+ = Z − Z−.
For every z ∈ Z+, we obtain from d+

G⃗0
(z) ≤ 1 and the definition of Z+ that

the only arc leaving z in G⃗0 is zb. Hence z cannot be contained in a path in
T because they are directed paths from b to a. As d+

G⃗0
(z) ≤ 1 for all z ∈ Z−

and the directed paths in T are arc-disjoint, we obtain that no vertex in Z−
can be contained in two distinct paths in T . This yields that every path in T
contains exactly one vertex in Z− and no vertex in Z+, and every vertex in Z−
is contained in exactly one path in T . We denote by Tz the path in T that
contains z ∈ Z−.

Let Z12 =
⋃

e∈E(H){ze1, ze2}, Z34 =
⋃

e∈E(H){ze3, ze4}, Z5 = {z ∈ Z− ∩ Z34 :

Tz = bza}, Z6 = (Z−∩Z34)−Z5. For all z ∈ Z6, by d+
G⃗0

(z) ≤ 1, we get that the

edge from a to z is oriented from a to z. Note that Z− ∪ Z+ = Z = Z12 ∪ Z34

and |Z12| = |Z|
2 = |Z+|. Then we have |Z− ∩ Z12| = |Z12| − |Z+ ∩ Z12| =

|Z+| − |Z+ ∩ Z12| = |Z+ ∩ Z34|. This counting argument and the fact that the

paths in T are arc-disjoint show that the directed subgraph D of G⃗0 induced
by paths Tz for all z ∈ Z− ∩ Z12, by the paths azb for all z ∈ Z+ ∩ Z34 and by
the circuits Tz − bz + az for all z ∈ Z6 is eulerian.

Let G⃗1 be obtained from G⃗0 by reversing the orientation of every arc of D.

Claim 1. All the edges in G between Z and {a, b} have the same orientation

in G⃗1 and F ′.

Proof. It is easy check.

Claim 2. All the edges in G incident to at least one vertex in X have the same
orientation in G⃗1 and F ′.

Proof. Let e ∈ E(H). By Claim 1 and d+
G⃗1

(z) ≤ 1 for all z ∈ Z, all the edges

linking {xe, ye} and Z are oriented from {xe, ye} to Z in G⃗1. By Corollary 1(b),

we obtain d+
G⃗1

(ye) = d−
G⃗1

(ye) = dG(ye)
2 = 3 and d+

G⃗1
(xe) = d−

G⃗1
(xe) = dG(xe)

2 = 2.

As G⃗1 contains 3 arcs from ye to Z, we obtain that the edges linking P and ye

are oriented from P to ye in G⃗1 and that the edge xeye is oriented from xe to
ye in G⃗1. As G⃗1 contains two arcs from xe to Z ∪ ye, we obtain that the edges
linking P and xe are oriented from P to xe in G⃗1.

Claim 3. For every v ∈ V (H), the edges in E(Gv) − {pv0qv0} have the same

orientation in G⃗1 and F ′.

Proof. For every v ∈ V (H), as G⃗1 is well-balanced and by Corollary 1(a), we

have λG⃗1
(a, pv2) ≥ ⌊dG(pv

2)
2 ⌋ = 1. Hence, by construction and Claim 2, we obtain

that there is a directed path from pv0 to pv2 in G⃗1, namely pv0p
v
1p

v
2. Similarly,

qv0q
v
1q

v
2 is a directed path in G⃗1.
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Claims 1 to 3 and Proposition 2 show that G⃗1 is a convenient ℓ-bounded
and well-balanced orientation of G.

3.5 From convenient orientation to vertex cover

We now give the last step of the other direction of our reduction. More formally,
we prove the following result.

Lemma 4. If there is a convenient, well-balanced, ℓ-bounded orientation of G,
then there is a vertex cover of size at most k of H.

Proof. Let G⃗ be a convenient, well-balanced, ℓ-bounded orientation of G. Let
U ⊆ V (H) be the set of vertices v for which the arcs apv0, aq

v
0 exist in G⃗. By

Lemma 1, we get that U is a vertex cover of H and for every v ∈ V (H),

at least one arc exists in G⃗ from a to V (Gv). Next note that there are exactly

2|E(H)| = 6n arcs leaving a in F . As G⃗ is a convenient, ℓ-bounded orientation of
G, we have |U | = d+

G⃗
(a)−d+F (a)−|V (H)| ≤ ℓ(a)−6n−2n = (8n+k)−8n = k.

3.6 Best-balanced orientations

We now show how to extend our reduction to best-balanced orientations. We
create an instance (G′, ℓ′) of UBBBO by altering the instance (G, ℓ) of UBWBO
created in Section 3.1. Let G′ be obtained from G by adding a set W of 2k new
vertices and an edge wa for all w ∈ W . Observe that dG′(a) = dG(a) + |W | =
16n + 2k. Further, we set ℓ′(z) = 1 for all z ∈ Z and we set the trivial bound
ℓ′(s) = dG′(s) for all s ∈ V (G′)− Z.

Lemma 5. There exists an ℓ′-bounded, best-balanced orientation of G′ if and
only if there exists an ℓ-bounded, well-balanced orientation of G.

Proof. First suppose that there exists an ℓ′-bounded, best-balanced orientation
G⃗′ of G′. Let G⃗ = G⃗′[V (G)]. Observe that G⃗ is an orientation of G. Further, as

G⃗′ is well-balanced, for any s1, s2 ∈ V (G), we have λG⃗(s1, s2) = λG⃗′(s1, s2) ≥
⌊λG′ (s1,s2)

2 ⌋ = ⌊λG(s1,s2)
2 ⌋, hence G⃗ is well-balanced. For any s ∈ V (G) − a,

as G⃗′ is ℓ′-bounded, we have d+
G⃗
(s) = d+

G⃗′(s) ≤ ℓ′(s) = ℓ(s). Finally, as G⃗′ is

best-balanced, we have d+
G⃗
(a) ≤ d+

G⃗′(a) ≤ ⌈dG′ (a)
2 ⌉ = 8n+ k = ℓ(a). Hence G⃗ is

ℓ-bounded.
Now suppose that there is an ℓ-bounded, well-balanced orientation of G. We

obtain by Lemma 3 that there is also a convenient, ℓ-bounded, well-balanced
orientation G⃗ of G. This yields 8n ≤ d+

G⃗
(a) ≤ 8n+ k.

We now create an orientation G⃗′ by giving every edge in E(G) the orientation

it has in G⃗, orienting 8n+ k− d+
G⃗
(a) of the edges linking W and a from a to W

and orienting all the remaining edges linking W and a from W to a. For any

s1, s2 ∈ V (G), we have λG⃗′(s1, s2) = λG⃗(s1, s2) ≥ ⌊λG(s1,s2)
2 ⌋ = ⌊λG′ (s1,s2)

2 ⌋.
For any s1, s2 ∈ V (G′) with {s1, s2} ∩ W ̸= ∅, we have λG⃗′(s1, s2) ≥ 0 =

⌊λG′ (s1,s2)
2 ⌋. Hence, G⃗′ is well-balanced. For every s ∈ V (G) − a, we have

d+
G⃗′(s) = d+

G⃗
(s) ≤ ℓ(s) = ℓ′(s). Further, as G⃗ is convenient, we have d+

G⃗′(s) ∈
{⌊dG(s)

2 ⌋, ⌈dG(s)
2 ⌉} = {⌊dG′ (s)

2 ⌋, ⌈dG′ (s)
2 ⌉}. For all w ∈ W , we have d+

G⃗′(w) ≤
1 = ℓ(w) and d+

G⃗′(w) ∈ {0, 1} = {⌊dG(w)
2 ⌋, ⌈dG(w)

2 ⌉}. Finally, we have d+
G⃗′(a) =

11



d+
G⃗
(a) + (8n+ k − d+

G⃗
(a)) = 8n+ k = dG′ (a)

2 ≤ ℓ′(a). Hence G⃗′ is best-balanced

and ℓ′-bounded.

3.7 Conclusion

We here conclude the proof of Theorems 5 and 6. First observe that both
UBWBO and UBBBO are clearly in NP. Next observe that the size of both
(G, ℓ) and (G′, ℓ′) is polynomial in the size of (H, k). By Lemmas 2 to 4, we
obtain that (G, ℓ) is a positive instance of UBWBO if and only if (H, k) is a
positive instance of CVC. By Lemmas 2 to 5, we obtain that (G′, ℓ′) is a positive
instance of UBBBO if and only if (H, k) is a positive instance of CVC. As CVC
is NP-complete by Theorem 8, Theorems 5 and 6 follow.
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