Packing of Rigid Spanning Subgraphs and Spanning Trees

Joseph Cheriyan Olivier Durand de Gevigney Zoltán Szigeti

4 November 2013

Abstract

We prove that every $(6k + 2\ell, 2k)$ -connected simple graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs.

This implies a theorem of Jackson and Jordán [6] providing a sufficient condition for the rigidity of a graph and a theorem of Jordán [8] on the packing of rigid spanning subgraphs. Both these results generalize the classic result of Lovász and Yemini [10] saying that every 6-connected graph is rigid. Our approach provides a transparent proof for this theorem.

Our result also gives two improved upper bounds on the connectivity of graphs that have interesting properties: (1) in every 8-connected graph there exists a packing of a spanning tree and a 2-connected spanning subgraph; (2) every 14-connected graph has a 2-connected orientation.

1 Introduction

In this paper, we consider sufficient conditions for the existence of a packing of spanning subgraphs in a given undirected graph G = (V, E), where by a packing we mean a set of pairwise edge-disjoint subgraphs of G. Let us present a few examples in this area.

A first example is the existence of a packing of ℓ spanning trees in every 2ℓ -edge-connected graph. This result is an easy consequence of the classic theorem of Tutte [12] and Nash-Williams [11] that characterizes the existence of such a packing. It is well known that this characterization can be derived from matroid theory as follows. The spanning trees of G correspond to the bases of the graphic matroid $\mathcal{C}(G)$ of G. Hence, by matroid union [4], the packings of ℓ spanning trees of G correspond to the bases of the matroid $\mathcal{N}_{0,\ell}$ defined as the union of ℓ copies of $\mathcal{C}(G)$. Thus, the existence of the required packing is characterized by the rank of E in $\mathcal{N}_{0,\ell}$. Finally, using the formula of Edmonds [4] for the rank function of $\mathcal{N}_{0,\ell}$ gives the theorem of Tutte and Nash-Williams.

A more recent example, due to Jordán [8], is the existence of a packing of k rigid spanning subgraphs in every 6k-connected graph. The definition of rigidity is postponed to the next section but we mention here that the minimally rigid spanning subgraphs of G correspond to the bases of a matroid, namely the rigidity matroid $\mathcal{R}(G)$ of G. So, as in the previous argument, the existence of a packing of k rigid spanning subgraphs is characterized by the rank of E in the matroid $\mathcal{N}_{k,0}$ defined as the union of k copies of $\mathcal{R}(G)$. Jordán [8] used the formula of Edmonds [4] for the rank function of $\mathcal{N}_{k,0}$ to prove that 6k-connectivity implies the desired lower bound on the rank of E.

Our main contribution is to provide a new example that gives a sufficient connectivity condition for the existence of a packing of k rigid spanning subgraphs and ℓ spanning trees. To prove this result, we naturally introduce the matroid $\mathcal{N}_{k,\ell}$ defined as the union of k copies of the rigidity matroid $\mathcal{R}(G)$ and ℓ copies of the graphic matroid $\mathcal{C}(G)$.

As a packing of rigid spanning subgraphs turns out to be a packing of spanning 2-connected subgraphs, the packing result of Jordán [8] allowed him to settle the base case of a conjecture of Kriesell (see in [8]) on removable spanning trees and that of a conjecture of Thomassen [13] on orientation of graphs. Our result on the packing of rigid spanning subgraphs and spanning trees enables us to improve the results of Jordán on these conjectures.

2 Definitions

Let G = (V, E) be a graph. For $X \subseteq V$, denote by $d_G(X)$ the **degree** of X, that is, the number of edges of G with one end vertex in X and the other one in $V \setminus X$. We say that G is **Eulerian** if each vertex of G is of even degree.

A graph G' = (V', E') is a **subgraph** of G if $V' \subseteq V$ and $E' \subseteq E$. The subgraph G' is called **spanning** if V' = V. A set of pairwise edge-disjoint subgraphs of G is called a **packing**.

Let $F \subseteq E$. We denote by G_F the spanning subgraph of G with edge set F, that is, $G_F = (V, F)$. Let us denote by c(F) the number of connected components of G_F and by \mathcal{K}_F the set of connected components of G_F of size 1.

Let $T \subseteq V$. We denote by F(T) the set of edges of G_F induced by T. We say that F is a *T***-join** if the set of odd degree vertices of G_F coincides with T. It is well known that if G_F is a connected graph and T is of even cardinality then G_F contains a T-join.

For a collection \mathcal{G} of subsets of V, we say that (V, \mathcal{G}) is a **hypergraph**. We denote by $V(\mathcal{G})$ the set of vertices that belong to at least one element of \mathcal{G} . We will use the following well-known fact:

the sum of the sizes of the elements of \mathcal{G} is equal to the sum, for each vertex, of the number of elements of \mathcal{G} containing it. (1)

A set X of vertices is called **connected** in (V, \mathcal{G}) if, for any partition of X into two non-empty parts, there exists an element of \mathcal{G} intersecting both parts. In (V, \mathcal{G}) a **connected component** is a maximal connected vertex set. The number of connected components of this hypergraph is denoted by $c(\mathcal{G})$. Let $\mathcal{K}_{\mathcal{G}}$ be the set of connected components of (V, \mathcal{G}) of size 1.

For $X \in \mathcal{G}$, we define the **border** X_B of X as the set of vertices of X that belong to another element of \mathcal{G} , that is, $X_B = X \cap (\bigcup_{Y \in \mathcal{G} \setminus \{X\}} Y)$. We also define the **inner part** X_I of X as the set of vertices of X that belong to no other element of \mathcal{G} , that is, $X_I = X \setminus X_B$. Let $\mathcal{I}_{\mathcal{G}}$ be the set of elements of \mathcal{G} whose inner part is not empty, that is, $\mathcal{I}_{\mathcal{G}} = \{X \in \mathcal{G} : X_I \neq \emptyset\}$. Since every vertex of $V(\mathcal{G})$ is contained in at least two elements of $\mathcal{G} \cup \{X_I : X \in \mathcal{I}_{\mathcal{G}}\}$, we have, by (1),

$$\sum_{X \in \mathcal{G}} |X| + \sum_{X \in \mathcal{I}_{\mathcal{G}}} |X_I| \ge 2|V(\mathcal{G})|.$$
(2)

A graph G = (V, E) is called **rigid** if $\sum_{X \in \mathcal{G}} (2|X| - 3) \ge 2|V| - 3$ for every collection \mathcal{G} of sets of V such that $\{E(X), X \in \mathcal{G}\}$ partitions E. More details about rigid graphs will be given in Section 4.

We will use the following connectivity concepts. The graph G is called **p**-edge-connected if $d_G(X) \ge p$ for every non-empty proper subset X of V. We say that G is **p**-connected if |V| > p and G - X is connected for all $X \subset V$ with $|X| \le p - 1$. As in [1], for a pair of positive integers (p, q), G is called (p, q)-connected if $|V| > \frac{p}{q}$ and G - X is (p - q|X|)-edge-connected for all $X \subset V$, that is, if for every pair of disjoint subsets X and Y of V such that $Y \neq \emptyset$ and $X \cup Y \neq V$, we have

$$d_{G-X}(Y) \ge p - q|X|. \tag{3}$$

For a better understanding we mention that G is (6, 2)-connected if G is 6-edgeconnected, G - v is 4-edge-connected for all $v \in V$ and $G - \{u, v\}$ is 2-edgeconnected for all $u, v \in V$. It follows from the definitions that p-edge-connectivity is equivalent to (p, p)-connectivity. Moreover, since loops and parallel edges do not play any role in vertex connectivity, by the definition of (p, q)-connectivity, we have the following remark.

Remark 1. Every p-connected graph contains a (p, 1)-connected simple spanning subgraph and (p, 1)-connectivity implies (p, q)-connectivity for all $q \ge 1$.

Let D = (V, A) be a directed graph. We say that D is **strongly connected** if for every ordered pair $(u, v) \in V \times V$ of vertices there is a directed path from u to v in D. The digraph D is called *p***-arc-connected** if D - F is strongly connected for all $F \subseteq A$ with $|F| \leq p - 1$. We say that D is *p***-connected** if |V| > p and D - X is strongly connected for all $X \subset V$ with $|X| \leq p - 1$.

3 Results

Lovász and Yemini proved the following sufficient condition for a graph to be rigid.

Theorem 1 (Lovász and Yemini [10]). Every 6-connected graph is rigid.

The following result of Jackson and Jordán is, by Remark 1, a sharpening of Theorem 1.

Theorem 2 (Jackson and Jordán [6]). Every (6,2)-connected simple graph is rigid.

Figure 1: A non-rigid (6,3)-connected simple graph G = (V, E). The collection \mathcal{G} of the four grey vertex-sets provides a partition of E. Hence, since $\sum_{X \in \mathcal{G}} (2|X|-3) = 4(2 \times 8 - 3) = 52 < 53 = 2 \times 28 - 3 = 2|V| - 3$, G is not rigid. The reader can easily check that G is (6,3)-connected.

Note that in Theorem 2 the connectivity condition is the best possible since there exist non-rigid (5, 2)-connected simple graphs (see [10]) and non-rigid (6, 3)-connected simple graphs, for an example see Figure 1.

Jordán generalized Theorem 1 by giving the following sufficient condition for the existence of a packing of rigid spanning subgraphs.

Theorem 3 (Jordán [8]). Let $k \ge 1$ be an integer. In every 6k-connected graph there exists a packing of k rigid spanning subgraphs.

The main result of this paper (Theorem 4) contains a common generalization of Theorems 2 and 3. It provides a sufficient condition to have a packing of rigid spanning subgraphs and spanning trees. The proof of Theorem 4 will be given in Section 5.

Theorem 4. Let $k \ge 1$ and $\ell \ge 0$ be integers. In every $(6k + 2\ell, 2k)$ -connected simple graph there exists a packing of k rigid spanning subgraphs and ℓ spanning trees.

Note that Theorem 4 applied for k = 1 and $\ell = 0$ provides Theorem 2. By Remark 1, every 6k-connected graph contains a (6k, 2k)-connected simple spanning subgraph, thus Theorem 4 also implies Theorem 3. Let us see some corollaries of the previous results.

One can easily prove that rigid graphs with at least 3 vertices are 2-connected (see Lemma 2.6 in [7]) and so connected. Thus, Theorem 4 gives the following corollary.

Corollary 1. Let $k \ge 1$ and $\ell \ge 0$ be integers. In every $(6k + 2\ell, 2k)$ -connected simple graph there exists a packing of k 2-connected and ℓ connected spanning subgraphs.

Corollary 1 allows us to improve two results of Jordán [8]. The first one deals with the following conjecture of Kriesell, see in [8].

Conjecture 1 (Kriesell). For every positive integer p, there exists a (smallest) integer f(p) such that every f(p)-connected graph G contains a spanning tree T for which G - E(T) is p-connected.

As Jordán [8] pointed out, Theorem 3 answers this conjecture for p = 2 by showing that $f(2) \leq 12$. Corollary 1 applied for k = 1 and $\ell = 1$ directly implies that $f(2) \leq 8$.

Corollary 2. Every 8-connected graph G contains a spanning tree T such that G - E(T) is 2-connected.

The other improvement deals with the following conjecture of Thomassen.

Conjecture 2 (Thomassen [13]). For every positive integer p, there exists a (smallest) integer g(p) such that every g(p)-connected graph G has a p-connected orientation.

By applying Theorem 3 and an orientation result of Berg and Jordán [2], Jordán [8] proved the conjecture for p = 2 by showing that $g(2) \leq 18$. Applying the same approach, that is, using a packing theorem (Corollary 1) and an orientation theorem (Theorem 5), we can prove a more general result (Corollary 3) that, in turn, implies $g(2) \leq 14$.

Theorem 5 (Király and Szigeti [9]). An Eulerian graph G = (V, E) has an orientation D such that D - v is p-arc-connected for all $v \in V$ if and only if G - v is 2p-edge-connected for all $v \in V$.

Corollary 1 and Theorem 5 imply the following corollary which, specialized for p = 1, gives, by Remark 1, the claimed upper bound for g(2).

Corollary 3. Every simple (12p + 2, 4p)-connected graph G has an orientation D such that D - v is p-arc-connected for all $v \in V$.

Proof. Let G = (V, E) be a simple (12p + 2, 4p)-connected graph. By Theorem 5 it suffices to prove that G contains an Eulerian spanning subgraph H such that H - v is 2*p*-edge-connected for all $v \in V$. By Corollary 1, in G there exists a packing of 2*p* 2-connected spanning subgraphs $H_i = (V, E_i)$ (i = 1, ..., 2p) and a spanning tree F. Define $H' = (V, \bigcup_{i=1}^{2p} E_i)$. For all $i = 1, \ldots, 2p$, since H_i is 2-connected, $H_i - v$ is connected; hence H' - v is 2*p*-edge-connected for all $v \in V$. Let T be the set of vertices of odd degree in H' and F' a T-join in the tree F. Now, adding the edges of this T-join F' to H' provides the required spanning subgraph of G.

Finally, we mention the following conjecture of Frank that would imply g(2) = 4.

Conjecture 3 (Frank [5]). A graph has a 2-connected orientation if and only if it is (4,2)-connected.

4 Preliminaries

Let G = (V, E) be a graph. In this section we present some simple facts about the graphic matroid $\mathcal{C}(G)$, the rigidity matroid $\mathcal{R}(G)$ and the matroid $\mathcal{N}_{k,\ell}(G)$ introduced in the Introduction.

We will denote by $\mathcal{C}(G)$ the graphic matroid of G on ground-set E, that is an edge set F of G is independent in $\mathcal{C}(G)$ if and only if G_F is a forest. Let n = |V| be the number of vertices in G. It is well known that the rank function $r_{\mathcal{C}}$ of $\mathcal{C}(G)$ satisfies the following:

$$r_{\mathcal{C}}(F) = n - c(F). \tag{4}$$

We will denote by $\mathcal{R}(G)$ the **rigidity matroid** of G on ground-set E with rank function $r_{\mathcal{R}}$ (for a definition we refer the reader to [10]). For $F \subseteq E$, by a theorem of Lovász and Yemini [10], we have

$$r_{\mathcal{R}}(F) = \min \sum_{X \in \mathcal{G}} (2|X| - 3), \tag{5}$$

where the minimum is taken over all collections \mathcal{G} of subsets of V such that $\{F(X), X \in \mathcal{G}\}$ partitions F. Note that

$$r_{\mathcal{R}}(E) \le 2|V| - 3 \tag{6}$$

and equality holds if and only if G is rigid.

For a subset F of E, let \mathcal{G} be a collection of subsets of V such that $\{F(X), X \in \mathcal{G}\}$ partitions F that minimizes the right hand side of (5). It is well known that each element of \mathcal{G} induces a rigid subgraph of G_F . (For example, see the proof of Lemma 2.4 in [7].) Note also that, if G is simple, then every element of \mathcal{G} of size 2 induces at most one (in fact exactly one) edge and contributes exactly one to the sum. So we have the following simple but very useful observation.

Remark 2. If G is simple, then

$$r_{\mathcal{R}}(F) = \min \sum_{X \in \mathcal{H}} (2|X| - 3) + |F \setminus H|,$$
(7)

where the minimum is taken over all subsets $H \subseteq F$ and all collections \mathcal{H} of subsets of V such that $\{F(X), X \in \mathcal{H}\}$ partitions H and each element of \mathcal{H} induces a rigid subgraph of G_H of size at least 3.

The following claim provides insight into the structure of the minimizers of (7).

Claim 1. Let G = (V, E) be a simple graph and $F \subseteq E$. Let $H \subseteq F$ and \mathcal{H} be a collection of subsets of V that minimize the right hand side of (7).

- (i) For every $\mathcal{H}^* \subseteq \mathcal{H}$, $r_{\mathcal{R}}(\bigcup_{X \in \mathcal{H}^*} F(X)) = \sum_{X \in \mathcal{H}^*} (2|X| 3)$.
- (ii) For every non-empty $\mathcal{H}^* \subseteq \mathcal{H}$, there exists a vertex in $V(\mathcal{H}^*)$ that is contained in a single element of \mathcal{H}^* .
- (*iii*) $|\mathcal{I}_{\mathcal{H}}| + |\mathcal{K}_{\mathcal{H}}| \ge c(\mathcal{H}).$
- (iv) The connected components of (V, \mathcal{H}) and those of G_H coincide.

Proof. (i) Since $\{F(X), X \in \mathcal{H}\}$ partitions H, we have, by (7) and subadditivity of $r_{\mathcal{R}}$,

$$\begin{split} \sum_{X \in \mathcal{H}} (2|X| - 3) + |F \setminus H| &= r_{\mathcal{R}}(F) \\ &\leq r_{\mathcal{R}}(\cup_{X \in \mathcal{H}^*} F(X)) + r_{\mathcal{R}}(\cup_{X \in \mathcal{H} \setminus \mathcal{H}^*} F(X)) + r_{\mathcal{R}}(F \setminus H) \\ &\leq \sum_{X \in \mathcal{H}^*} r_{\mathcal{R}}(F(X)) + \sum_{X \in \mathcal{H} \setminus \mathcal{H}^*} r_{\mathcal{R}}(F(X)) + |F \setminus H| \\ &\leq \sum_{X \in \mathcal{H}^*} (2|X| - 3) + \sum_{X \in \mathcal{H} \setminus \mathcal{H}^*} (2|X| - 3) + |F \setminus H|. \end{split}$$

So equality holds everywhere and (i) follows.

(ii) By contradiction, suppose that every vertex of $V(\mathcal{H}^*)$ is contained in at least two elements of \mathcal{H}^* . Hence, by (5), (i), since the size of each element of \mathcal{H}^* is at least 3 and by (1), we have $2|V(\mathcal{H}^*)| - 3 \ge r_{\mathcal{R}}(\bigcup_{X \in \mathcal{H}^*} F(X)) =$ $\sum_{X \in \mathcal{H}^*} (2|X| - 3) = \sum_{X \in \mathcal{H}^*} |X| + \sum_{X \in \mathcal{H}^*} (|X| - 3) \ge 2|V(\mathcal{H}^*)| + 0$, a contradiction.

(iii) Let C be a connected component of (V, \mathcal{H}) that is not in $\mathcal{K}_{\mathcal{H}}$ and \mathcal{H}^* the elements of \mathcal{H} contained in C. By (ii), there exists in C a vertex v contained in a single element X of \mathcal{H}^* . Hence, by definition of \mathcal{H}^* , $v \in X_I$ and so $X \in \mathcal{I}_{\mathcal{H}}$. Thus we proved that C contains an element of $\mathcal{I}_{\mathcal{H}}$. Since the connected components of (V, \mathcal{H}) are disjoint, (iii) follows.

(iv) Let U be a connected component of G_H and $\emptyset \neq W \subset U$. Then, there exists an edge of H with one end in W and the other end in $U \setminus W$. Since $\{F(X), X \in \mathcal{H}\}$ partitions H, this edge is contained in an element of \mathcal{H} that intersects both W and $U \setminus W$. So U is connected in (V, \mathcal{H}) .

Let U be a connected component of (V, \mathcal{H}) and $W \subset U$. Then, there exists an element X of \mathcal{H} intersecting both W and $U \setminus W$. Since $X \subseteq U$ and X induces a rigid, and so connected, subgraph of G_H , there exists an edge of H with one end in $X \cap W \subseteq W$ and the other in $X \setminus W \subseteq U \setminus W$. So U is connected in G_H . This ends the proof of (iv).

As we mentioned in the Introduction, to have a packing of k rigid spanning subgraphs and ℓ spanning trees in G, we must find k bases in the rigidity matroid $\mathcal{R}(G)$ and ℓ bases in the graphic matroid $\mathcal{C}(G)$ all pairwise disjoint. To do that we will need the following matroid. For $k \geq 0$ and $\ell \geq 0$, define $\mathcal{N}_{k,\ell}(G)$ as the matroid on ground-set E, obtained by taking the matroid union of k copies of the rigidity matroid $\mathcal{R}(G)$ and ℓ copies of the graphic matroid $\mathcal{C}(G)$. Let $r_{k,\ell}$ be the rank function of $\mathcal{N}_{k,\ell}(G)$. By a theorem of Edmonds [4], for the rank of matroid unions,

$$r_{k,\ell}(E) = \min_{F \subseteq E} kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|.$$
(8)

Observe that

$$r_{k,\ell}(E) \le kr_{\mathcal{R}}(E) + \ell r_{\mathcal{C}}(E) \le k(2n-3) + \ell(n-1).$$
 (9)

Jordán [8] used the matroid $\mathcal{N}_{k,0}(G)$ to prove Theorem 3 and pointed out that using $\mathcal{N}_{k,\ell}(G)$ one could prove a theorem on the packing of rigid spanning subgraphs and spanning trees. We tried to fulfill this gap by following the proof of [8] but we failed. To achieve this aim we had to find a new proof technique.

$\mathbf{5}$ Proofs

In this section we provide the proofs of our results. Let us first demonstrate our proof technique by giving a transparent proof for Theorems 1 and 2. We emphasize that in the first two proofs we use only Remark 2 from the Preliminaries.

Proof of Theorem 1. By Remark 1, we may assume that G is simple. Then, by (7), there exist a subset $H \subseteq E$ and a collection \mathcal{H} of subsets of V of sizes at least 3 such that $\{E(X), X \in \mathcal{H}\}$ partitions H and $r_{\mathcal{R}}(E) = \sum_{X \in \mathcal{H}} (2|X|-3) + |E \setminus H|$. If $V \in \mathcal{H}$, then $r_{\mathcal{R}}(E) \ge 2|V| - 3$, hence, by (6), G is rigid. So in the following we assume that $V \notin \mathcal{H}$ and find a contradiction.

Recall that, for $X \in \mathcal{H}$, $X_B = X \cap (\cup_{Y \in \mathcal{H} - X} Y)$, $X_I = X \setminus X_B$ and $\mathcal{I}_{\mathcal{H}} =$ $\{X \in \mathcal{H} : X_I \neq \emptyset\}.$

Each edge of H being induced by an element of \mathcal{H} , it contributes neither to $d_{G-X_B}(X_I)$ for $X \in \mathcal{I}_{\mathcal{H}}$ nor to $d_G(v)$ for $v \in V \setminus V(\mathcal{H})$. Thus, since for $X \in \mathcal{I}_{\mathcal{H}}$, $\emptyset \neq X_I \neq V \setminus X_B$, we have, by 6-connectivity of G,

$$|E \setminus H| \ge \frac{1}{2} \left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} d_{G-X_B}(X_I) + \sum_{v \in V \setminus V(\mathcal{H})} d_G(v) \right)$$
$$\ge \frac{1}{2} \left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} (6 - |X_B|) + \sum_{v \in V \setminus V(\mathcal{H})} 6 \right) \tag{*}$$

$$\geq \sum_{X \in \mathcal{I}_{\mathcal{H}}} (3 - |X_B|) + 2(|V| - |V(\mathcal{H})|).$$
(10)

By $|X| \ge 3$ for $X \in \mathcal{H} \setminus \mathcal{I}_{\mathcal{H}}$, (10) and (2), we have

$$r_{\mathcal{R}}(E) = \sum_{X \in \mathcal{H}} (2|X| - 3) + |E \setminus H|$$

$$\geq \left(\sum_{X \in \mathcal{H}} |X| + \sum_{X \in \mathcal{I}_{\mathcal{H}}} (|X| - 3)\right) + \left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} (3 - |X_B|) + 2(|V| - |V(\mathcal{H})|)\right)$$

$$\geq \sum_{X \in \mathcal{H}} |X| + \sum_{X \in \mathcal{I}_{\mathcal{H}}} |X_I| + 2(|V| - |V(\mathcal{H})|)$$

$$\geq 2|V|.$$

Hence, by (6), we have $2|V| - 3 \ge r_{\mathcal{R}}(E) \ge 2|V|$, a contradiction.

Proof of Theorem 2. The proof of Theorem 2 is obtained from the proof of Theorem 1 by replacing $d_{G-X_B}(X_I) \ge 6 - |X_B|$ by $d_{G-X_B}(X_I) \ge 6 - 2|X_B|$ in the inequality (\star) . This means that in the proof of Theorem 1 we used (6,2)connectivity instead of 6-connectivity.

Here comes the proof of the main result.

Proof of Theorem 4. Let $k \ge 1$ and $\ell \ge 0$ be integers and G = (V, E) a $(6k + 2\ell, 2k)$ -connected simple graph. To prove the theorem we use the matroid $\mathcal{N}_{k,\ell}$ defined in Section 4 and show that

$$r_{k,\ell}(E) = k(2n-3) + \ell(n-1).$$
(11)

Choose F a smallest-size set of edges that gives the rank of E in $\mathcal{N}_{k,\ell}$, that is, which minimizes the right hand side of (8). By (7), there exist a subset $H \subseteq F$ and a collection \mathcal{H} of subsets of V of sizes at least 3 such that $\{F(X), X \in \mathcal{H}\}$ partitions H and

$$r_{\mathcal{R}}(F) = \sum_{X \in \mathcal{H}} (2|X| - 3) + |F \setminus H|.$$
(12)

Claim 2. H = F.

Proof. Since \mathcal{H} is a collection of subsets of V of sizes at least 3 such that $\{H(X), X \in \mathcal{H}\}$ partitions H, we have, by (12), $r_{\mathcal{R}}(H) \leq \sum_{X \in \mathcal{H}} (2|X| - 3) = r_{\mathcal{R}}(F) - |F \setminus H|$. Hence, since the rank function $r_{\mathcal{C}}$ is non-decreasing and $k \geq 1$, we have

$$kr_{\mathcal{R}}(H) + \ell r_{\mathcal{C}}(H) + |E \setminus H| \le kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus H| - k|F \setminus H|$$
$$\le kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|.$$

Thus H also minimizes the right hand side of (8) and, by $H \subseteq F$ and the minimality of F, H = F.

If $V \in \mathcal{H}$, then, by (12), $r_{\mathcal{R}}(F) \geq \sum_{X \in \mathcal{H}} (2|X|-3) \geq 2n-3$ and, by Claim 2 and Remark 2, G_F is connected, that is, $r_{\mathcal{C}}(F) = n-1$. Hence, by (9), we have (11) and the theorem is proved. From now on, we assume that $V \notin \mathcal{H}$ and we will show a contradiction.

Recall the definitions of the border $X_B = X \cap (\bigcup_{Y \in \mathcal{H} - X} Y)$, the inner part $X_I = X \setminus X_B$ for $X \in \mathcal{H}$, $\mathcal{I}_{\mathcal{H}} = \{X \in \mathcal{H} : X_I \neq \emptyset\}$ and the sets \mathcal{K}_F and $\mathcal{K}_{\mathcal{H}}$ of connected components of G_F and (V, \mathcal{H}) of size 1. By Claim 1 (iv), $\mathcal{K}_F = \mathcal{K}_{\mathcal{H}}$.

Let us use the connectivity condition on G to show a lower bound on $|E \setminus F|$.

Claim 3.
$$|E \setminus F| \ge k \left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} (3 - |X_B|) + 3|\mathcal{K}_F| \right) + \ell \left(|\mathcal{I}_{\mathcal{H}}| + |\mathcal{K}_F| \right)$$

Proof. By $V \notin \mathcal{H}$, for $X \in \mathcal{I}_{\mathcal{H}}, \emptyset \neq X_I \neq V \setminus X_B$. Then, for $X \in \mathcal{I}_{\mathcal{H}}$ and for $v \in \mathcal{K}_F$, we have, by $(6k + 2\ell, 2k)$ -connectivity of G,

$$d_{G-X_B}(X_I) \geq (6k+2\ell) - 2k|X_B|.$$
 (13)

$$d_G(v) \geq 6k + 2\ell. \tag{14}$$

Since, by Claim 2, every edge of F is induced by an element of \mathcal{H} and by definition of X_I , for $X \in \mathcal{I}_{\mathcal{H}}$, no edge of F contributes to $d_{G-X_B}(X_I)$. Each $v \in \mathcal{K}_F$ is a connected component of the graph G_F , thus no edge of F contributes

to $d_G(v)$. Hence, by (13), (14) and $\ell \geq 0$, we obtain the required lower bound on $|E \setminus F|$,

$$|E \setminus F| \geq \frac{1}{2} \left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} d_{G-X_B}(X_I) + \sum_{v \in \mathcal{K}_F} d_G(v) \right)$$

$$\geq \frac{1}{2} \left((6k + 2\ell) |\mathcal{I}_{\mathcal{H}}| - 2k \sum_{X \in \mathcal{I}_{\mathcal{H}}} |X_B| + (6k + 2\ell) |\mathcal{K}_F| \right)$$

$$\geq k \left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} (3 - |X_B|) + 3 |\mathcal{K}_F| \right) + \ell \left(|\mathcal{I}_{\mathcal{H}}| + |\mathcal{K}_F| \right). \blacksquare$$

Thus, by (12), Claims 2, 3, $|X| \ge 3$ $(X \in \mathcal{H} \setminus \mathcal{I}_{\mathcal{H}})$, Claim 1 (iv), (iii) and (2), we get

$$\begin{aligned} r_{k,\ell}(E) &= k \sum_{X \in \mathcal{H}} (2|X|-3) + |E \setminus F| + \ell(n-c(F)) \\ &\geq k \bigg(\sum_{X \in \mathcal{H}} |X| + \sum_{X \in \mathcal{I}_{\mathcal{H}}} (|X|-3) \bigg) + k \bigg(\sum_{X \in \mathcal{I}_{\mathcal{H}}} (3-|X_B|) + 3|\mathcal{K}_F| \bigg) \\ &\quad + \ell \bigg(|\mathcal{I}_{\mathcal{H}}| + |\mathcal{K}_F| \bigg) + \ell(n-c(F)) \\ &\geq k \bigg(\sum_{X \in \mathcal{H}} |X| + \sum_{X \in \mathcal{I}_{\mathcal{H}}} |X_I| + 2|\mathcal{K}_{\mathcal{H}}| \bigg) + \ell \bigg(c(\mathcal{H}) + n - c(F) \bigg) \\ &\geq 2kn + \ell n. \end{aligned}$$

By $k \ge 1$ and $\ell \ge 0$, this contradicts (9).

Remark that the proof actually shows that if G is simple and $(6k + 2\ell, 2k)$ connected and if $F \subseteq E$ is such that $|F| \leq 3k + \ell$, then in $G' = (V, E \setminus F)$ there
exists a packing of k rigid spanning subgraphs and ℓ spanning trees.

We mention that Theorem 4 was slightly generalized by Durand de Gevigney and Nguyen [3] for finding bases of a particular count matroid and spanning trees pairwise edge-disjoint. Their proof applies the discharging method.

References

- A. R. Berg and T. Jordán. Sparse certificates and removable cycles in *l*-mixed *p*-connected graphs Operations Research Letters, 33(2):111-114, 2005.
- [2] A. R. Berg and T. Jordán. Two-connected orientations of Eulerian graphs. Journal of Graph Theory, 52(3):230-242, 2006.
- [3] O. Durand de Gevigney. Orientations of graphs: structures and algorithms. PhD. Thesis, 2013.
- [4] J. Edmonds. Matroid partition. In Mathematics of the Decision Sciences Part 1, volume 11, pages 335–345. AMS, Providence, RI, 1968.

- [5] A. Frank. Connectivity and network flows. In *Handbook of Combinatorics*, pages 117–177. Elsevier, Amsterdam, 1995.
- [6] B. Jackson and T. Jordán. A sufficient connectivity condition for generic rigidity in the plane. *Discrete Applied Mathematics*, 157(8):1965–1968, 2009.
- [7] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations of graphs. Journal of Combinatorial Theory, Series B, 94(1):1 – 29, 2005.
- [8] T. Jordán. On the existence of k edge-disjoint 2-connected spanning subgraphs. Journal of Combinatorial Theory, Series B, 95(2):257–262, 2005.
- Z. Király and Z. Szigeti. Simultaneous well-balanced orientations of graphs. Journal of Combinatorial Theory, Series B, 96(5):684–692, 2006.
- [10] L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM Journal on Algebraic and Discrete Methods, 3(1):91–98, 1982.
- [11] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society, 36:445–450, 1961.
- [12] W. T. Tutte. On the problem of decomposing a graph into *n* connected factors. *Journal of the London Mathematical Society*, 36(1):221–230, 1961.
- [13] C. Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic number. Annals of the New York Academy of Sciences, 555(1):402–412, 1989.