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Abstract

We prove that every (6k + 2ℓ, 2k)-connected simple graph contains k

rigid and ℓ connected edge-disjoint spanning subgraphs.
This implies a theorem of Jackson and Jordán [6] providing a sufficient

condition for the rigidity of a graph and a theorem of Jordán [8] on the
packing of rigid spanning subgraphs. Both these results generalize the
classic result of Lovász and Yemini [10] saying that every 6-connected
graph is rigid. Our approach provides a transparent proof for this theorem.

Our result also gives two improved upper bounds on the connectivity
of graphs that have interesting properties: (1) in every 8-connected graph
there exists a packing of a spanning tree and a 2-connected spanning
subgraph; (2) every 14-connected graph has a 2-connected orientation.

1 Introduction

In this paper, we consider sufficient conditions for the existence of a packing of
spanning subgraphs in a given undirected graph G = (V,E), where by a packing
we mean a set of pairwise edge-disjoint subgraphs of G. Let us present a few
examples in this area.

A first example is the existence of a packing of ℓ spanning trees in every
2ℓ-edge-connected graph. This result is an easy consequence of the classic the-
orem of Tutte [12] and Nash-Williams [11] that characterizes the existence of
such a packing. It is well known that this characterization can be derived from
matroid theory as follows. The spanning trees of G correspond to the bases of
the graphic matroid C(G) of G. Hence, by matroid union [4], the packings of
ℓ spanning trees of G correspond to the bases of the matroid N0,ℓ defined as
the union of ℓ copies of C(G). Thus, the existence of the required packing is
characterized by the rank of E in N0,ℓ. Finally, using the formula of Edmonds
[4] for the rank function of N0,ℓ gives the theorem of Tutte and Nash-Williams.

A more recent example, due to Jordán [8], is the existence of a packing of k
rigid spanning subgraphs in every 6k-connected graph. The definition of rigid-
ity is postponed to the next section but we mention here that the minimally
rigid spanning subgraphs of G correspond to the bases of a matroid, namely the
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rigidity matroid R(G) of G. So, as in the previous argument, the existence of a
packing of k rigid spanning subgraphs is characterized by the rank of E in the
matroid Nk,0 defined as the union of k copies of R(G). Jordán [8] used the for-
mula of Edmonds [4] for the rank function of Nk,0 to prove that 6k-connectivity
implies the desired lower bound on the rank of E.

Our main contribution is to provide a new example that gives a sufficient
connectivity condition for the existence of a packing of k rigid spanning sub-
graphs and ℓ spanning trees. To prove this result, we naturally introduce the
matroid Nk,ℓ defined as the union of k copies of the rigidity matroid R(G) and
ℓ copies of the graphic matroid C(G).

As a packing of rigid spanning subgraphs turns out to be a packing of span-
ning 2-connected subgraphs, the packing result of Jordán [8] allowed him to
settle the base case of a conjecture of Kriesell (see in [8]) on removable spanning
trees and that of a conjecture of Thomassen [13] on orientation of graphs. Our
result on the packing of rigid spanning subgraphs and spanning trees enables us
to improve the results of Jordán on these conjectures.

2 Definitions

Let G = (V,E) be a graph. For X ⊆ V , denote by dG(X) the degree of X,
that is, the number of edges of G with one end vertex in X and the other one
in V \X. We say that G is Eulerian if each vertex of G is of even degree.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. The
subgraph G′ is called spanning if V ′ = V. A set of pairwise edge-disjoint
subgraphs of G is called a packing.

Let F ⊆ E. We denote by GF the spanning subgraph of G with edge set F,
that is, GF = (V, F ). Let us denote by c(F ) the number of connected compo-
nents of GF and by KF the set of connected components of GF of size 1.

Let T ⊆ V. We denote by F (T ) the set of edges of GF induced by T . We
say that F is a T -join if the set of odd degree vertices of GF coincides with T.
It is well known that if GF is a connected graph and T is of even cardinality
then GF contains a T -join.

For a collection G of subsets of V , we say that (V,G) is a hypergraph. We
denote by V (G) the set of vertices that belong to at least one element of G. We
will use the following well-known fact:

the sum of the sizes of the elements of G is equal to the sum,
for each vertex, of the number of elements of G containing it.

(1)

A set X of vertices is called connected in (V,G) if, for any partition of X
into two non-empty parts, there exists an element of G intersecting both parts.
In (V,G) a connected component is a maximal connected vertex set. The
number of connected components of this hypergraph is denoted by c(G). Let
KG be the set of connected components of (V,G) of size 1.

For X ∈ G, we define the border XB of X as the set of vertices of X that
belong to another element of G, that is, XB = X∩(∪Y ∈G\{X}Y ). We also define
the inner part XI of X as the set of vertices of X that belong to no other
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element of G, that is, XI = X \XB. Let IG be the set of elements of G whose
inner part is not empty, that is, IG = {X ∈ G : XI 6= ∅}. Since every vertex of
V (G) is contained in at least two elements of G ∪ {XI : X ∈ IG}, we have, by
(1),

∑

X∈G

|X |+
∑

X∈IG

|XI | ≥ 2|V (G)|. (2)

A graph G = (V,E) is called rigid if
∑

X∈G(2|X | − 3) ≥ 2|V | − 3 for every
collection G of sets of V such that {E(X), X ∈ G} partitions E. More details
about rigid graphs will be given in Section 4.

We will use the following connectivity concepts. The graph G is called p-
edge-connected if dG(X) ≥ p for every non-empty proper subset X of V. We
say that G is p-connected if |V | > p and G − X is connected for all X ⊂ V
with |X | ≤ p − 1. As in [1], for a pair of positive integers (p, q), G is called
(p, q)-connected if |V | > p

q
and G − X is (p − q|X |)-edge-connected for all

X ⊂ V, that is, if for every pair of disjoint subsets X and Y of V such that
Y 6= ∅ and X ∪ Y 6= V , we have

dG−X(Y ) ≥ p− q|X |. (3)

For a better understanding we mention that G is (6, 2)-connected if G is 6-edge-
connected, G − v is 4-edge-connected for all v ∈ V and G − {u, v} is 2-edge-
connected for all u, v ∈ V. It follows from the definitions that p-edge-connectivity
is equivalent to (p, p)-connectivity. Moreover, since loops and parallel edges do
not play any role in vertex connectivity, by the definition of (p, q)-connectivity,
we have the following remark.

Remark 1. Every p-connected graph contains a (p, 1)-connected simple span-
ning subgraph and (p, 1)-connectivity implies (p, q)-connectivity for all q ≥ 1.

Let D = (V,A) be a directed graph. We say that D is strongly connected
if for every ordered pair (u, v) ∈ V ×V of vertices there is a directed path from
u to v in D. The digraph D is called p-arc-connected if D − F is strongly
connected for all F ⊆ A with |F | ≤ p − 1. We say that D is p-connected if
|V | > p and D −X is strongly connected for all X ⊂ V with |X | ≤ p− 1.

3 Results

Lovász and Yemini proved the following sufficient condition for a graph to be
rigid.

Theorem 1 (Lovász and Yemini [10]). Every 6-connected graph is rigid.

The following result of Jackson and Jordán is, by Remark 1, a sharpening
of Theorem 1.

Theorem 2 (Jackson and Jordán [6]). Every (6, 2)-connected simple graph is
rigid.
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Figure 1: A non-rigid (6, 3)-connected simple graph G = (V,E). The collec-
tion G of the four grey vertex-sets provides a partition of E. Hence, since
∑

X∈G(2|X | − 3) = 4(2 × 8 − 3) = 52 < 53 = 2 × 28 − 3 = 2|V | − 3, G is not
rigid. The reader can easily check that G is (6, 3)-connected.

Note that in Theorem 2 the connectivity condition is the best possible since
there exist non-rigid (5, 2)-connected simple graphs (see [10]) and non-rigid
(6, 3)-connected simple graphs, for an example see Figure 1.

Jordán generalized Theorem 1 by giving the following sufficient condition
for the existence of a packing of rigid spanning subgraphs.

Theorem 3 (Jordán [8]). Let k ≥ 1 be an integer. In every 6k-connected graph
there exists a packing of k rigid spanning subgraphs.

The main result of this paper (Theorem 4) contains a common generalization
of Theorems 2 and 3. It provides a sufficient condition to have a packing of rigid
spanning subgraphs and spanning trees. The proof of Theorem 4 will be given
in Section 5.

Theorem 4. Let k ≥ 1 and ℓ ≥ 0 be integers. In every (6k + 2ℓ, 2k)-connected
simple graph there exists a packing of k rigid spanning subgraphs and ℓ spanning
trees.

Note that Theorem 4 applied for k = 1 and ℓ = 0 provides Theorem 2.
By Remark 1, every 6k-connected graph contains a (6k, 2k)-connected simple
spanning subgraph, thus Theorem 4 also implies Theorem 3. Let us see some
corollaries of the previous results.

One can easily prove that rigid graphs with at least 3 vertices are 2-connected
(see Lemma 2.6 in [7]) and so connected. Thus, Theorem 4 gives the following
corollary.

Corollary 1. Let k ≥ 1 and ℓ ≥ 0 be integers. In every (6k+2ℓ, 2k)-connected
simple graph there exists a packing of k 2-connected and ℓ connected spanning
subgraphs.

Corollary 1 allows us to improve two results of Jordán [8]. The first one
deals with the following conjecture of Kriesell, see in [8].
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Conjecture 1 (Kriesell). For every positive integer p, there exists a (smallest)
integer f(p) such that every f(p)-connected graph G contains a spanning tree T
for which G− E(T ) is p-connected.

As Jordán [8] pointed out, Theorem 3 answers this conjecture for p = 2 by
showing that f(2) ≤ 12. Corollary 1 applied for k = 1 and ℓ = 1 directly implies
that f(2) ≤ 8.

Corollary 2. Every 8-connected graph G contains a spanning tree T such that
G− E(T ) is 2-connected.

The other improvement deals with the following conjecture of Thomassen.

Conjecture 2 (Thomassen [13]). For every positive integer p, there exists a
(smallest) integer g(p) such that every g(p)-connected graph G has a p-connected
orientation.

By applying Theorem 3 and an orientation result of Berg and Jordán [2],
Jordán [8] proved the conjecture for p = 2 by showing that g(2) ≤ 18. Applying
the same approach, that is, using a packing theorem (Corollary 1) and an ori-
entation theorem (Theorem 5), we can prove a more general result (Corollary
3) that, in turn, implies g(2) ≤ 14.

Theorem 5 (Király and Szigeti [9]). An Eulerian graph G = (V,E) has an
orientation D such that D − v is p-arc-connected for all v ∈ V if and only if
G− v is 2p-edge-connected for all v ∈ V .

Corollary 1 and Theorem 5 imply the following corollary which, specialized
for p = 1, gives, by Remark 1, the claimed upper bound for g(2).

Corollary 3. Every simple (12p+2, 4p)-connected graph G has an orientation
D such that D − v is p-arc-connected for all v ∈ V .

Proof. Let G = (V,E) be a simple (12p+ 2, 4p)-connected graph. By Theorem
5 it suffices to prove that G contains an Eulerian spanning subgraph H such
that H − v is 2p-edge-connected for all v ∈ V . By Corollary 1, in G there exists
a packing of 2p 2-connected spanning subgraphs Hi = (V,Ei) (i = 1, . . . , 2p)
and a spanning tree F . Define H ′ = (V,∪2p

i=1Ei). For all i = 1, . . . , 2p, since
Hi is 2-connected, Hi − v is connected; hence H ′ − v is 2p-edge-connected for
all v ∈ V . Let T be the set of vertices of odd degree in H ′ and F ′ a T -join in
the tree F . Now, adding the edges of this T -join F ′ to H ′ provides the required
spanning subgraph of G.

Finally, we mention the following conjecture of Frank that would imply
g(2) = 4.

Conjecture 3 (Frank [5]). A graph has a 2-connected orientation if and only
if it is (4, 2)-connected.

4 Preliminaries

Let G = (V,E) be a graph. In this section we present some simple facts about
the graphic matroid C(G), the rigidity matroid R(G) and the matroid Nk,ℓ(G)

5



introduced in the Introduction.

We will denote by C(G) the graphic matroid of G on ground-set E, that
is an edge set F of G is independent in C(G) if and only if GF is a forest. Let
n= |V | be the number of vertices in G. It is well known that the rank function
rC of C(G) satisfies the following:

rC(F ) = n− c(F ). (4)

We will denote by R(G) the rigidity matroid of G on ground-set E with
rank function rR (for a definition we refer the reader to [10]). For F ⊆ E, by
a theorem of Lovász and Yemini [10], we have

rR(F ) = min
∑

X∈G

(2|X | − 3), (5)

where the minimum is taken over all collections G of subsets of V such that
{F (X), X ∈ G} partitions F . Note that

rR(E) ≤ 2|V | − 3 (6)

and equality holds if and only if G is rigid.

For a subset F ofE, let G be a collection of subsets of V such that {F (X), X ∈
G} partitions F that minimizes the right hand side of (5). It is well known that
each element of G induces a rigid subgraph of GF . (For example, see the proof
of Lemma 2.4 in [7].) Note also that, if G is simple, then every element of G
of size 2 induces at most one (in fact exactly one) edge and contributes exactly
one to the sum. So we have the following simple but very useful observation.

Remark 2. If G is simple, then

rR(F ) = min
∑

X∈H

(2|X | − 3) + |F \H |, (7)

where the minimum is taken over all subsets H ⊆ F and all collections H of
subsets of V such that {F (X), X ∈ H} partitions H and each element of H
induces a rigid subgraph of GH of size at least 3.

The following claim provides insight into the structure of the minimizers of
(7).

Claim 1. Let G = (V,E) be a simple graph and F ⊆ E. Let H ⊆ F and H be
a collection of subsets of V that minimize the right hand side of (7).

(i) For every H∗ ⊆ H, rR(∪X∈H∗F (X)) =
∑

X∈H∗(2|X | − 3).

(ii) For every non-empty H∗ ⊆ H, there exists a vertex in V (H∗) that is
contained in a single element of H∗.

(iii) |IH|+ |KH| ≥ c(H).

(iv) The connected components of (V,H) and those of GH coincide.
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Proof. (i) Since {F (X), X ∈ H} partitionsH , we have, by (7) and subadditivity
of rR,

∑

X∈H

(2|X | − 3) + |F \H | = rR(F )

≤ rR(∪X∈H∗F (X)) + rR(∪X∈H\H∗F (X)) + rR(F \H)

≤
∑

X∈H∗

rR(F (X)) +
∑

X∈H\H∗

rR(F (X)) + |F \H |

≤
∑

X∈H∗

(2|X | − 3) +
∑

X∈H\H∗

(2|X | − 3) + |F \H |.

So equality holds everywhere and (i) follows.

(ii) By contradiction, suppose that every vertex of V (H∗) is contained in
at least two elements of H∗. Hence, by (5), (i), since the size of each element
of H∗ is at least 3 and by (1), we have 2|V (H∗)| − 3 ≥ rR(∪X∈H∗F (X)) =
∑

X∈H∗(2|X | − 3) =
∑

X∈H∗ |X |+
∑

X∈H∗(|X | − 3) ≥ 2|V (H∗)|+ 0, a contra-
diction.

(iii) Let C be a connected component of (V,H) that is not in KH and H∗ the
elements of H contained in C. By (ii), there exists in C a vertex v contained in
a single element X of H∗. Hence, by definition of H∗, v ∈ XI and so X ∈ IH.
Thus we proved that C contains an element of IH. Since the connected compo-
nents of (V,H) are disjoint, (iii) follows.

(iv) Let U be a connected component of GH and ∅ 6= W ⊂ U. Then, there
exists an edge of H with one end in W and the other end in U \ W. Since
{F (X), X ∈ H} partitions H, this edge is contained in an element of H that
intersects both W and U \W. So U is connected in (V,H).

Let U be a connected component of (V,H) and W ⊂ U. Then, there exists
an element X of H intersecting both W and U \W. Since X ⊆ U and X induces
a rigid, and so connected, subgraph of GH , there exists an edge of H with one
end in X ∩W ⊆ W and the other in X \W ⊆ U \W. So U is connected in GH .
This ends the proof of (iv).

As we mentioned in the Introduction, to have a packing of k rigid spanning
subgraphs and ℓ spanning trees in G, we must find k bases in the rigidity matroid
R(G) and ℓ bases in the graphic matroid C(G) all pairwise disjoint. To do that
we will need the following matroid. For k ≥ 0 and ℓ ≥ 0, define Nk,ℓ(G) as the
matroid on ground-set E, obtained by taking the matroid union of k copies of
the rigidity matroid R(G) and ℓ copies of the graphic matroid C(G). Let rk,ℓ
be the rank function of Nk,ℓ(G). By a theorem of Edmonds [4], for the rank of
matroid unions,

rk,ℓ(E) = min
F⊆E

krR(F ) + ℓrC(F ) + |E \ F |. (8)

Observe that

rk,ℓ(E) ≤ krR(E) + ℓrC(E) ≤ k(2n− 3) + ℓ(n− 1). (9)
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Jordán [8] used the matroid Nk,0(G) to prove Theorem 3 and pointed out
that using Nk,ℓ(G) one could prove a theorem on the packing of rigid spanning
subgraphs and spanning trees. We tried to fulfill this gap by following the proof
of [8] but we failed. To achieve this aim we had to find a new proof technique.

5 Proofs

In this section we provide the proofs of our results. Let us first demonstrate
our proof technique by giving a transparent proof for Theorems 1 and 2. We
emphasize that in the first two proofs we use only Remark 2 from the Prelimi-
naries.

Proof of Theorem 1. By Remark 1, we may assume that G is simple. Then, by
(7), there exist a subsetH ⊆ E and a collectionH of subsets of V of sizes at least
3 such that {E(X), X ∈ H} partitionsH and rR(E) =

∑

X∈H(2|X |−3)+|E\H |.
If V ∈ H, then rR(E) ≥ 2|V | − 3, hence, by (6), G is rigid. So in the following
we assume that V /∈ H and find a contradiction.

Recall that, for X ∈ H, XB = X ∩ (∪Y ∈H−XY ), XI = X \XB and IH =
{X ∈ H : XI 6= ∅}.

Each edge of H being induced by an element of H, it contributes neither to
dG−XB

(XI) for X ∈ IH nor to dG(v) for v ∈ V \V (H). Thus, since for X ∈ IH,
∅ 6= XI 6= V \XB, we have, by 6-connectivity of G,

|E \H | ≥
1

2

(

∑

X∈IH

dG−XB
(XI) +

∑

v∈V \V (H)

dG(v)

)

≥
1

2

(

∑

X∈IH

(6− |XB|) +
∑

v∈V \V (H)

6

)

(⋆)

≥
∑

X∈IH

(3− |XB|) + 2(|V | − |V (H)|). (10)

By |X | ≥ 3 for X ∈ H \ IH, (10) and (2), we have

rR(E) =
∑

X∈H

(2|X | − 3) + |E \H |

≥

(

∑

X∈H

|X |+
∑

X∈IH

(|X | − 3)

)

+

(

∑

X∈IH

(3− |XB|) + 2(|V | − |V (H)|)

)

≥
∑

X∈H

|X |+
∑

X∈IH

|XI |+ 2(|V | − |V (H)|)

≥ 2|V |.

Hence, by (6), we have 2|V | − 3 ≥ rR(E) ≥ 2|V |, a contradiction.

Proof of Theorem 2. The proof of Theorem 2 is obtained from the proof of The-
orem 1 by replacing dG−XB

(XI) ≥ 6− |XB| by dG−XB
(XI) ≥ 6− 2|XB| in the

inequality (⋆). This means that in the proof of Theorem 1 we used (6, 2)-
connectivity instead of 6-connectivity.
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Here comes the proof of the main result.

Proof of Theorem 4. Let k ≥ 1 and ℓ ≥ 0 be integers and G = (V,E) a (6k +
2ℓ, 2k)-connected simple graph. To prove the theorem we use the matroid Nk,ℓ

defined in Section 4 and show that

rk,ℓ(E) = k(2n− 3) + ℓ(n− 1). (11)

Choose F a smallest-size set of edges that gives the rank of E in Nk,ℓ, that is,
which minimizes the right hand side of (8). By (7), there exist a subset H ⊆ F
and a collection H of subsets of V of sizes at least 3 such that {F (X), X ∈ H}
partitions H and

rR(F ) =
∑

X∈H

(2|X | − 3) + |F \H |. (12)

Claim 2. H = F.

Proof. Since H is a collection of subsets of V of sizes at least 3 such that
{H(X), X ∈ H} partitions H, we have, by (12), rR(H) ≤

∑

X∈H(2|X | − 3) =
rR(F )− |F \H |. Hence, since the rank function rC is non-decreasing and k ≥ 1,
we have

krR(H) + ℓrC(H) + |E \H | ≤ krR(F ) + ℓrC(F ) + |E \H | − k|F \H |

≤ krR(F ) + ℓrC(F ) + |E \ F |.

Thus H also minimizes the right hand side of (8) and, by H ⊆ F and the
minimality of F, H = F.

If V ∈ H, then, by (12), rR(F ) ≥
∑

X∈H(2|X | − 3) ≥ 2n− 3 and, by Claim
2 and Remark 2, GF is connected, that is, rC(F ) = n − 1. Hence, by (9), we
have (11) and the theorem is proved. From now on, we assume that V /∈ H and
we will show a contradiction.

Recall the definitions of the border XB = X ∩ (∪Y ∈H−XY ), the inner part
XI = X \XB for X ∈ H, IH = {X ∈ H : XI 6= ∅} and the sets KF and KH

of connected components of GF and (V,H) of size 1. By Claim 1 (iv), KF = KH.

Let us use the connectivity condition on G to show a lower bound on |E \F |.

Claim 3. |E \ F | ≥ k

(

∑

X∈IH
(3 − |XB|) + 3|KF |

)

+ ℓ

(

|IH|+ |KF |

)

.

Proof. By V /∈ H, for X ∈ IH, ∅ 6= XI 6= V \XB. Then, for X ∈ IH and for
v ∈ KF , we have, by (6k + 2ℓ, 2k)-connectivity of G,

dG−XB
(XI) ≥ (6k + 2ℓ)− 2k|XB|. (13)

dG(v) ≥ 6k + 2ℓ. (14)

Since, by Claim 2, every edge of F is induced by an element of H and by
definition of XI , for X ∈ IH, no edge of F contributes to dG−XB

(XI). Each
v ∈ KF is a connected component of the graphGF , thus no edge of F contributes
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to dG(v). Hence, by (13), (14) and ℓ ≥ 0, we obtain the required lower bound
on |E \ F |,

|E \ F | ≥
1

2

(

∑

X∈IH

dG−XB
(XI) +

∑

v∈KF

dG(v)

)

≥
1

2

(

(6k + 2ℓ)|IH| − 2k
∑

X∈IH

|XB|+ (6k + 2ℓ)|KF |

)

≥ k

(

∑

X∈IH

(3− |XB|) + 3|KF |

)

+ ℓ

(

|IH|+ |KF |

)

.

Thus, by (12), Claims 2, 3, |X | ≥ 3 (X ∈ H \ IH), Claim 1 (iv), (iii) and
(2), we get

rk,ℓ(E) = k
∑

X∈H

(2|X | − 3) + |E \ F |+ ℓ(n− c(F ))

≥ k

(

∑

X∈H

|X |+
∑

X∈IH

(|X | − 3)

)

+ k

(

∑

X∈IH

(3− |XB|) + 3|KF |

)

+ ℓ

(

|IH|+ |KF |

)

+ ℓ(n− c(F ))

≥ k

(

∑

X∈H

|X |+
∑

X∈IH

|XI |+ 2|KH|

)

+ ℓ

(

c(H) + n− c(F )

)

≥ 2kn+ ℓn.

By k ≥ 1 and ℓ ≥ 0, this contradicts (9).

Remark that the proof actually shows that if G is simple and (6k + 2ℓ, 2k)-
connected and if F ⊆ E is such that |F | ≤ 3k+ ℓ, then in G′ = (V,E \F ) there
exists a packing of k rigid spanning subgraphs and ℓ spanning trees.

We mention that Theorem 4 was slightly generalized by Durand de Gevigney
and Nguyen [3] for finding bases of a particular count matroid and spanning trees
pairwise edge-disjoint. Their proof applies the discharging method.
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