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Abstract

We prove that every (6k + 2¢, 2k)-connected simple graph contains k
rigid and ¢ connected edge-disjoint spanning subgraphs.

This implies a theorem of Jackson and Jorddn [6] providing a sufficient
condition for the rigidity of a graph and a theorem of Jordén [8] on the
packing of rigid spanning subgraphs. Both these results generalize the
classic result of Lovdsz and Yemini [10] saying that every 6-connected
graph is rigid. Our approach provides a transparent proof for this theorem.

Our result also gives two improved upper bounds on the connectivity
of graphs that have interesting properties: (1) in every 8-connected graph
there exists a packing of a spanning tree and a 2-connected spanning
subgraph; (2) every 14-connected graph has a 2-connected orientation.

1 Introduction

In this paper, we consider sufficient conditions for the existence of a packing of
spanning subgraphs in a given undirected graph G = (V, E), where by a packing
we mean a set of pairwise edge-disjoint subgraphs of GG. Let us present a few
examples in this area.

A first example is the existence of a packing of ¢ spanning trees in every
2(-edge-connected graph. This result is an easy consequence of the classic the-
orem of Tutte [12] and Nash-Williams [11] that characterizes the existence of
such a packing. It is well known that this characterization can be derived from
matroid theory as follows. The spanning trees of G correspond to the bases of
the graphic matroid C(G) of G. Hence, by matroid union [4], the packings of
¢ spanning trees of G correspond to the bases of the matroid Ny, defined as
the union of ¢ copies of C(G). Thus, the existence of the required packing is
characterized by the rank of £ in Ny . Finally, using the formula of Edmonds
[4] for the rank function of N gives the theorem of Tutte and Nash-Williams.

A more recent example, due to Jordan [8], is the existence of a packing of k
rigid spanning subgraphs in every 6k-connected graph. The definition of rigid-
ity is postponed to the next section but we mention here that the minimally
rigid spanning subgraphs of G correspond to the bases of a matroid, namely the



rigidity matroid R(G) of G. So, as in the previous argument, the existence of a
packing of k rigid spanning subgraphs is characterized by the rank of E in the
matroid Ny ¢ defined as the union of k copies of R(G). Jorddn [8] used the for-
mula of Edmonds [4] for the rank function of Ny o to prove that 6k-connectivity
implies the desired lower bound on the rank of F.

Our main contribution is to provide a new example that gives a sufficient
connectivity condition for the existence of a packing of k rigid spanning sub-
graphs and ¢ spanning trees. To prove this result, we naturally introduce the
matroid Ny ¢ defined as the union of k copies of the rigidity matroid R(G) and
¢ copies of the graphic matroid C(G).

As a packing of rigid spanning subgraphs turns out to be a packing of span-
ning 2-connected subgraphs, the packing result of Jorddn [8] allowed him to
settle the base case of a conjecture of Kriesell (see in [8]) on removable spanning
trees and that of a conjecture of Thomassen [13] on orientation of graphs. Our
result on the packing of rigid spanning subgraphs and spanning trees enables us
to improve the results of Jordan on these conjectures.

2 Definitions

Let G = (V, E) be a graph. For X C V, denote by dg(X) the degree of X,
that is, the number of edges of G with one end vertex in X and the other one
in V'\ X. We say that G is Eulerian if each vertex of G is of even degree.

A graph G’ = (V| E’) is a subgraph of G if V! C V and E’ C E. The
subgraph G’ is called spanning if V' = V. A set of pairwise edge-disjoint
subgraphs of G is called a packing.

Let F C E. We denote by G the spanning subgraph of G with edge set F)
that is, Gp = (V, F). Let us denote by ¢(F') the number of connected compo-
nents of Gr and by IKCg the set of connected components of G of size 1.

Let T C V. We denote by F(T') the set of edges of Gr induced by T'. We
say that F'is a T-join if the set of odd degree vertices of G coincides with 7.
It is well known that if Gp is a connected graph and T is of even cardinality
then G contains a T-join.

For a collection G of subsets of V', we say that (V,G) is a hypergraph. We
denote by V' (G) the set of vertices that belong to at least one element of G. We
will use the following well-known fact:

the sum of the sizes of the elements of G is equal to the sum,
for each vertex, of the number of elements of G containing it.
A set X of vertices is called connected in (V,G) if, for any partition of X
into two non-empty parts, there exists an element of G intersecting both parts.
In (V,G) a connected component is a maximal connected vertex set. The
number of connected components of this hypergraph is denoted by ¢(G). Let
ICg be the set of connected components of (V,G) of size 1.

For X € G, we define the border X pg of X as the set of vertices of X that
belong to another element of G, that is, Xp = X N(Uyeg\(x1Y). We also define
the inner part Xj; of X as the set of vertices of X that belong to no other



element of G, that is, X; = X \ Xp. Let Zg be the set of elements of G whose
inner part is not empty, that is, Zg = {X € G : X; # (}. Since every vertex of
V(G) is contained in at least two elements of G U {X; : X € Zg}, we have, by

(1),
YoIXI+ D X =2V (Gl (2)
X€G XeTg
A graph G = (V, E) is called rigid if ) 5(2[X]| —3) > 2|V| — 3 for every
collection G of sets of V' such that {E(X), X € G} partitions E. More details
about rigid graphs will be given in Section 4.

We will use the following connectivity concepts. The graph G is called p-
edge-connected if dg(X) > p for every non-empty proper subset X of V. We
say that G is p-connected if |V| > p and G — X is connected for all X C V
with |[X| < p—1. Asin [1], for a pair of positive integers (p,q), G is called
(p, g)-connected if [V| > £ and G — X is (p — ¢|X|)-edge-connected for all
X C V, that is, if for every pair of disjoint subsets X and Y of V such that
Y #0 and X UY # V, we have

da-x(Y) = p—q/X]|. (3)

For a better understanding we mention that G is (6, 2)-connected if G is 6-edge-
connected, G — v is 4-edge-connected for all v € V and G — {u,v} is 2-edge-
connected for all u, v € V. It follows from the definitions that p-edge-connectivity
is equivalent to (p, p)-connectivity. Moreover, since loops and parallel edges do
not play any role in vertex connectivity, by the definition of (p, ¢)-connectivity,
we have the following remark.

Remark 1. Every p-connected graph contains a (p,1)-connected simple span-
ning subgraph and (p,1)-connectivity implies (p, q)-connectivity for all ¢ > 1.

Let D = (V, A) be a directed graph. We say that D is strongly connected
if for every ordered pair (u,v) € V x V of vertices there is a directed path from
u to v in D. The digraph D is called p-arc-connected if D — F' is strongly
connected for all FF C A with |F| < p— 1. We say that D is p-connected if
|[V| > pand D — X is strongly connected for all X C V with |[X| <p— 1.

3 Results

Lovasz and Yemini proved the following sufficient condition for a graph to be
rigid.

Theorem 1 (Lovész and Yemini [10]). Ewvery 6-connected graph is rigid.

The following result of Jackson and Jordan is, by Remark 1, a sharpening
of Theorem 1.

Theorem 2 (Jackson and Jordén [6]). Every (6,2)-connected simple graph is
rigid.



Figure 1: A non-rigid (6,3)-connected simple graph G = (V, E). The collec-
tion G of the four grey vertex-sets provides a partition of E. Hence, since
Sxeo(2X[—3) =42 x8-3)=52<53=2x28-3=2[V|]-3, G is not
rigid. The reader can easily check that G is (6, 3)-connected.

Note that in Theorem 2 the connectivity condition is the best possible since
there exist non-rigid (5,2)-connected simple graphs (see [10]) and non-rigid
(6, 3)-connected simple graphs, for an example see Figure 1.

Jordan generalized Theorem 1 by giving the following sufficient condition
for the existence of a packing of rigid spanning subgraphs.

Theorem 3 (Jordan [8]). Let k > 1 be an integer. In every 6k-connected graph
there exists a packing of k rigid spanning subgraphs.

The main result of this paper (Theorem 4) contains a common generalization
of Theorems 2 and 3. It provides a sufficient condition to have a packing of rigid
spanning subgraphs and spanning trees. The proof of Theorem 4 will be given
in Section 5.

Theorem 4. Let k > 1 and ¢ > 0 be integers. In every (6k + 2¢,2k)-connected
simple graph there exists a packing of k rigid spanning subgraphs and ¢ spanning
trees.

Note that Theorem 4 applied for £ = 1 and ¢ = 0 provides Theorem 2.
By Remark 1, every 6k-connected graph contains a (6k, 2k)-connected simple
spanning subgraph, thus Theorem 4 also implies Theorem 3. Let us see some
corollaries of the previous results.

One can easily prove that rigid graphs with at least 3 vertices are 2-connected
(see Lemma 2.6 in [7]) and so connected. Thus, Theorem 4 gives the following
corollary.

Corollary 1. Let k > 1 and £ > 0 be integers. In every (6k + 2¢, 2k)-connected
simple graph there exists a packing of k 2-connected and ¢ connected spanning
subgraphs.

Corollary 1 allows us to improve two results of Jordan [8]. The first one
deals with the following conjecture of Kriesell, see in [8].



Conjecture 1 (Kriesell). For every positive integer p, there exists a (smallest)
integer f(p) such that every f(p)-connected graph G contains a spanning tree T
for which G — E(T) is p-connected.

As Jordén [8] pointed out, Theorem 3 answers this conjecture for p = 2 by
showing that f(2) < 12. Corollary 1 applied for £ =1 and ¢ = 1 directly implies
that f(2) < 8.

Corollary 2. Every 8-connected graph G contains a spanning tree T' such that
G — E(T) is 2-connected.

The other improvement deals with the following conjecture of Thomassen.

Conjecture 2 (Thomassen [13]). For every positive integer p, there exists a
(smallest) integer g(p) such that every g(p)-connected graph G has a p-connected
ortentation.

By applying Theorem 3 and an orientation result of Berg and Jordan [2],
Jordén [8] proved the conjecture for p = 2 by showing that g(2) < 18. Applying
the same approach, that is, using a packing theorem (Corollary 1) and an ori-
entation theorem (Theorem 5), we can prove a more general result (Corollary
3) that, in turn, implies ¢(2) < 14.

Theorem 5 (Kirdly and Szigeti [9]). An FEulerian graph G = (V,E) has an
orientation D such that D — v is p-arc-connected for all v € V if and only if
G — v is 2p-edge-connected for all v € V.

Corollary 1 and Theorem 5 imply the following corollary which, specialized
for p = 1, gives, by Remark 1, the claimed upper bound for g(2).

Corollary 3. Every simple (12p+ 2,4p)-connected graph G has an orientation
D such that D — v is p-arc-connected for all v € V.

Proof. Let G = (V, E) be a simple (12p + 2, 4p)-connected graph. By Theorem
5 it suffices to prove that G contains an Eulerian spanning subgraph H such
that H — v is 2p-edge-connected for all v € V. By Corollary 1, in G there exists
a packing of 2p 2-connected spanning subgraphs H;, = (V,E;) (i = 1,...,2p)
and a spanning tree F. Define H' = (V, UfﬁlEi). For all 4 = 1,...,2p, since
H; is 2-connected, H; — v is connected; hence H' — v is 2p-edge-connected for
all v € V. Let T be the set of vertices of odd degree in H and F’ a T-join in
the tree F'. Now, adding the edges of this T-join F’ to H' provides the required
spanning subgraph of G. [ ]

Finally, we mention the following conjecture of Frank that would imply
9(2) = 4.

Conjecture 3 (Frank [5]). A graph has a 2-connected orientation if and only
if it is (4,2)-connected.
4 Preliminaries

Let G = (V, E) be a graph. In this section we present some simple facts about
the graphic matroid C(G), the rigidity matroid R(G) and the matroid N ¢(G)



introduced in the Introduction.

We will denote by C(G) the graphic matroid of G on ground-set F, that
is an edge set F' of G is independent in C(G) if and only if G is a forest. Let
n=|V| be the number of vertices in G. It is well known that the rank function
re of C(G) satisfies the following:

re(F)=n—c(F). (4)

We will denote by R(G) the rigidity matroid of G on ground-set F with
rank function rr (for a definition we refer the reader to [10]). For F' C E, by
a theorem of Lovasz and Yemini [10], we have

rr(F) =min »_ (2]X|-3), (5)
Xeg

where the minimum is taken over all collections G of subsets of V' such that
{F(X),X € G} partitions F. Note that

rr(E) <2|V] -3 (6)
and equality holds if and only if G is rigid.

For a subset F of E, let G be a collection of subsets of V such that { F(X), X €
G} partitions F' that minimizes the right hand side of (5). It is well known that
each element of G induces a rigid subgraph of Gr. (For example, see the proof
of Lemma 2.4 in [7].) Note also that, if G is simple, then every element of G
of size 2 induces at most one (in fact exactly one) edge and contributes exactly
one to the sum. So we have the following simple but very useful observation.

Remark 2. If G is simple, then
rr(F) =min Y (2[X| - 3) +|F\ H], (7)
XeH

where the minimum is taken over all subsets H C F and all collections H of
subsets of V' such that {F(X),X € H} partitions H and each element of H
induces a rigid subgraph of Gg of size at least 3.

The following claim provides insight into the structure of the minimizers of

(7)-

Claim 1. Let G = (V, E) be a simple graph and F C E. Let H C F and H be
a collection of subsets of V' that minimize the right hand side of (7).

(i) For every H* CH, rr(Uxen~F (X)) = D xepn- (2[X| = 3).

(i1) For every non-empty H* C H, there exists a vertex in V(H*) that is
contained in a single element of H*.

(111) |Tw| + |K3| > c(H).

(v) The connected components of (V,H) and those of Gy coincide.



Proof. (i) Since {F(X), X € H} partitions H, we have, by (7) and subadditivity
of TR,

> @2IX|=3)+ |F\ H| = rp(F)
XeH
<rr(Uxen-F(X)) + rr(Uxen\n-F(X)) +rr(F\ H)

< D rr(FX))+ Y rr(F(X))+|F\ H|

XeH* XEH\H*
< N @x[-3)+ Y @X[-3)+|F\H|
XeH* XEH\H*

So equality holds everywhere and (i) follows.

(ii) By contradiction, suppose that every vertex of V(#H*) is contained in
at least two elements of H*. Hence, by (5), (i), since the size of each element
of H* is at least 3 and by (1), we have 2|V(H*)| — 3 > rr(Uxen-F(X)) =
Doxens 21X =3) = ven [ XTI+ 2 xep- (1X] = 3) > 2|V(H*)| + 0, a contra-
diction.

(iii) Let C be a connected component of (V, H) that is not in Ky and H* the
elements of A contained in C. By (ii), there exists in C' a vertex v contained in
a single element X of H*. Hence, by definition of H*, v € X and so X € Zy.
Thus we proved that C' contains an element of Zy. Since the connected compo-
nents of (V, H) are disjoint, (iii) follows.

(iv) Let U be a connected component of Gy and () # W C U. Then, there
exists an edge of H with one end in W and the other end in U \ W. Since
{F(X),X € H} partitions H, this edge is contained in an element of H that
intersects both W and U \ W. So U is connected in (V,H).

Let U be a connected component of (V,H) and W C U. Then, there exists
an element X of H intersecting both W and U\ W. Since X C U and X induces
a rigid, and so connected, subgraph of G, there exists an edge of H with one
end in X NW C W and the other in X \ W C U\ W. So U is connected in Gg.
This ends the proof of (iv). |

As we mentioned in the Introduction, to have a packing of k rigid spanning
subgraphs and ¢ spanning trees in GG, we must find k& bases in the rigidity matroid
R(G) and /¢ bases in the graphic matroid C(G) all pairwise disjoint. To do that
we will need the following matroid. For k > 0 and ¢ > 0, define Ny ¢(G) as the
matroid on ground-set E, obtained by taking the matroid union of k copies of
the rigidity matroid R(G) and ¢ copies of the graphic matroid C(G). Let 7.
be the rank function of N ¢(G). By a theorem of Edmonds [4], for the rank of
matroid unions,

Tr0(E) Zflpci%kTR(F)+frc(F)+|E\F|- (8)

Observe that

re(E) < krr(E) 4+ lre(E) < k(2n —3) +£(n —1). 9)



Jordén [8] used the matroid Ny o(G) to prove Theorem 3 and pointed out
that using Ny ¢(G) one could prove a theorem on the packing of rigid spanning
subgraphs and spanning trees. We tried to fulfill this gap by following the proof
of [8] but we failed. To achieve this aim we had to find a new proof technique.

5 Proofs

In this section we provide the proofs of our results. Let us first demonstrate
our proof technique by giving a transparent proof for Theorems 1 and 2. We
emphasize that in the first two proofs we use only Remark 2 from the Prelimi-
naries.

Proof of Theorem 1. By Remark 1, we may assume that G is simple. Then, by
(7), there exist a subset H C E and a collection H of subsets of V' of sizes at least
3such that { F(X), X € H} partitions H and rr(E) = ) o4, (2| X[=3)+|E\H]|.
If V € H, then rg(F) > 2|V| — 3, hence, by (6), G is rigid. So in the following
we assume that V' ¢ H and find a contradiction.

Recall that, for X € H, Xp = X N (Uygq.[,xy), Xr=X \ Xp and Iy =
{X eH: Xy 7& @}

Each edge of H being induced by an element of #, it contributes neither to
de—xp(Xr) for X € Ty nor to dg(v) for v € V\ V(H). Thus, since for X € Ty,
() #£ X; # V \ Xp, we have, by 6-connectivity of G,

|E\ H| > %( Z de—x,(X1) + Z dg(v))

Xeln veEV\V(H)
2%( S 6-1xsh+ D 6) (%)
Xeln veEV\V(H)
> 3 (B 1Xg)+2(V] - [V(H)]). (10)
X€ETy

By |X| >3 for X € H \ Zy, (10) and (2), we have

rr(E) =Y (21X|-3)+|E\ H|

XeH
(S i S 0xi-n) (X 61X 2 - 1veo))
XeH XETy XETy
> 3 IX[+ Y X+ 20V - [V(H))
XeH XeTy
> 2|V,
Hence, by (6), we have 2|V| — 3 > rg(F) > 2|V, a contradiction. |

Proof of Theorem 2. The proof of Theorem 2 is obtained from the proof of The-
orem 1 by replacing dg—x,(Xr) > 6 — | Xp| by de—x,(X1) > 6 —2|Xp| in the
inequality (x). This means that in the proof of Theorem 1 we used (6,2)-
connectivity instead of 6-connectivity. [ |



Here comes the proof of the main result.

Proof of Theorem /4. Let k > 1 and ¢ > 0 be integers and G = (V, E) a (6k +
20, 2k)-connected simple graph. To prove the theorem we use the matroid Ny ¢
defined in Section 4 and show that

ree(E) = k(2n —3) +£(n — 1). (11)

Choose F' a smallest-size set of edges that gives the rank of E in Ny 4, that is,
which minimizes the right hand side of (8). By (7), there exist a subset H C F'
and a collection H of subsets of V' of sizes at least 3 such that {F(X),X € H}
partitions H and

rr(F) =Y (21X|-3)+|F\ H. (12)
XeH

Claim 2. H = F.

Proof. Since H is a collection of subsets of V' of sizes at least 3 such that
{H(X), X € H} partitions H, we have, by (12), rr(H) < > 42| X| - 3) =
rr(F) —|F\ H|. Hence, since the rank function r¢ is non-decreasing and k > 1,
we have

krr(H) +lre(H) + |[E\ H| < krg(F) + bre(F) + |E\ H| — k|F \ H|
< krr(F) + tre(F) + |E\ F|.

Thus H also minimizes the right hand side of (8) and, by H C F and the
minimality of F, H = F. [ ]

If V€ H, then, by (12), rr(F) > > vcy(2|X| = 3) > 2n — 3 and, by Claim
2 and Remark 2, G is connected, that is, 7¢(F) = n — 1. Hence, by (9), we

have (11) and the theorem is proved. From now on, we assume that V ¢ H and
we will show a contradiction.

Recall the definitions of the border Xp = X N (Uyey—xY'), the inner part
Xr=X\Xpgfor X e H, Ty ={X € H: X; # (0} and the sets Kr and K3
of connected components of G and (V,H) of size 1. By Claim 1 (iv), Kr = K.

Let us use the connectivity condition on G to show a lower bound on |E'\ F|.
Claim 3. |E\ F| > k:(ZXGIH (3—1XB|)+ 3|ICF|) +£(|IH| + |ICF|).

Proof. By V.¢ H, for X € T3, 0 # X; # V \ Xp. Then, for X € Z3; and for
v € Kp, we have, by (6k + 2/, 2k)-connectivity of G,

de—x,(X1) > (6k+20) —2k|Xp|. (13)
dg(v) > 6k+ 20 (14)
Since, by Claim 2, every edge of F' is induced by an element of H and by

definition of X7, for X € Zy, no edge of F' contributes to dg_x, (Xr). Each
v € Kp is a connected component of the graph G, thus no edge of F' contributes



to dg(v). Hence, by (13), (14) and ¢ > 0, we obtain the required lower bound
on |E\ Fl,

1
[E\F| > 5( > doxs(X0)+ Y dc(v))
XeTy vEK R
1
> 5((6k+2€)|IH|—2k: > |XB|+(6/<:+2K)|ICF|)
Xely
> k( > (3|XB|)+3|ICF|) +€<IIH|+|/CFI>- u
Xely

Thus, by (12), Claims 2, 3, |X| > 3 (X € H \ Iy), Claim 1 (iv), (iii) and
(2), we get

ree(B) =k Y (21X] = 3) + |E\ F| + £(n — e(F))

> kii% X+ X;H(pq —~ 3)> + k(X;H(za — X5+ 3IICFI)

+ €<|IH| + |ICF|) +4(n — c(F))

zk< Sx[+ Y |XI|+2|ICH|) +£<c(’H)+nc(F)>

XeH X€eTy
> 2kn + {n.
By k> 1 and £ > 0, this contradicts (9). [ |

Remark that the proof actually shows that if G is simple and (6k + 2¢, 2k)-
connected and if F' C F is such that |F| < 3k+ ¢, then in G’ = (V, E\ F) there
exists a packing of k rigid spanning subgraphs and ¢ spanning trees.

We mention that Theorem 4 was slightly generalized by Durand de Gevigney
and Nguyen [3] for finding bases of a particular count matroid and spanning trees
pairwise edge-disjoint. Their proof applies the discharging method.
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