Packing of Rigid Spanning Subgraphs and Spanning Trees

Joseph Cheriyan
Olivier Durand de Gevigney
Zoltán Szigeti

4 November 2013

Abstract

We prove that every $(6 k+2 \ell, 2 k)$-connected simple graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs.

This implies a theorem of Jackson and Jordán [6] providing a sufficient condition for the rigidity of a graph and a theorem of Jordán [8] on the packing of rigid spanning subgraphs. Both these results generalize the classic result of Lovász and Yemini [10] saying that every 6 -connected graph is rigid. Our approach provides a transparent proof for this theorem.

Our result also gives two improved upper bounds on the connectivity of graphs that have interesting properties: (1) in every 8 -connected graph there exists a packing of a spanning tree and a 2 -connected spanning subgraph; (2) every 14 -connected graph has a 2 -connected orientation.

1 Introduction

In this paper, we consider sufficient conditions for the existence of a packing of spanning subgraphs in a given undirected graph $G=(V, E)$, where by a packing we mean a set of pairwise edge-disjoint subgraphs of G. Let us present a few examples in this area.

A first example is the existence of a packing of ℓ spanning trees in every 2ℓ-edge-connected graph. This result is an easy consequence of the classic theorem of Tutte [12] and Nash-Williams [11] that characterizes the existence of such a packing. It is well known that this characterization can be derived from matroid theory as follows. The spanning trees of G correspond to the bases of the graphic matroid $\mathcal{C}(G)$ of G. Hence, by matroid union [4], the packings of ℓ spanning trees of G correspond to the bases of the matroid $\mathcal{N}_{0, \ell}$ defined as the union of ℓ copies of $\mathcal{C}(G)$. Thus, the existence of the required packing is characterized by the rank of E in $\mathcal{N}_{0, \ell}$. Finally, using the formula of Edmonds [4] for the rank function of $\mathcal{N}_{0, \ell}$ gives the theorem of Tutte and Nash-Williams.

A more recent example, due to Jordán [8], is the existence of a packing of k rigid spanning subgraphs in every $6 k$-connected graph. The definition of rigidity is postponed to the next section but we mention here that the minimally rigid spanning subgraphs of G correspond to the bases of a matroid, namely the
rigidity matroid $\mathcal{R}(G)$ of G. So, as in the previous argument, the existence of a packing of k rigid spanning subgraphs is characterized by the rank of E in the matroid $\mathcal{N}_{k, 0}$ defined as the union of k copies of $\mathcal{R}(G)$. Jordán [8] used the formula of Edmonds [4] for the rank function of $\mathcal{N}_{k, 0}$ to prove that $6 k$-connectivity implies the desired lower bound on the rank of E.

Our main contribution is to provide a new example that gives a sufficient connectivity condition for the existence of a packing of k rigid spanning subgraphs and ℓ spanning trees. To prove this result, we naturally introduce the matroid $\mathcal{N}_{k, \ell}$ defined as the union of k copies of the rigidity matroid $\mathcal{R}(G)$ and ℓ copies of the graphic matroid $\mathcal{C}(G)$.

As a packing of rigid spanning subgraphs turns out to be a packing of spanning 2-connected subgraphs, the packing result of Jordán [8] allowed him to settle the base case of a conjecture of Kriesell (see in [8]) on removable spanning trees and that of a conjecture of Thomassen [13] on orientation of graphs. Our result on the packing of rigid spanning subgraphs and spanning trees enables us to improve the results of Jordán on these conjectures.

2 Definitions

Let $G=(V, E)$ be a graph. For $X \subseteq V$, denote by $\boldsymbol{d}_{\boldsymbol{G}}(\boldsymbol{X})$ the degree of X, that is, the number of edges of G with one end vertex in X and the other one in $V \backslash X$. We say that G is Eulerian if each vertex of G is of even degree.

A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. The subgraph G^{\prime} is called spanning if $V^{\prime}=V$. A set of pairwise edge-disjoint subgraphs of G is called a packing.

Let $F \subseteq E$. We denote by $\boldsymbol{G}_{\boldsymbol{F}}$ the spanning subgraph of G with edge set F, that is, $G_{F}=(V, F)$. Let us denote by $\boldsymbol{c}(\boldsymbol{F})$ the number of connected components of G_{F} and by \mathcal{K}_{F} the set of connected components of G_{F} of size 1.

Let $T \subseteq V$. We denote by $\boldsymbol{F}(\boldsymbol{T})$ the set of edges of G_{F} induced by T. We say that F is a \boldsymbol{T}-join if the set of odd degree vertices of G_{F} coincides with T. It is well known that if G_{F} is a connected graph and T is of even cardinality then G_{F} contains a T-join.

For a collection \mathcal{G} of subsets of V, we say that (V, \mathcal{G}) is a hypergraph. We denote by $\boldsymbol{V}(\mathcal{G})$ the set of vertices that belong to at least one element of \mathcal{G}. We will use the following well-known fact:
the sum of the sizes of the elements of \mathcal{G} is equal to the sum, for each vertex, of the number of elements of \mathcal{G} containing it.

A set X of vertices is called connected in (V, \mathcal{G}) if, for any partition of X into two non-empty parts, there exists an element of \mathcal{G} intersecting both parts. In (V, \mathcal{G}) a connected component is a maximal connected vertex set. The number of connected components of this hypergraph is denoted by $\boldsymbol{c}(\mathcal{G})$. Let $\mathcal{K}_{\mathcal{G}}$ be the set of connected components of (V, \mathcal{G}) of size 1 .

For $X \in \mathcal{G}$, we define the border \boldsymbol{X}_{B} of X as the set of vertices of X that belong to another element of \mathcal{G}, that is, $X_{B}=X \cap\left(\cup_{Y \in \mathcal{G} \backslash\{X\}} Y\right)$. We also define the inner part $\boldsymbol{X}_{\boldsymbol{I}}$ of X as the set of vertices of X that belong to no other
element of \mathcal{G}, that is, $X_{I}=X \backslash X_{B}$. Let $\mathcal{I}_{\mathcal{G}}$ be the set of elements of \mathcal{G} whose inner part is not empty, that is, $\mathcal{I}_{\mathcal{G}}=\left\{X \in \mathcal{G}: X_{I} \neq \emptyset\right\}$. Since every vertex of $V(\mathcal{G})$ is contained in at least two elements of $\mathcal{G} \cup\left\{X_{I}: X \in \mathcal{I}_{\mathcal{G}}\right\}$, we have, by (1),

$$
\begin{equation*}
\sum_{X \in \mathcal{G}}|X|+\sum_{X \in \mathcal{I}_{\mathcal{G}}}\left|X_{I}\right| \geq 2|V(\mathcal{G})| \tag{2}
\end{equation*}
$$

A graph $G=(V, E)$ is called rigid if $\sum_{X \in \mathcal{G}}(2|X|-3) \geq 2|V|-3$ for every collection \mathcal{G} of sets of V such that $\{E(X), X \in \mathcal{G}\}$ partitions E. More details about rigid graphs will be given in Section 4.

We will use the following connectivity concepts. The graph G is called \boldsymbol{p} -edge-connected if $d_{G}(X) \geq p$ for every non-empty proper subset X of V. We say that G is p-connected if $|V|>p$ and $G-X$ is connected for all $X \subset V$ with $|X| \leq p-1$. As in [1], for a pair of positive integers $(p, q), G$ is called $(\boldsymbol{p}, \boldsymbol{q})$-connected if $|V|>\frac{p}{q}$ and $G-X$ is $(p-q|X|)$-edge-connected for all $X \subset V$, that is, if for every pair of disjoint subsets X and Y of V such that $Y \neq \emptyset$ and $X \cup Y \neq V$, we have

$$
\begin{equation*}
d_{G-X}(Y) \geq p-q|X| . \tag{3}
\end{equation*}
$$

For a better understanding we mention that G is $(6,2)$-connected if G is 6 -edgeconnected, $G-v$ is 4-edge-connected for all $v \in V$ and $G-\{u, v\}$ is 2-edgeconnected for all $u, v \in V$. It follows from the definitions that p-edge-connectivity is equivalent to (p, p)-connectivity. Moreover, since loops and parallel edges do not play any role in vertex connectivity, by the definition of (p, q)-connectivity, we have the following remark.

Remark 1. Every p-connected graph contains a ($p, 1$)-connected simple spanning subgraph and ($p, 1$)-connectivity implies (p, q)-connectivity for all $q \geq 1$.

Let $D=(V, A)$ be a directed graph. We say that D is strongly connected if for every ordered pair $(u, v) \in V \times V$ of vertices there is a directed path from u to v in D. The digraph D is called \boldsymbol{p}-arc-connected if $D-F$ is strongly connected for all $F \subseteq A$ with $|F| \leq p-1$. We say that D is p-connected if $|V|>p$ and $D-X$ is strongly connected for all $X \subset V$ with $|X| \leq p-1$.

3 Results

Lovász and Yemini proved the following sufficient condition for a graph to be rigid.

Theorem 1 (Lovász and Yemini [10]). Every 6-connected graph is rigid.
The following result of Jackson and Jordán is, by Remark 1, a sharpening of Theorem 1 .

Theorem 2 (Jackson and Jordán [6]). Every (6,2)-connected simple graph is rigid.

Figure 1: A non-rigid (6,3)-connected simple graph $G=(V, E)$. The collection \mathcal{G} of the four grey vertex-sets provides a partition of E. Hence, since $\sum_{X \in \mathcal{G}}(2|X|-3)=4(2 \times 8-3)=52<53=2 \times 28-3=2|V|-3, G$ is not rigid. The reader can easily check that G is $(6,3)$-connected.

Note that in Theorem 2 the connectivity condition is the best possible since there exist non-rigid (5,2)-connected simple graphs (see [10]) and non-rigid $(6,3)$-connected simple graphs, for an example see Figure 1.

Jordán generalized Theorem 1 by giving the following sufficient condition for the existence of a packing of rigid spanning subgraphs.

Theorem 3 (Jordán [8]). Let $k \geq 1$ be an integer. In every $6 k$-connected graph there exists a packing of k rigid spanning subgraphs.

The main result of this paper (Theorem 4) contains a common generalization of Theorems 2 and 3. It provides a sufficient condition to have a packing of rigid spanning subgraphs and spanning trees. The proof of Theorem 4 will be given in Section 5 .

Theorem 4. Let $k \geq 1$ and $\ell \geq 0$ be integers. In every $(6 k+2 \ell, 2 k)$-connected simple graph there exists a packing of k rigid spanning subgraphs and ℓ spanning trees.

Note that Theorem 4 applied for $k=1$ and $\ell=0$ provides Theorem 2. By Remark 1, every $6 k$-connected graph contains a ($6 k, 2 k$)-connected simple spanning subgraph, thus Theorem 4 also implies Theorem 3. Let us see some corollaries of the previous results.

One can easily prove that rigid graphs with at least 3 vertices are 2-connected (see Lemma 2.6 in $[7]$) and so connected. Thus, Theorem 4 gives the following corollary.

Corollary 1. Let $k \geq 1$ and $\ell \geq 0$ be integers. In every $(6 k+2 \ell, 2 k)$-connected simple graph there exists a packing of $k 2$-connected and ℓ connected spanning subgraphs.

Corollary 1 allows us to improve two results of Jordán [8]. The first one deals with the following conjecture of Kriesell, see in [8].

Conjecture 1 (Kriesell). For every positive integer p, there exists a (smallest) integer $f(p)$ such that every $f(p)$-connected graph G contains a spanning tree T for which $G-E(T)$ is p-connected.

As Jordán [8] pointed out, Theorem 3 answers this conjecture for $p=2$ by showing that $f(2) \leq 12$. Corollary 1 applied for $k=1$ and $\ell=1$ directly implies that $f(2) \leq 8$.

Corollary 2. Every 8 -connected graph G contains a spanning tree T such that $G-E(T)$ is 2-connected.

The other improvement deals with the following conjecture of Thomassen.
Conjecture 2 (Thomassen [13]). For every positive integer p, there exists a (smallest) integer $g(p)$ such that every $g(p)$-connected graph G has a p-connected orientation.

By applying Theorem 3 and an orientation result of Berg and Jordán [2], Jordán [8] proved the conjecture for $p=2$ by showing that $g(2) \leq 18$. Applying the same approach, that is, using a packing theorem (Corollary 1) and an orientation theorem (Theorem 5), we can prove a more general result (Corollary $3)$ that, in turn, implies $g(2) \leq 14$.

Theorem 5 (Király and Szigeti [9]). An Eulerian graph $G=(V, E)$ has an orientation D such that $D-v$ is p-arc-connected for all $v \in V$ if and only if $G-v$ is $2 p$-edge-connected for all $v \in V$.

Corollary 1 and Theorem 5 imply the following corollary which, specialized for $p=1$, gives, by Remark 1, the claimed upper bound for $g(2)$.

Corollary 3. Every simple $(12 p+2,4 p)$-connected graph G has an orientation D such that $D-v$ is p-arc-connected for all $v \in V$.

Proof. Let $G=(V, E)$ be a simple $(12 p+2,4 p)$-connected graph. By Theorem 5 it suffices to prove that G contains an Eulerian spanning subgraph H such that $H-v$ is $2 p$-edge-connected for all $v \in V$. By Corollary 1 , in G there exists a packing of $2 p 2$-connected spanning subgraphs $H_{i}=\left(V, E_{i}\right)(i=1, \ldots, 2 p)$ and a spanning tree F. Define $H^{\prime}=\left(V, \cup_{i=1}^{2 p} E_{i}\right)$. For all $i=1, \ldots, 2 p$, since H_{i} is 2-connected, $H_{i}-v$ is connected; hence $H^{\prime}-v$ is $2 p$-edge-connected for all $v \in V$. Let T be the set of vertices of odd degree in H^{\prime} and F^{\prime} a T-join in the tree F. Now, adding the edges of this T-join F^{\prime} to H^{\prime} provides the required spanning subgraph of G.

Finally, we mention the following conjecture of Frank that would imply $g(2)=4$.

Conjecture 3 (Frank [5]). A graph has a 2-connected orientation if and only if it is $(4,2)$-connected.

4 Preliminaries

Let $G=(V, E)$ be a graph. In this section we present some simple facts about the graphic matroid $\mathcal{C}(G)$, the rigidity matroid $\mathcal{R}(G)$ and the matroid $\mathcal{N}_{k, \ell}(G)$
introduced in the Introduction.

We will denote by $\mathcal{C}(G)$ the graphic matroid of G on ground-set E, that is an edge set F of G is independent in $\mathcal{C}(G)$ if and only if G_{F} is a forest. Let $\boldsymbol{n}=|V|$ be the number of vertices in G. It is well known that the rank function $\boldsymbol{r}_{\mathcal{C}}$ of $\mathcal{C}(G)$ satisfies the following:

$$
\begin{equation*}
r_{\mathcal{C}}(F)=n-c(F) . \tag{4}
\end{equation*}
$$

We will denote by $\boldsymbol{\mathcal { R }}(\boldsymbol{G})$ the rigidity matroid of G on ground-set E with rank function $\boldsymbol{r}_{\mathcal{R}}$ (for a definition we refer the reader to [10]). For $F \subseteq E$, by a theorem of Lovász and Yemini [10], we have

$$
\begin{equation*}
r_{\mathcal{R}}(F)=\min \sum_{X \in \mathcal{G}}(2|X|-3), \tag{5}
\end{equation*}
$$

where the minimum is taken over all collections \mathcal{G} of subsets of V such that $\{F(X), X \in \mathcal{G}\}$ partitions F. Note that

$$
\begin{equation*}
r_{\mathcal{R}}(E) \leq 2|V|-3 \tag{6}
\end{equation*}
$$

and equality holds if and only if G is rigid.
For a subset F of E, let \mathcal{G} be a collection of subsets of V such that $\{F(X), X \in$ $\mathcal{G}\}$ partitions F that minimizes the right hand side of (5). It is well known that each element of \mathcal{G} induces a rigid subgraph of G_{F}. (For example, see the proof of Lemma 2.4 in [7].) Note also that, if G is simple, then every element of \mathcal{G} of size 2 induces at most one (in fact exactly one) edge and contributes exactly one to the sum. So we have the following simple but very useful observation.

Remark 2. If G is simple, then

$$
\begin{equation*}
r_{\mathcal{R}}(F)=\min \sum_{X \in \mathcal{H}}(2|X|-3)+|F \backslash H|, \tag{7}
\end{equation*}
$$

where the minimum is taken over all subsets $H \subseteq F$ and all collections \mathcal{H} of subsets of V such that $\{F(X), X \in \mathcal{H}\}$ partitions H and each element of \mathcal{H} induces a rigid subgraph of G_{H} of size at least 3 .

The following claim provides insight into the structure of the minimizers of (7).

Claim 1. Let $G=(V, E)$ be a simple graph and $F \subseteq E$. Let $H \subseteq F$ and \mathcal{H} be a collection of subsets of V that minimize the right hand side of (7).
(i) For every $\mathcal{H}^{*} \subseteq \mathcal{H}, r_{\mathcal{R}}\left(\cup_{X \in \mathcal{H}^{*}} F(X)\right)=\sum_{X \in \mathcal{H}^{*}}(2|X|-3)$.
(ii) For every non-empty $\mathcal{H}^{*} \subseteq \mathcal{H}$, there exists a vertex in $V\left(\mathcal{H}^{*}\right)$ that is contained in a single element of \mathcal{H}^{*}.
(iii) $\left|\mathcal{I}_{\mathcal{H}}\right|+\left|\mathcal{K}_{\mathcal{H}}\right| \geq c(\mathcal{H})$.
(iv) The connected components of (V, \mathcal{H}) and those of G_{H} coincide.

Proof. (i) Since $\{F(X), X \in \mathcal{H}\}$ partitions H, we have, by (7) and subadditivity of $r_{\mathcal{R}}$,

$$
\begin{aligned}
\sum_{X \in \mathcal{H}}(2|X|-3)+|F \backslash H| & =r_{\mathcal{R}}(F) \\
& \leq r_{\mathcal{R}}\left(\cup_{X \in \mathcal{H}}{ }^{*} F(X)\right)+r_{\mathcal{R}}\left(\cup_{X \in \mathcal{H} \backslash \mathcal{H}^{*}} F(X)\right)+r_{\mathcal{R}}(F \backslash H) \\
& \leq \sum_{X \in \mathcal{H}^{*}} r_{\mathcal{R}}(F(X))+\sum_{X \in \mathcal{H} \backslash \mathcal{H}^{*}} r_{\mathcal{R}}(F(X))+|F \backslash H| \\
& \leq \sum_{X \in \mathcal{H}^{*}}(2|X|-3)+\sum_{X \in \mathcal{H} \backslash \mathcal{H}^{*}}(2|X|-3)+|F \backslash H|
\end{aligned}
$$

So equality holds everywhere and (i) follows.
(ii) By contradiction, suppose that every vertex of $V\left(\mathcal{H}^{*}\right)$ is contained in at least two elements of \mathcal{H}^{*}. Hence, by (5), (i), since the size of each element of \mathcal{H}^{*} is at least 3 and by (1), we have $2\left|V\left(\mathcal{H}^{*}\right)\right|-3 \geq r_{\mathcal{R}}\left(\cup_{X \in \mathcal{H}}{ }^{*} F(X)\right)=$ $\sum_{X \in \mathcal{H}^{*}}(2|X|-3)=\sum_{X \in \mathcal{H}^{*}}|X|+\sum_{X \in \mathcal{H}^{*}}(|X|-3) \geq 2\left|V\left(\mathcal{H}^{*}\right)\right|+0$, a contradiction.
(iii) Let C be a connected component of (V, \mathcal{H}) that is not in $\mathcal{K}_{\mathcal{H}}$ and \mathcal{H}^{*} the elements of \mathcal{H} contained in C. By (ii), there exists in C a vertex v contained in a single element X of \mathcal{H}^{*}. Hence, by definition of $\mathcal{H}^{*}, v \in X_{I}$ and so $X \in \mathcal{I}_{\mathcal{H}}$. Thus we proved that C contains an element of $\mathcal{I}_{\mathcal{H}}$. Since the connected components of (V, \mathcal{H}) are disjoint, (iii) follows.
(iv) Let U be a connected component of G_{H} and $\emptyset \neq W \subset U$. Then, there exists an edge of H with one end in W and the other end in $U \backslash W$. Since $\{F(X), X \in \mathcal{H}\}$ partitions H, this edge is contained in an element of \mathcal{H} that intersects both W and $U \backslash W$. So U is connected in (V, \mathcal{H}).

Let U be a connected component of (V, \mathcal{H}) and $W \subset U$. Then, there exists an element X of \mathcal{H} intersecting both W and $U \backslash W$. Since $X \subseteq U$ and X induces a rigid, and so connected, subgraph of G_{H}, there exists an edge of H with one end in $X \cap W \subseteq W$ and the other in $X \backslash W \subseteq U \backslash W$. So U is connected in G_{H}. This ends the proof of (iv).

As we mentioned in the Introduction, to have a packing of k rigid spanning subgraphs and ℓ spanning trees in G, we must find k bases in the rigidity matroid $\mathcal{R}(G)$ and ℓ bases in the graphic matroid $\mathcal{C}(G)$ all pairwise disjoint. To do that we will need the following matroid. For $k \geq 0$ and $\ell \geq 0$, define $\boldsymbol{\mathcal { N }}_{\boldsymbol{k}, \ell}(\boldsymbol{G})$ as the matroid on ground-set E, obtained by taking the matroid union of k copies of the rigidity matroid $\mathcal{R}(G)$ and ℓ copies of the graphic matroid $\mathcal{C}(G)$. Let $\boldsymbol{r}_{\boldsymbol{k}, \ell}$ be the rank function of $\mathcal{N}_{k, \ell}(G)$. By a theorem of Edmonds [4], for the rank of matroid unions,

$$
\begin{equation*}
r_{k, \ell}(E)=\min _{F \subseteq E} k r_{\mathcal{R}}(F)+\ell r_{\mathcal{C}}(F)+|E \backslash F| . \tag{8}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
r_{k, \ell}(E) \leq k r_{\mathcal{R}}(E)+\ell r_{\mathcal{C}}(E) \leq k(2 n-3)+\ell(n-1) \tag{9}
\end{equation*}
$$

Jordán [8] used the matroid $\mathcal{N}_{k, 0}(G)$ to prove Theorem 3 and pointed out that using $\mathcal{N}_{k, \ell}(G)$ one could prove a theorem on the packing of rigid spanning subgraphs and spanning trees. We tried to fulfill this gap by following the proof of [8] but we failed. To achieve this aim we had to find a new proof technique.

5 Proofs

In this section we provide the proofs of our results. Let us first demonstrate our proof technique by giving a transparent proof for Theorems 1 and 2. We emphasize that in the first two proofs we use only Remark 2 from the Preliminaries.

Proof of Theorem 1. By Remark 1, we may assume that G is simple. Then, by (7), there exist a subset $H \subseteq E$ and a collection \mathcal{H} of subsets of V of sizes at least 3 such that $\{E(X), X \in \mathcal{H}\}$ partitions H and $r_{\mathcal{R}}(E)=\sum_{X \in \mathcal{H}}(2|X|-3)+|E \backslash H|$. If $V \in \mathcal{H}$, then $r_{\mathcal{R}}(E) \geq 2|V|-3$, hence, by (6), G is rigid. So in the following we assume that $V \notin \mathcal{H}$ and find a contradiction.

Recall that, for $X \in \mathcal{H}, X_{B}=X \cap\left(\cup_{Y \in \mathcal{H}-X} Y\right), X_{I}=X \backslash X_{B}$ and $\mathcal{I}_{\mathcal{H}}=$ $\left\{X \in \mathcal{H}: X_{I} \neq \emptyset\right\}$.

Each edge of H being induced by an element of \mathcal{H}, it contributes neither to $d_{G-X_{B}}\left(X_{I}\right)$ for $X \in \mathcal{I}_{\mathcal{H}}$ nor to $d_{G}(v)$ for $v \in V \backslash V(\mathcal{H})$. Thus, since for $X \in \mathcal{I}_{\mathcal{H}}$, $\emptyset \neq X_{I} \neq V \backslash X_{B}$, we have, by 6-connectivity of G,

$$
\begin{align*}
|E \backslash H| & \geq \frac{1}{2}\left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} d_{G-X_{B}}\left(X_{I}\right)+\sum_{v \in V \backslash V(\mathcal{H})} d_{G}(v)\right) \\
& \geq \frac{1}{2}\left(\sum_{X \in \mathcal{I}_{\mathcal{H}}}\left(6-\left|X_{B}\right|\right)+\sum_{v \in V \backslash V(\mathcal{H})} 6\right) \\
& \geq \sum_{X \in \mathcal{I}_{\mathcal{H}}}\left(3-\left|X_{B}\right|\right)+2(|V|-|V(\mathcal{H})|) . \tag{10}
\end{align*}
$$

By $|X| \geq 3$ for $X \in \mathcal{H} \backslash \mathcal{I}_{\mathcal{H}}$, (10) and (2), we have

$$
\begin{aligned}
r_{\mathcal{R}}(E) & =\sum_{X \in \mathcal{H}}(2|X|-3)+|E \backslash H| \\
& \geq\left(\sum_{X \in \mathcal{H}}|X|+\sum_{X \in \mathcal{I}_{\mathcal{H}}}(|X|-3)\right)+\left(\sum_{X \in \mathcal{I}_{\mathcal{H}}}\left(3-\left|X_{B}\right|\right)+2(|V|-|V(\mathcal{H})|)\right) \\
& \geq \sum_{X \in \mathcal{H}}|X|+\sum_{X \in \mathcal{I}_{\mathcal{H}}}\left|X_{I}\right|+2(|V|-|V(\mathcal{H})|) \\
& \geq 2|V|
\end{aligned}
$$

Hence, by (6), we have $2|V|-3 \geq r_{\mathcal{R}}(E) \geq 2|V|$, a contradiction.
Proof of Theorem 2. The proof of Theorem 2 is obtained from the proof of Theorem 1 by replacing $d_{G-X_{B}}\left(X_{I}\right) \geq 6-\left|X_{B}\right|$ by $d_{G-X_{B}}\left(X_{I}\right) \geq 6-2\left|X_{B}\right|$ in the inequality (\star). This means that in the proof of Theorem 1 we used (6,2)connectivity instead of 6 -connectivity.

Here comes the proof of the main result.
Proof of Theorem 4. Let $k \geq 1$ and $\ell \geq 0$ be integers and $G=(V, E)$ a $(6 k+$ $2 \ell, 2 k$)-connected simple graph. To prove the theorem we use the matroid $\mathcal{N}_{k, \ell}$ defined in Section 4 and show that

$$
\begin{equation*}
r_{k, \ell}(E)=k(2 n-3)+\ell(n-1) \tag{11}
\end{equation*}
$$

Choose F a smallest-size set of edges that gives the rank of E in $\mathcal{N}_{k, \ell}$, that is, which minimizes the right hand side of (8). By (7), there exist a subset $H \subseteq F$ and a collection \mathcal{H} of subsets of V of sizes at least 3 such that $\{F(X), X \in \mathcal{H}\}$ partitions H and

$$
\begin{equation*}
r_{\mathcal{R}}(F)=\sum_{X \in \mathcal{H}}(2|X|-3)+|F \backslash H| . \tag{12}
\end{equation*}
$$

Claim 2. $H=F$.
Proof. Since \mathcal{H} is a collection of subsets of V of sizes at least 3 such that $\{H(X), X \in \mathcal{H}\}$ partitions H, we have, by (12), $r_{\mathcal{R}}(H) \leq \sum_{X \in \mathcal{H}}(2|X|-3)=$ $r_{\mathcal{R}}(F)-|F \backslash H|$. Hence, since the rank function $r_{\mathcal{C}}$ is non-decreasing and $k \geq 1$, we have

$$
\begin{aligned}
k r_{\mathcal{R}}(H)+\ell r_{\mathcal{C}}(H)+|E \backslash H| & \leq k r_{\mathcal{R}}(F)+\ell r_{\mathcal{C}}(F)+|E \backslash H|-k|F \backslash H| \\
& \leq k r_{\mathcal{R}}(F)+\ell r_{\mathcal{C}}(F)+|E \backslash F| .
\end{aligned}
$$

Thus H also minimizes the right hand side of (8) and, by $H \subseteq F$ and the minimality of $F, H=F$.

If $V \in \mathcal{H}$, then, by $(12), r_{\mathcal{R}}(F) \geq \sum_{X \in \mathcal{H}}(2|X|-3) \geq 2 n-3$ and, by Claim 2 and Remark 2, G_{F} is connected, that is, $r_{\mathcal{C}}(F)=n-1$. Hence, by (9), we have (11) and the theorem is proved. From now on, we assume that $V \notin \mathcal{H}$ and we will show a contradiction.

Recall the definitions of the border $X_{B}=X \cap\left(\cup_{Y \in \mathcal{H}-X} Y\right)$, the inner part $X_{I}=X \backslash X_{B}$ for $X \in \mathcal{H}, \mathcal{I}_{\mathcal{H}}=\left\{X \in \mathcal{H}: X_{I} \neq \emptyset\right\}$ and the sets \mathcal{K}_{F} and $\mathcal{K}_{\mathcal{H}}$ of connected components of G_{F} and (V, \mathcal{H}) of size 1. By Claim 1 (iv), $\mathcal{K}_{F}=\mathcal{K}_{\mathcal{H}}$.

Let us use the connectivity condition on G to show a lower bound on $|E \backslash F|$.
Claim 3. $|E \backslash F| \geq k\left(\sum_{X \in \mathcal{I}_{\mathcal{H}}}\left(3-\left|X_{B}\right|\right)+3\left|\mathcal{K}_{F}\right|\right)+\ell\left(\left|\mathcal{I}_{\mathcal{H}}\right|+\left|\mathcal{K}_{F}\right|\right)$.
Proof. By $V \notin \mathcal{H}$, for $X \in \mathcal{I}_{\mathcal{H}}, \emptyset \neq X_{I} \neq V \backslash X_{B}$. Then, for $X \in \mathcal{I}_{\mathcal{H}}$ and for $v \in \mathcal{K}_{F}$, we have, by $(6 k+2 \ell, 2 k)$-connectivity of G,

$$
\begin{align*}
d_{G-X_{B}}\left(X_{I}\right) & \geq(6 k+2 \ell)-2 k\left|X_{B}\right| \tag{13}\\
d_{G}(v) & \geq 6 k+2 \ell \tag{14}
\end{align*}
$$

Since, by Claim 2, every edge of F is induced by an element of \mathcal{H} and by definition of X_{I}, for $X \in \mathcal{I}_{\mathcal{H}}$, no edge of F contributes to $d_{G-X_{B}}\left(X_{I}\right)$. Each $v \in \mathcal{K}_{F}$ is a connected component of the graph G_{F}, thus no edge of F contributes
to $d_{G}(v)$. Hence, by (13), (14) and $\ell \geq 0$, we obtain the required lower bound on $|E \backslash F|$,

$$
\begin{aligned}
|E \backslash F| & \geq \frac{1}{2}\left(\sum_{X \in \mathcal{I}_{\mathcal{H}}} d_{G-X_{B}}\left(X_{I}\right)+\sum_{v \in \mathcal{K}_{F}} d_{G}(v)\right) \\
& \geq \frac{1}{2}\left((6 k+2 \ell)\left|\mathcal{I}_{\mathcal{H}}\right|-2 k \sum_{X \in \mathcal{I}_{\mathcal{H}}}\left|X_{B}\right|+(6 k+2 \ell)\left|\mathcal{K}_{F}\right|\right) \\
& \geq k\left(\sum_{X \in \mathcal{I}_{\mathcal{H}}}\left(3-\left|X_{B}\right|\right)+3\left|\mathcal{K}_{F}\right|\right)+\ell\left(\left|\mathcal{I}_{\mathcal{H}}\right|+\left|\mathcal{K}_{F}\right|\right)
\end{aligned}
$$

Thus, by (12), Claims $2,3,|X| \geq 3\left(X \in \mathcal{H} \backslash \mathcal{I}_{\mathcal{H}}\right)$, Claim 1 (iv), (iii) and (2), we get

$$
\begin{aligned}
r_{k, \ell}(E)= & k \sum_{X \in \mathcal{H}}(2|X|-3)+|E \backslash F|+\ell(n-c(F)) \\
\geq & k\left(\sum_{X \in \mathcal{H}}|X|+\sum_{X \in \mathcal{I}_{\mathcal{H}}}(|X|-3)\right)+k\left(\sum_{X \in \mathcal{I}_{\mathcal{H}}}\left(3-\left|X_{B}\right|\right)+3\left|\mathcal{K}_{F}\right|\right) \\
& +\ell\left(\left|\mathcal{I}_{\mathcal{H}}\right|+\left|\mathcal{K}_{F}\right|\right)+\ell(n-c(F)) \\
\geq & k\left(\sum_{X \in \mathcal{H}}|X|+\sum_{X \in \mathcal{I}_{\mathcal{H}}}\left|X_{I}\right|+2\left|\mathcal{K}_{\mathcal{H}}\right|\right)+\ell(c(\mathcal{H})+n-c(F)) \\
\geq & 2 k n+\ell n .
\end{aligned}
$$

By $k \geq 1$ and $\ell \geq 0$, this contradicts (9).
Remark that the proof actually shows that if G is simple and $(6 k+2 \ell, 2 k)$ connected and if $F \subseteq E$ is such that $|F| \leq 3 k+\ell$, then in $G^{\prime}=(V, E \backslash F)$ there exists a packing of k rigid spanning subgraphs and ℓ spanning trees.

We mention that Theorem 4 was slightly generalized by Durand de Gevigney and Nguyen [3] for finding bases of a particular count matroid and spanning trees pairwise edge-disjoint. Their proof applies the discharging method.

References

[1] A. R. Berg and T. Jordán. Sparse certificates and removable cycles in l-mixed p-connected graphs Operations Research Letters, 33(2):111-114, 2005.
[2] A. R. Berg and T. Jordán. Two-connected orientations of Eulerian graphs. Journal of Graph Theory, 52(3):230-242, 2006.
[3] O. Durand de Gevigney. Orientations of graphs: structures and algorithms. PhD. Thesis, 2013.
[4] J. Edmonds. Matroid partition. In Mathematics of the Decision Sciences Part 1, volume 11, pages 335-345. AMS, Providence, RI, 1968.
[5] A. Frank. Connectivity and network flows. In Handbook of Combinatorics, pages 117-177. Elsevier, Amsterdam, 1995.
[6] B. Jackson and T. Jordán. A sufficient connectivity condition for generic rigidity in the plane. Discrete Applied Mathematics, 157(8):1965-1968, 2009.
[7] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations of graphs. Journal of Combinatorial Theory, Series B, 94(1):1 29, 2005.
[8] T. Jordán. On the existence of k edge-disjoint 2-connected spanning subgraphs. Journal of Combinatorial Theory, Series B, 95(2):257-262, 2005.
[9] Z. Király and Z. Szigeti. Simultaneous well-balanced orientations of graphs. Journal of Combinatorial Theory, Series B, 96(5):684-692, 2006.
[10] L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM Journal on Algebraic and Discrete Methods, 3(1):91-98, 1982.
[11] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society, 36:445-450, 1961.
[12] W. T. Tutte. On the problem of decomposing a graph into n connected factors. Journal of the London Mathematical Society, 36(1):221-230, 1961.
[13] C. Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic number. Annals of the New York Academy of Sciences, $555(1): 402-412,1989$.

