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Abstract

In this paper we consider problems related to Nash-Williams’ Strong Orientation Theorem and
Odd-Vertex Pairing Theorem. These theorems date to 1960 and up to now not much is known about
their relationship to other subjects in graph theory. We investigated many approaches to find a more
transparent proof for these theorems and possibly generalizations of them. In many cases we found
negative answers: counter-examples and NP -completeness results. For example we show that the
weighted and the degree-constrained versions of the well-balanced orientation problem are NP -hard.
We also show that it is NP -hard to find a minimum cost feasible odd-vertex pairing or to decide
whether two graphs with some common edges have simultaneous well-balanced orientations or not.

Nash-Williams’ original approach was to define best-balanced orientations with feasible odd-vertex
pairings: we show here that not every best-balanced orientation can be obtained this way. However we
prove that in the global case this is true: every smooth k-arc-connected orientation can be obtained
through a k-feasible odd-vertex pairing.

The aim of this paper is to help to find a transparent proof for the Strong Orientation Theorem.
In order to achieve this we propose some other approaches and raise some open questions, too.

Keywords: well-balanced orientation, odd-vertex pairing.

1 Introduction

In 1960 Nash-Williams proved his Strong Orientation Theorem about the existence of well-balanced
(and best-balanced) orientations. In fact, he proved a stronger result, the so-called Odd-Vertex Pairing
Theorem. There are many intriguing questions related to these two theorems, some of which are answered
in this paper. For example we show that it is NP -hard to find a minimum cost well-balanced orientation
(given the cost for the two possible orientations of each edge) or a well-balanced orientation satisfying
lower and upper bounds on the out-degrees at each vertex. Analogous results are given for best-balanced
orientations. We also prove that it is NP -hard to find a minimum cost feasible odd-vertex pairing (where
the cost of choosing a pair of odd-degree vertices is given for each pair). We examine several properties
of k-arc-connected orientations and in most of the cases we show by counter-examples that these do not
extend to well-balanced orientations. Many of the results presented in this paper (although not all of
them) already appeared in two technical reports [16, 2], in some cases we omit details and refer the reader
to those reports. In order to make the paper easier to read, the presentation of our results begins with the
most natural and straightforward questions and then moves on to the more involved and sophisticated
topics.
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Let us give a more detailed overview of the results of this paper. Let G = (V, E) be an undirected (or a
directed) graph. For two vertices u, v ∈ V of G the local edge-connectivity (local arc-connectivity)
λG(u, v) from u to v in G is defined to be the maximum number of pairwise edge (arc resp.) disjoint paths
from u to v in G. The global edge-connectivity (global arc-connectivity) of a graph (digraph) G
is min{λG(u, v) : u, v ∈ V }. G is k-edge-connected (k-arc-connected resp.) if λG(u, v) ≥ k for every
(u, v) ∈ V × V (i.e. its global edge- (arc-) connectivity is at least k). More generally, for U ⊆ V, G is
k-edge-connected (k-arc-connected resp.) in U if λG(u, v) ≥ k for every (u, v) ∈ U × U .

Nash-Williams’ Strong Orientation Theorem [22] states that for any undirected graph G there exists

an orientation ~G of G for which λ~G(u, v) ≥ ⌊ 12λG(u, v)⌋ for every (u, v) ∈ V × V . An orientation with
this property will be called well-balanced. For global edge-connectivity this specializes to the following
Weak Orientation Theorem: G has a k-arc-connected orientation if and only if G is 2k-edge-connected.
In this paper we will always refer to the global case when we want to specialize a question to global edge-
(or arc-) connectivity.

Let G = (V +s, E) be an undirected graph. The operation splitting off is defined as follows: two
edges rs, st incident to s are replaced by a new edge rt. The splitting-off theorem of Lovász [18] concerns
global edge-connectivity: if G is k-edge-connected in V and d(s) is even, then there exists a pair of edges
rs, st incident to s whose splitting off maintains the k-edge-connectivity in V , where k ≥ 2. Lovász
[18] also showed that the Weak Orientation Theorem is an easy consequence of his splitting-off theorem.
Mader [20] generalized Lovász’ result to local edge-connectivity: if d(s) ≥ 4 and no cut-edge of G is
incident to s, then there exists a pair of edges rs, st incident to s whose splitting off maintains the local
edge-connectivities in V. A simple proof for Mader’s theorem can be found in [9]. Mader [20] provided a
new proof for the Strong Orientation Theorem by applying his splitting-off theorem.

Let ~G = (V +s, A) be a directed graph. Splitting off can be naturally reformulated for directed
graphs: two arcs rs, st are replaced by rt. Mader [21] proved a splitting-off theorem preserving global
arc-connectivity in directed graphs: if G is k-arc-connected in V and ̺(s) = δ(s) then there exists a pair
of arcs rs, st incident to s whose splitting off maintains the k-arc-connectivity in V . An example of Enni
[6] shows that there is no splitting-off theorem preserving local arc-connectivities in directed graphs. In

Question 2 we provide a smaller example showing that even if ~G is a well-balanced orientation of G there
is no splitting off that preserves local arc-connectivities in V .

Nash-Williams’ Odd-Vertex Pairing Theorem [22] states that every undirected graph G has a pairing
M (a set of new edges on the set TG of odd degree vertices of G such that dM (v) = 1 for every v ∈ TG)
that is feasible (dM (X) ≤ bG(X) for every X ⊆ V, where bG(X) is the number of “extra” edges leaving
X , for the formal definition see the next session). A simpler proof of the Odd-Vertex Pairing Theorem can
be found in [10]. For the global case, let us call a pairing M to be k-feasible (where k is a nonnegative
integer) if dM (X) ≤ dG(X) − 2k for every ∅ 6= X ( V . It was shown in [17] that in this case the
Odd-Vertex Pairing Theorem (i.e. the existence of a k-feasible pairing in a 2k-edge-connected graph) can
be proven easily by the global splitting-off theorem.

The Strong Orientation Theorem is trivial for Eulerian graphs (any Eulerian orientation will do),
nevertheless this special case plays an important role in the theory. It was shown in [17] that for Eulerian
graphs, an orientation is well-balanced if and only if it is Eulerian.

Nash-Williams [22] showed that if M is a feasible pairing of G then for every Eulerian orientation
~G+ ~M of G+M , ~G is well-balanced and furthermore it is smooth, that is the in-degree and the out-degree
of every vertex differ by at most one. A smooth well-balanced orientation is called best-balanced. A
related result in [17] states that for each (not necessarily feasible) pairing M of G there exists an Eulerian

orientation ~G + ~M of G + M so that ~G is best-balanced. We show (Question 7) that not every best-
balanced orientation can be obtained from a feasible pairing this way. On the other hand we prove in
Theorem 8.2 that in the global case every smooth k-arc-connected orientation can be obtained from some
k-feasible pairing using this construction.

The above mentioned two proofs of the odd-vertex pairing theorem (the original due to Nash-Williams
and that of Frank) both imply a polynomial algorithm to find a feasible odd-vertex pairing, though it is
not explicitly stated in either of them. An explicit algorithm for this problem is sketched in [13], where
it is stated that an odd-vertex pairing (and consequently a best-balanced orientation) can be found in
O(nm2) time in a graph and in O(n6) time in a multigraph. It is a natural question to look for a feasible
odd-vertex pairing of minimum cost where the cost for any pair of odd-degree vertices is given. However
we show (Corollary 9.2) that this problem is NP -complete, even for the global case. Another natural
question is whether one can find a well-balanced orientation of minimum cost (with costs given for the two
possible orientations of every edge) or whether one can find a well-balanced orientation satisfying some
other constraints, for example lower and upper bounds on the out-degrees at each vertex. In his survey
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paper [10] Frank mentions these questions when he writes the following about his proof of the odd-vertex
pairing theorem: I keep feeling that there must be an even more illuminating proof which finally will lead
to methods to solve the minimum cost and/or degree-constrained well-balanced orientation problem. Here
we present negative answers in this direction: we prove the NP -completeness of these problems (see
Theorem 4.3). We have similar results for best-balanced orientations.

Nash-Williams [23] formulated the following extension of the Strong Orientation Theorem for a sub-
graph chain of length two: if H is a subgraph of G, then there exists a best-balanced orientation of H
that can be extended to a best-balanced orientation of G. A simple proof is given in [17]: it is shown
there that the Odd-Vertex Pairing Theorem easily implies this, and that the global case of this extension
has a simple proof. We show that the general subgraph-chain property is not valid, that is, this extension
cannot be generalized for a subgraph chain of length three, not even in the case of global edge-connectivity
(see Question 5).

The authors of [17] generalized further the above extension by showing that the following edge disjoint

subgraphs property is valid: if {G1, G2, ..., Gk} is a partition of G into edge disjoint subgraphs then there

is an orientation ~G of G such that each ~Gi and ~G are best-balanced orientations of Gi and of G. We show
that deciding for two non-edge-disjoint graphs whether they have simultaneous best-balanced orientations
is NP-complete, even for two Eulerian graphs (see Question 6).

Both the original proof of the Odd-Vertex Pairing Theorem in [22] and Frank’s proof [10] rely heavily
on the skew-submodularity of the set function bG. We show (Question 8) that the existence of a feasi-
ble pairing cannot be generalized to arbitrary skew-submodular functions. Skew-submodular functions
correspond to local edge-connectivity, while crossing submodular functions can be considered as gener-
alizations of global edge-connectivity. For such a function it is an open problem whether there exists
a feasible pairing. However the corresponding orientation theorem can be proved easily (see Theorem
10.1).

Frank [8] proved the following reorientation property for k-arc-connected orientations: given two k-
arc-connected orientations of G, there exists a series of k-arc-connected orientations of G (leading from
the first to the second given orientation), such that in each step we reverse a directed path or a circuit.
For well-balanced (or best-balanced) orientations it is not known whether the reorientation property is
valid.

The proof of Frank in [8] easily implies the following matroid property for smooth k-arc-connected
orientations: the family of sets, over smooth k-arc-connected orientations, consisting of vertices whose
in-degree is larger than the out-degree, forms the family of bases of a matroid. We show that this is not
true in general for best-balanced orientations (see Question 12).

Frank [7] also proved that the linkage property is valid for the k-arc-connected orientation problem,
i.e. there exists a k-arc-connected orientation whose in-degree function satisfies lower and upper bounds
if and only if there is one satisfying the lower bound and one satisfying the upper bound. É. Tardos [24]
showed that the linkage property is not valid for the well-balanced orientation problem. Here we present
another example (see Question 14).

The rest of the paper is organized as follows. In Section 2 we introduce some further notations. In
Section 3 we summarize known results on well-balanced orientations and odd-vertex pairings. In Section
4 we consider well-balanced orientations with extra requirements: we prove the NP -completeness of
questions such as finding a well-balanced orientation of minimum cost or one satisfying lower and upper
bounds on the out-degrees. In Section 5 we consider mixed graphs and their well-balanced orientations.
Section 6 is devoted to the splitting-off operation. In Section 7 we consider the question of orienting several
graphs with possibly some common edges resulting in an orientation that is simultaneously well-balanced.
Section 8 asks whether every best-balanced orientation can be obtained from a feasible odd-vertex pairing.
In the next section we investigate the structure of feasible pairings. In Section 10 we introduce a more
general setting and investigate feasible pairings for connectivity functions. In the last section we show that
the matroid property which is valid for k-arc-connected orientations, does not extend to well-balanced
orientations.

2 Notation

A directed graph is denoted by ~G = (V, A) and an undirected graph by G = (V, E). For a directed

graph ~G and a set X ⊆ V let δ~G(X) := |{uv ∈ A : u ∈ X, v /∈ X}| (the out-degree of X in ~G),

̺~G(X) := δ~G(V − X) (the in-degree of X in ~G), and f ~G(X) := ̺~G(X) − δ~G(X). If z : A → R then

let δz
~G
(X) :=

∑
{uv∈A: u∈X, v/∈X} z(uv) and ̺z

~G
(X) := δz

~G
(V − X). For a digraph ~G and u, v ∈ V let
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λ~G(u, v) := min{δ~G(Y ) : Y ⊆ V, u ∈ Y, v /∈ Y } (by Menger’s theorem this is indeed an equivalent

definition of the local arc-connectivity from u to v in ~G) and
←−
G := (V, {vu : uv ∈ A}). Observe that

∀X ⊆ V

f ~G(X) =
∑

v∈X

f ~G(v). (1)

For an undirected graph G and a set X ⊆ V let dG(X) := |{uv ∈ E : u ∈ X, v /∈ X}| (the
degree of X in G) and iG(X) := |{uv ∈ E : u, v ∈ X}| (the number of edges induced by X). For
two sets X, Y ⊆ V let dG(X, Y ) := |{uv ∈ E : u ∈ X − Y, v ∈ Y − X}|. If u, v ∈ V, then let
λG(u, v) := min{dG(Y ) : Y ⊆ V, u ∈ Y, v /∈ Y }, (again by Menger’s theorem this is indeed an
equivalent definition of the local edge-connectivity between u and v in G). Introduce the set functions
RG(X) := max{λG(x, y) : x ∈ X, y /∈ X} (with RG(∅) = RG(V ) = 0), R̂G(X) := 2⌊RG(X)/2⌋,
bG(X) := dG(X) − R̂G(X) and let TG := {v ∈ V : dG(v) is odd}. The undirected graph G = (V, E)
is connected if for every pair of vertices u, v there is a (u, v)-path in G. It is k-edge-connected if
G− F is connected for any F ⊆ E with |F | ≤ k − 1. For a function r : V × V → Z+

0 , we say that G is
r-edge-connected if λG(u, v) ≥ r(u, v) for every pair u, v of vertices.

The directed graph ~G = (V, A) is strongly connected if for every ordered pair (u, v) ∈ V × V of

vertices there is a directed (u, v)-path in ~G. It is k-arc-connected if ~G − F is strongly connected for

any F ⊆ A with |F | ≤ k − 1. For a function r : V × V → Z+
0 , we say that ~G is r-arc-connected if

λ~G(u, v) ≥ r(u, v) for every ordered pair u, v of vertices.

An orientation ~G of G is called well-balanced if ~G satisfies (2), smooth if ~G satisfies (3) and

best-balanced if it is smooth and well-balanced. Note that if ~G is best-balanced then so is
←−
G . Let us

denote by Ow(G) and Ob(G) the set of well-balanced and best-balanced orientations of G.

λ~G(x, y) ≥ ⌊λG(x, y)/2⌋ ∀ (x, y) ∈ V × V, (2)

|f ~G(v)| ≤ 1 ∀ v ∈ V. (3)

A pairing M of G is a new graph on the set of odd-degree vertices TG in which each vertex has
degree one. Let M be a pairing of G. An orientation ~M of M that satisfies (4) is called good. Note

that, by Claim 3.5 of the next section, if ~M is good then every Eulerian orientation ~G + ~M of G + M
that extends ~M defines a best-balanced orientation of G. Pairing M is well-orientable if there exists a
good orientation of M, M is strong if every orientation of M is good and M is feasible if (5) is satisfied.

Clearly an oriented pairing ~M is good iff
←−
M is good. Let us denote by Pf (G) the set of feasible pairings

of G.

f ~M (X) ≤ bG(X) ∀X ⊆ V, (4)

dM (X) ≤ bG(X) ∀X ⊆ V. (5)

We shall use the facts that for an undirected graph G and subsets X, Y, Z ⊆ V we have

dG(X) + dG(Y ) = dG(X ∩ Y ) + dG(X ∪ Y ) + 2dG(X, Y ), (6)

dG(X) + dG(Y ) + dG(Z) ≥ dG(X ∩ Y ∩ Z) + dG(X − (Y ∪ Z)) +

dG(Y − (X ∪ Z)) + dG(Z − (X ∪ Y )). (7)

3 Known results

The following four theorems are due to Nash-Williams [22, 23]. First we state the Odd-Vertex Pairing
Theorem: this theorem is particularly interesting since it has practically no known connection to any
other result in graph theory.

Theorem 3.1 (Odd-Vertex Pairing Theorem). Every graph has a feasible pairing.

The Odd-Vertex Pairing Theorem easily implies the following Strong Orientation Theorem.

Theorem 3.2 (Strong Orientation Theorem). Every graph has a best-balanced orientation.

In fact, the Odd-Vertex Pairing Theorem also implies the following, stronger result (for a proof see [17]).
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Theorem 3.3. For every subgraph H of G, there exists a best-balanced orientation of H that can be
extended to a best-balanced orientation of G.

A simple consequence of the Strong Orientation Theorem is the Weak Orientation Theorem that
concerns global edge-connectivity instead of local edge-connectivity. While the only proof of the Strong
Orientation Theorem is via the Odd-Vertex Pairing Theorem, for the Weak Orientation Theorem we know
different proof methods, polyhedral generalizations and we understand much better the relationships with
submodular functions and polymatroids.

Theorem 3.4 (Weak Orientation Theorem). A graph G has a k-arc-connected orientation if and
only if G is 2k-edge-connected.

In [17] Király and Szigeti proved the following results.

Claim 3.5. The following statements are equivalent:

~G ∈ Ow(G), (8)

δ~G(X) ≥ ⌊
R(X)

2
⌋ ∀ X ⊆ V, (9)

f ~G(X) ≤ bG(X) ∀ X ⊆ V. (10)

Claim 3.6. A pairing is feasible if and only if it is strong.

Theorem 3.7. Every pairing is well-orientable.

Using these observations they also proved in [17] the following two generalizations of Theorem 3.2.

Theorem 3.8. For every partition {E1, E2, ..., Ek} of E(G), if Gi = (V, Ei) then G has a best-balanced

orientation ~G, such that the inherited orientation of each Gi is also best-balanced.

Theorem 3.9. For every partition {X1, ..., Xl} of V = V (G), G has an orientation ~G such that ~G,

((~G/X1)...)/Xl and ~G/(V −Xi) (1 ≤ i ≤ l) are best-balanced orientations of the corresponding graphs.

4 Well-balanced orientations with extra requirements

It is a natural question whether one can find a well-balanced orientation of minimum cost (with costs
given for the two possible orientations of every edge) or whether one can find a well-balanced orientation
satisfying some other constraints, for example lower and upper bounds on the out-degrees at each vertex.
Here we present negative answers in this direction: we prove the NP -completeness of these problems.
Let us introduce the problems we want to consider and give some motivation.
For well-balanced orientations we look at the following problems:

Problem 1. : MinCostWellBalanced

Instance: A graph G, nonnegative integer costs for the two possible orientations of each edge, and an
integer bound K.
Question: Is there a well-balanced orientation of G with total cost at most K?

Problem 2. : BoundedWellBalanced

Instance: A graph G = (V, E), l, u : V → Z+ bounds with l ≤ u.

Question: Is there a well-balanced orientation ~G of G with l(v) ≤ δ~G(v) ≤ u(v) for every v ∈ V ?

Problem 3. : MinVertexCostWellBalanced

Instance: A graph G, integer costs c : V → Z, integer B.
Question: Is there a well-balanced orientation ~G of G with

∑
v∈V c(v) · δ~G(v)≤B?

For best-balanced orientations we define problems MinCostBestBalanced, BoundedBestBalan-

ced and MinVertexCostBestBalanced similarly, changing the phrase well-balanced to best-balanced.
Problems MinCostWellBalanced and MinCostBestBalanced are quite natural weighted ver-

sions of the original problem, the problem of finding a well-balanced or a best-balanced orientation.
The constrained versions BoundedWellBalanced and BoundedBestBalanced also arise natu-
rally: they are mentioned in the survey paper of András Frank [10] and a related problem, when we have
only bounds from one side (say, upper bounds) in a best-balanced orientation is still an open problem
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mentioned in [5] (though we have to mention that a related question was shown to be hard, namely it
has been shown by [1] that it is NP -hard to decide whether a graph has an r-arc-connected orientation
with upper bounds on the out-degrees even for a 0−1-valued symmetric function r). The third approach
is motivated by the following observation: in an orientation problem with arc-connectivity requirements,
finding the out-degree function of a solution is polynomially equivalent with finding a solution. The
authors of [16] introduce the following polyhedron for a graph G = (V, E) (see Section 9 in [16]):

P := {x ∈ RV : x(Z) ≥ iG(Z) + ⌊RG(Z)/2⌋ ∀Z ⊆ V, x(V ) = |E|,

⌊dG(v)/2⌋ ≤ x(v) ≤ ⌈dG(v)/2⌉ ∀v ∈ V }.

The integer hull of this polyhedron is the convex hull of the out-degree functions of all best-balanced
orientations of G. However it is proved in [16] that this polyhedron is not necessarily integral: here we
prove that optimization over the integer hull of this polyhedron (that is, problem MinVertexCost-

BestBalanced) is NP -hard. Problem MinVertexCostWellBalanced is just the counterpart of
this problem for well-balanced orientations.

Now we give some known results that will be needed later. The following is a simple observation: the
proof is left to the reader.

Lemma 4.1. If ~G and ~G′ are two orientations of a graph G = (V, E) with δ~G(x) = δ~G′
(x) for all x ∈ V

then ~G′ can be obtained from ~G by reversing directed cycles.

Corollary 4.2. If ~G and ~G′ are two orientations of a graph G = (V, E) with δ~G(x) = δ~G′(x) for all
x ∈ V then

~G is well-balanced ⇐⇒ ~G′ is well-balanced.

Proof. Directly from lemma 4.1. Alternatively, we can show that λ~G(x, y) = λ~G′(x, y) for all x, y ∈ V
using the fact δ~G(X) =

∑
x∈X δ~G(x)− iG(X) = δ~G′(X) for any X ⊆ V .

For well-balanced orientations we have the following results.

Theorem 4.3. Problems MinCostWellBalanced, BoundedWellBalanced and MinVertex-

CostWellBalanced are NP -complete.

Proof. The problems are clearly in NP . In order to show their completeness we will give a reduction
from Vertex Cover (see [14], Problem GT1). For a given instance G′ = (V ′, E′) and k ∈ N of the
Vertex Cover problem (where we can assume that the minimum degree in G′ is at least 2) consider the
following undirected graph G = (V, E). The vertex set V will contain one designated vertex s, dG′(v)+1
vertices xv

0 , x
v
1 , x

v
2 , . . . , x

v
dG′ (v) for every v ∈ V ′, and one vertex xe for every e ∈ E′. Let us fix an ordering

of V ′, say V ′ = {v1, v2, . . . , vn}. The edge set E contains a circuit on s, xv1

0 , xv2

0 . . . , xvn

0 in this order,
one edge from s to xv

1 for every v ∈ V ′, edges between xv
i and xv

i+1 for every v ∈ V ′ and every i between
0 and dG′(v) − 1, two parallel edges between s and xe for every e ∈ E′ and finally for each v ∈ V ′ take
an arbitrary order of the dG′(v) = d edges of G′ incident to v, say e1, e2, . . . , ed and include the edge
xv

i xei−1 for any 2 ≤ i ≤ d− 1 and the edges xv
dxed−1 and xv

dxed (i.e. distribute the edges of G′ incident to
v arbitrarily among vertices xv

2 , . . . , x
v
d resulting dG(xv

i ) = 3 for each 2 ≤ i ≤ d).
The construction is illustrated in Figure 1. The edges drawn bold indicate a multiplicity of 2.
Notice that for every v ∈ V ′ and 0 ≤ i ≤ dG′(v) we have dG(xv

i ) = 3 and for every e ∈ E′ we have
dG(xe) = 4. What is more, it is easy to check, that λG(x, y) = min(dG(x), dG(y)) for every x, y ∈ V (for
example one can check that this is true if y = s from which it follows for arbitrary x, y).

Define a partial orientation of G: orient the circuit s, xv1

0 , xv2

0 . . . , xvn

0 to become a directed circuit in
this order, orient the edges from xv

i to xv
i+1 for every v ∈ V ′ and every i between 0 and dG′(v)− 1, orient

the two parallel edges from xe towards s for every e ∈ E′ and finally for each v ∈ V ′, 2 ≤ i ≤ dG′(v) and
e ∈ E′ if there is an edge between xv

i and xe then orient this edge from xv
i to xe (so we have given the

orientation of every edge except those of form sxv
1 for v ∈ V ′). Figure 2 is an illustration.

Let us denote the subgraph G− {sxv
1 : v ∈ V ′} by G1 and the orientation of this graph given above

by ~G1. Observe that ~G1 is a strongly connected graph and λ~G1

(xe, s) = 2 for each e ∈ E′.

Claim 4.4. Problem MinCostWellBalanced is NP -complete.

Proof: For a given instance G′ = (V ′, E′) and k ∈ N of Vertex Cover consider the following instance
of MinCostWellBalanced: let the graph G be as described above, let K = k be the bound on the
total cost and define the orientation-costs as follows. Orienting the edges of G1 as in ~G1 costs nothing,
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Figure 1: Construction of graph G
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Figure 2: The partial orientation and the cut

but giving any edge the reverse orientation will cost k + 1. It remains to define the costs of orientations
of edges between s and xv

1 for each v ∈ V ′: such an edge costs 1, if oriented from s to xv
1 and 0 in the

other direction. So we only have freedom choosing the orientation of these edges, if we don’t want to
exceed the cost limit k.

First we claim that if there is a vertex cover S ⊆ V ′ of size not more than k then there is a well-
balanced orientation ~G of G of cost not more than k: for each v ∈ S orient the edge sxv

1 from s to xv
1

and orient the other edges in the direction which costs nothing. This has clearly cost at most k and it is
easy to check that λ~G(s, xe) = 2 for each e ∈ E′ which together with the former observations gives that
~G is well-balanced.

On the other hand suppose that we have found a well-balanced orientation ~G of G of cost at most k:
this is possible only if there are at most k vertices in V ′ such that the edges sxv

1 are oriented from s to
xv

1 exactly for these edges and all the other edges are oriented in the direction which costs 0. We claim
that these vertices form a vertex cover of G′: if the edge e = vjvl ∈ E′ was not covered (where j < l are
the indices of the vertices in the fixed ordering), then ̺~G(X) = 1 would contradict the well-balancedness
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of ~G, where

X = {xe}
⋃
{xvi

0 : j ≤ i ≤ l}
⋃
{x

vj

i : 1 ≤ i ≤ dG′(vj)}
⋃
{xvl

i : 1 ≤ i ≤ dG′(vl)}

(Figure 2 illustrates the cut, too).

Claim 4.5. Problem BoundedWellBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E′) and k ∈ N of Vertex Cover consider the following instance of
BoundedWellBalanced: let the graph G be as described above and upper bound on the out-degree
of s given by u(s) = k + 1, and lower bounds l(xv

i ) = 2 for each v ∈ V ′ and i ∈ {0, 2, 3, . . . , dG′(v)}
(observe that these are in fact exact prescriptions for these out-degrees, notice, that we excluded i = 1):
the other bounds can be trivial, that is l(x) = 0 and u(x) = dG(x) if it was not specified otherwise. We
refer the reader to [2] for the details.

Claim 4.6. Problem MinVertexCostWellBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E′) and k ∈ N of Vertex Cover consider the following instance of
MinVertexCostWellBalanced: let the graph G be as described above and vertex-costs the following:
let c(s) = 1 and c(xv

i ) = −k for each v ∈ V ′ and i ∈ {0, 2, 3, . . . , dG′(v)} (and zero for the rest of the
vertices). Finally, let B = −4k|E′|+ k + 1. For more details see [2].

For best-balanced orientations we have the following corresponding results.

Theorem 4.7. Problems MinCostBestBalanced, BoundedBestBalanced and MinVertexCost-

BestBalanced are NP -complete.

Proof. The problems are clearly in NP . To show completeness we give a reduction from Vertex

Cover as before, but we need to change the construction a bit. For a given instance G′ = (V ′, E′) and
k ∈ N of the Vertex Cover problem (where dG′(v) ≥ 2 is again assumed for any v ∈ V ′), modify the
construction of the graph G = (V, E) as follows: add 2|E′| + |V ′| − 2k = N new vertices z1, z2, . . . , zN

and connect each of these vertices with s. So these new vertices will have degree 1 and s will have degree
4|E′|+ 2|V ′|+ 2− 2k in G. Denote this modified graph with G = (V, E).

Define again a partial orientation of G: this is the same as the one defined above in the first construc-
tion, with the addition that for each i between 1 and N orient the edge szi from s to zi.

Again call the subgraph G − {sxv
1 : v ∈ V ′} by G1 and the above given orientation of this graph

by ~G1. Again we have λG(x, y) = min(dG(x), dG(y)) for every x, y ∈ V , λ~G1

(x, y) ≥ 1 for every x, y ∈
V − {z1, z2, . . . , zN} and λ~G1

(xe, s) = 2 for each e ∈ E′.

Claim 4.8. Problem MinCostBestBalanced is NP -complete, even for 0–1 orientation costs.

Proof: For a given instance G′ = (V ′, E′) and k ∈ N of Vertex Cover consider the following instance
of MinCostBestBalanced: let the graph G be as described above, let K = 0 be the bound on the
total cost and define the orientation-costs as follows. Orienting the edges of G1 as in ~G1 costs nothing,
but giving any edge the reverse orientation will cost 1. It remains to define the costs of orientations of
edges between s and xv

1 for each v ∈ V ′: these edges can be oriented in any direction with 0 cost. Details
again can be found in [2].

Claim 4.9. Problem BoundedBestBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E′) and k ∈ N of Vertex Cover consider the following instance of
BoundedBestBalanced: let the graph G be as described above and bounds on the out-degrees of odd
degree vertices of G given as follows (of course, for even-degree vertices x ∈ V one has l(x) = dG(x)/2 =
u(x)):

• l(xv
i ) = 2 = u(xv

i ) for each v ∈ V ′ and i ∈ {0, 2, 3, . . . , dG′(v)} (exact prescriptions),

• l(zi) = 0 = u(zi) for each i = 1, 2, . . . , N (exact prescriptions),

• l(xv
1) = 1 and u(xv

1) = 2 for each v ∈ V ′ (so we only have freedom here).

For the details see [2].
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Claim 4.10. Problem MinVertexCostBestBalanced is NP -complete.

Proof: For an instance G′ = (V ′, E′) and k ∈ N of Vertex Cover consider the following instance of
MinVertexCostWellBalanced: let the graph G be as described above and vertex-costs the following:
let c(zi) = 1 for each i = 1, 2, . . . , N and c(xv

i ) = −1 for each v ∈ V ′ and i ∈ {0, 2, 3, . . . , dG′(v)} (and
zero for the rest of the vertices). Finally, let B = −2 (

∑
(dG′(v) : v ∈ V ′)) = −4|E′|. Details again can

be found in [2].

5 Mixed graphs

A mixed graph is determined by the triple (V, E, A) where V is the set of vertices, E is the set of
undirected edges and A is the set of directed arcs. The underlying undirected graph is obtained by
deleting the orientation of the arcs in A. An orientation of a mixed graph means that we orient the
undirected edges (and keep the orientation of directed arcs).

A possible way to prove the Strong Orientation Theorem could be to characterize mixed graphs whose
undirected edges can be oriented to have a well-balanced orientation of the underlying undirected graph.
The following problem was mentioned in Section 4.2 of [16]:

Problem 4. Given a mixed graph, decide whether it has an orientation that is a well-balanced orientation
of the underlying undirected graph.

At the time of the submission of the present paper the status of this problem was unknown, but during
the revision process it was shown to be NP -complete in [3]. However, the proof of Claim 4.8 immediately
gives the NP -completeness of the following, related problem.

Problem 5. Given a mixed graph, decide whether it has an orientation that is a best-balanced orientation
of the underlying undirected graph.

We have to mention that the global edge-connectivity version of these questions can be solved: one
can decide whether a mixed graph has a k-arc-connected orientation, even with the presence of lower and
upper bounds on the out-degrees of the required orientation, see [12].

6 Splitting off

For an undirected graph G = (V +s, E) let the graph obtained by splitting-off the edges rs, st ∈ E be

denoted by Grt, i.e. Grt := G−{rs, st}+ rt. Similarly, for a directed graph ~G = (V +s, A) with rs, st ∈ A

let ~Grt = ~G− {rs, st}+ rt. Alternatively, ~Grt can also mean an orientation of Grt with rt ∈ A(~Grt).
We have seen in the introduction that splitting-off theorems are very useful in the proof of the Strong

and the Weak Orientation Theorem. We also mention that Mader’s proof [20] for the Strong Orientation
Theorem as well as Frank’s proof [10] for Theorem 3.1 uses Mader’s splitting-off theorem.

The Odd-Vertex Pairing Theorem would be an easy task if the following was true.

Question 1. For every 2-edge-connected graph G there exists a pair of incident edges rs, st such that

bG(X) ≥ bGrt
(X) ∀X ⊆ V. (11)

Counter-example 1. Let G = (U, V ; E) be the complete bipartite graph K3,4. Let us denote the vertices
as follows: U := {a, b, c, d} and V := {x, y, z}. By symmetry, {rs, st} is either {xd, dy} or {az, zb}. In the
first case bG(z) = 0 < 2 = bGxy

(z) and in the second case bG({a, x, y}) = 3 < 5 = bGab
({a, x, y}). In both

cases (11) is violated.

Question 2. If ~G is a best-balanced orientation of G = (V +s, E) and ̺~G(s) = δ~G(s) then there exist

rs, st ∈ A(~G) so that
λ~Grt

(x, y) ≥ λ~G(x, y) ∀(x, y) ∈ V × V. (12)

9



rz rw

ru rv
r
s

#

"

 

!
{r, t}

-

6
-

A
A
A
A
A
AU

HHHHHHj

@
@

@I
�������

6�
�

�
�

�
�	

Figure 3: There is no good directed splitting off at s

Counter-example 2. Let G = (V +s, E) and ~G = (V +s, A) be defined as follows (see Figure 3): V :=
{u, v, w, z}, E := {uv, us, uz, vz, vs, vw, ws, wz, zs}, A := {uv, us, zu, vz, sv, vw, ws, zw, sz}. It is easy to

check that ~G ∈ Ob(G). In particular λ~G(v, z) = λ~G(z, v) = 2. Suppose that for some (r, t) ∈ {(u, z), (u, v),
(w, z), (w, v)}, (12) is satisfied. Then, by (12), 3 = ̺~Grt

({r, t}) + δ~Grt
({r, t})≥λ~Grt

(v, z) + λ~Grt
(z, v)≥

λ~G(v, z) + λ~G(z, v)=4, a contradiction.

We note that the example given above also provides a counter-example to a conjecture of Jackson
containing fewer vertices than previous examples due to Enni, for details see [6].

Question 3 (Open Problem). If ~G is a best-balanced orientation of G = (V +s, E) and ̺~G(s) = δ~G(s)

then there exist rs, st ∈ A(~G) so that ~Grt is a best-balanced orientation of Grt.

Though Question 3 is an open problem, a related question can be answered affirmatively.

Theorem 6.1. For every pair rs, st of edges of a graph G = (V + s, E) there exists a best-balanced

orientation ~G of G so that rs, st ∈ A(~G) and ~Grt is a best-balanced orientation of Grt.

Proof. By Theorem 3.1, there exists a feasible pairing M of G. Then M is a pairing of Grt and hence,
by Theorem 3.7, Grt + M has an Eulerian orientation ~Grt + ~M so that ~Grt ∈ Ob(Grt) (we can assume

that rt is directed as ~rt in ~Grt). Then, for ~G := ~Grt − rt + rs + st, ~G + ~M is Eulerian, that is, since

M ∈ Pf (G), ~G ∈ Ob(G).

For another similar problem we have negative answer.

Question 4. For every graph G = (V +s, E) with d(s) ≥ 4 there exist rs, st ∈ E such that for every

best-balanced orientation ~Grt of Grt with rt ∈ A(~Grt), ~G := ~Grt−rt+rs+st is a best-balanced orientation
of G.

Counter-example 4. In Figure 4 (a) the graph G = (V +s, E) is given. By symmetry there are two

different choices of the pair {r, t}. Figure 4 (b) and (c) show best-balanced orientations ~Grt for the two
corresponding choices. A cut indicated in Figure 4 (b) and (c) has the property δ(X) = 1 in both cases,

consequently ~G := ~Grt − rt + rs + st cannot be best-balanced because λ~G(s, z) = 1 < 2 = λG(s, z)/2.

7 Simultaneous well-balanced orientations

In this section we consider some possible generalizations of Theorem 3.3 and Theorem 3.8. Here we con-
sider the statements of these theorems as assuring simultaneous (compatible) best-balanced orientations
of some graphs.

The first two questions correspond to the local and global cases related to Theorem 3.3, i.e. the
subgraph-chain property.

Question 5. Let G3 be a subgraph of G2 and G2 a subgraph of G1. There exist orientations ~Gi of Gi for
i = 1, 2, 3, such that ~Gj is a restriction of ~Gi if j > i, and for all i

(a) Local case: ~Gi ∈ Ow(Gi).

(b) Global case: if Gi is 2ki-edge-connected for some integers k1, k2, k3 then ~Gi is a ki-arc-connected
orientation of Gi.
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Counter-examples 5. Let Gi := (Vi, Ei) (i = 1, 2, 3) be defined as in Figure 5, that is

(a) V1 =V2 =V3 := {a1, b1, c1, d1}, E3 := {a1d1, a1d1, b1c1, b1c1}, E2 := E3 ∪ {a1b1, c1d1}, E1 := E2 ∪
∪ {a1c1, b1d1}. Let X := {a1, b1}, Y := {a1, d1}.

(b) V1 = V2 = V3 := {a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3}, E3 := {a2b2, b2c3, c3b3, b3c2, c2d2, d2a3,
a3d3, d3a2} ∪ {x3x1, x3x1 : x ∈ {a, b, c, d}}, E2 := E3 ∪ {a1b1, c1d1} ∪ {x1x2, x1x2, x2x3, x2x3 :
x ∈ {a, b, c, d}}, E1 := E2∪{a1c1, b1d1} and k3 = 1, k2 = 2, k1 = 3. Let X := {a1, a2, a3, b1, b2, b3},
Y := {a1, a2, a3, d1, d2, d3}.

We prove at the same time for (a) and (b) that the required orientations do not exist. Suppose that

they do exist. It is easy to check that ~G1 and ~G3 are Eulerian orientations of G1 and G3, whence, by
(1), f ~G1

(X) = 0 = f ~G1

(Y ) and f ~G3

(X) = 0. G2 is 2k-edge-connected and dG2
(Y ) = 2k, so f ~G2

(Y ) = 0.
Then f ~G1−~G2

(X) = f ~G1−~G3

(X) = f ~G1

(X)− f ~G3

(X) = 0 and f ~G1−~G2

(Y ) = f ~G1

(Y ) − f ~G2

(Y ) = 0. Note
that E(G1 −G2) = E1 −E2 = {a1c1, b1d1} and a1 ∈ X ∩ Y, c1 ∈ V − (X ∪ Y ), b1 ∈ X − Y, d1 ∈ Y −X,
a contradiction.

Regarding general simultaneous orientations, we may ask the following question:

Question 6. Given two graphs (neither edge-disjoint nor containing each other), is there a good char-
acterization for having simultaneous best-balanced orientations?

The next theorem and corollary show that this problem is NP -complete even for Eulerian graphs.

Theorem 7.1. Deciding whether two Eulerian graphs, G1 = (V1, E1) and G2 = (V2, E2) have Eulerian
orientations that agree on the common edges E1 ∩ E2, is NP -complete.
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Proof. The problem is clearly in NP . For the completeness we show a reduction from one-in-three

3sat (see [14], Problem LO4). For a given 3SAT formula, n denotes the number of variables, the clauses
are denoted by C1, C2 . . . , Cm, and Ji denotes the set of indices of the clauses that contain the variable xi

(we assume that every clause contains 3 different variables).
Construct first the graph G1 = (V1, E1) as follows. Each connected component Gi

1 = (V i
1 , Ei

1) of G1

corresponds to a clause Ci, namely V i
1 contains the vertices {Ci, C

′
i} and the 6 vertices {xi

j , x
i
j : xj or xj

occurs in Ci} and Ei
1 contains the edge CiC

′
i, the edges {xi

jx
i
j : xi

j ∈ V i
1 }, the edges {Cix

i
j , C

′
ix

i
j} if xj

occurs in Ci and the edges {Cix
i
j , C

′
ix

i
j} if xj occurs in Ci. Note that vertices corresponding to literals

are of degree-two and vertices corresponding to clauses are of degree four.
The graph G2 = (V2, E2) is constructed in such a way that each connected component of G2 is a

cycle of even length. One cycle contains C1, C
′
1, C2, C

′
2, . . . Cm, C′

m in this order. We also have cycles for
every variable: for any 1 ≤ i ≤ n there is a cycle on xj1

i , xj1
i , xj2

i , xj2
i , . . . , xji

i , xji

i in this order, where
{j1, j2, . . . , ji} is the set of the indices of the clauses that contain variable xi (or its negated).

First we claim that if there is a truth assignment such that in each clause exactly one literal is true

then the required Eulerian orientations exist. Orient first G2, it is enough to declare the orientation of
one edge in each cycle. Let C′

1C1 be oriented from C′
1 to C1, and for each i let the edge xj

i x
j
i (for any

j ∈ Ji) be oriented from the false value to the true value. Now G1 has a unique orientation that
extends the orientation of the common edges and that makes each vertex of degree two Eulerian. Since
each clause Ci contains exactly one literal of value true, this orientation is Eulerian.

On the other hand suppose that we have Eulerian orientations ~G1 and ~G2 that agree on the common
edges. If edge C1C

′
1 is oriented from C1 to C′

1 then reverse both Eulerian orientations. The Eulerian

orientation ~G2 first ensures that C′
iCi is a directed edge for all i. Second, it also ensures that for all i

either xj
ix

j
i is a directed edge for all j, or xj

ix
j
i is a directed edge for all j. Assign the value true to

variable xi iff xj
ix

j
i is a directed edge. We claim that this assignment makes true exactly one literal in

each clause. Indeed, from the three edges between Ci and the three literal-copies exactly one is directed
towards Ci, and exactly the corresponding literal has value true.

We remark that another construction can be made by adding some extra vertices, in which both
graphs are connected: add vertices yi and zi to graph Gi (for i = 1, 2), and connect them to one degree
two vertex of each component, then connect yi to zi if they have odd degree. To see that the above
reasoning goes through, observe that if both yiv and ziv is directed towards v then there is no Eulerian
orientation extending it.

Corollary 7.2. Deciding whether two graphs have simultaneous best-balanced orientations is NP-complete.

8 Feasible pairing defining a best-balanced orientation

Nash-Williams’ original idea was that every feasible pairing provides a best-balanced orientation. In fact
every feasible pairing provides lots of best-balanced orientations. A natural question is whether every
best-balanced orientation can be defined by a feasible pairing.

Question 7. For every best-balanced orientation ~G of G there exists a feasible pairing M and an orien-
tation ~M of M such that ~G + ~M is Eulerian.

Counter-example 7. Let G = (V, E) and ~G = (V, A) be defined as follows (see Figure 6):
V := {a, b, c, p, q, r, x, y, z}, E := {ap, aq, ar, bp, bq, br, cx, cy, cz, xp, py, yq, qz, zr, rx}, A := {ap, qa, ra,

bp, qb, rb, xc, yc, cz, px, py, yq, zq, zr, xr}. It is easy to check that ~G ∈ Ob(G).
We show that if M ∈ Pf (G), then ab ∈ M. Note that TG = {a, b, c, x, y, z}. Let X := {a, b, p, r, x},

Y := {a, b, p, q, y}, Z := {a, b, q, r, z}. Note that dG(W ) = 5 and R̂(W ) = 4 hence bG(W ) = 1 for
W ∈ {X, Y, Z}. Then, by (5) and (7), 3=bG(X) + bG(Y ) + bG(Z) ≥ dM (X) + dM (Y ) + dM (Z)≥dM (X ∩
Y ∩Z)+dM (X−(Y ∪Z))+dM (Y −(X∪Z))+dM (Z−(X∪Y )) = dM ({a, b})+dM (x)+dM (y)+dM (z) ≥
0 + 1 + 1 + 1 = 3, so dM ({a, b}) = 0 that is ab ∈M.

Then for every orientation ~M of any feasible pairing M of G either δ ~M (a) = 0 or δ ~M (b) = 0. Then,

since f ~G(a) = f ~G(b) = 1, ~G + ~M cannot be Eulerian.

The following Theorem 8.2 shows that the answer for Question 7 is affirmative for global edge-
connectivity. For the proof we need the following stronger version of Mader’s splitting-off theorem [21]
due to Frank [11].
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Figure 6: A best-balanced orientation which can not be defined with a feasible pairing

Theorem 8.1. Let ~H = (U +s, F ) be k-arc-connected in U. If δ ~H(s) − ̺ ~H(s) < ̺ ~H(s) < 2δ ~H(s) then

there exist rs, st ∈ F so that ~Hrt is k-arc-connected in U.

Theorem 8.2. Let G = (V, E) be a 2k-edge-connected graph and let ~G = (V, A) be a smooth k-arc-

connected orientation of G. Then there is a pairing M of G and an orientation ~M of M so that

dM (X) ≤ dG(X)− 2k ∀ ∅ 6= X ( V and (13)

~G + ~M is Eulerian. (14)

Proof. By induction on |A|.
Case 1 If there is s ∈ V with d(s) ≥ 2k + 2. Then, by (3) and Theorem 8.1, there exist rs, st ∈ A

so that ~Grt is k-arc-connected in V − s. It follows, by the assumption of Case 1 and (3), that ~Grt is

k-arc-connected. Note that TGrt
= TG. |A(~Grt)| < |A| so by induction there is a pairing M of Grt and

an orientation ~M of M so that (13) and (14) are satisfied for (Grt, M) and for (~Grt, ~M) and hence for

(G, M) and for (~G, ~M) and we are done.

Case 2 If there is s ∈ V with d(s) = 2k. This case can be handled in the same way as Case 1 but here
we have to make a complete splitting off at s.

Case 3 Otherwise, d(s) = 2k + 1 for all s ∈ V . Then TG = V. By a result of Mader [19], since there

is no vertex v with ̺~G(v) = δ~G(v), there exists uv ∈ A such that ~G′ := ~G − uv is k-arc-connected,

obviously u and v have in-degree and out-degree k in ~G′, so ~G′ is also smooth. As |A(~G′)| < |A|,

by induction there is a pairing M ′ on TG′ = TG − {u, v} and an orientation ~M ′ of M ′ so that (13)

and (14) are satisfied for (G′, M ′) and for (~G′, ~M ′). Let M := M ′ + uv and ~M := ~M ′ + vu. Then
~G + ~M = (~G′ + ~M ′) + uv + vu is Eulerian. Moreover, for all ∅ 6= X ( V either dM (X) = dM ′(X) and
dG(X) = dG′(X) or dM (X) = dM ′(X)+ 1 and dG(X) = dG′(X)+ 1 so (13) is satisfied for G and M.

9 The structure of feasible pairings

We call a feasible pairing M a feasible matching (in G), if for every edge uv of M , uv is also an edge
of G. A k-feasible matching is defined analogously for a positive integer k.

Theorem 9.1. Deciding whether a graph has a feasible matching is NP -complete, even for planar three-
regular graphs.
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Proof. We claim that a 2-connected 3-regular graph G = (V, E) has a feasible matching if and only if G
is Hamiltonian. Indeed, for a perfect matching M of G, the 2-regular graph G−M is Hamiltonian if and
only if G−M is 2-edge-connected that is if and only if dG−M (X) ≥ 2 for all ∅ 6= X ( V or equivalently
if M is feasible.

It is known that deciding whether a graph has a Hamiltonian cycle is NP -complete even for planar
2-connected 3-regular graphs [15].

Corollary 9.2. We are given a graph G and a weight on each pair of distinct odd-degree vertices. Finding
the minimum weight strong pairing is NP -hard, even for planar 3-regular graphs and for 0–1-valued
weighting.

We mention that the proof given here shows that the minimum weight feasible pairing problem and
the feasible matching problem are NP -hard even for the global case with k = 1 (i.e. it is NP -hard to
find a minimum weight 1-feasible pairing or to decide whether there is a 1-feasible matching in a given
graph).

10 Feasible pairing for connectivity functions

A set function b : 2V → R is called skew-submodular if for every X, Y ⊆ V, at least one of the following
two inequalities is satisfied:

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ), (15)

b(X) + b(Y ) ≥ b(X − Y ) + b(Y −X). (16)

A set function p is called skew-supermodular if −p is skew-submodular. We mention that, by [22],
R̂G is skew-supermodular and hence bG is skew-submodular. A set function b on V is called crossing
submodular if (15) is satisfied for every X, Y ⊆ V with X ∩ Y, X − Y, Y −X, V − (X ∪ Y ) 6= ∅. For a
set function b we define Tb = {v : b(v) is odd}.

Question 8. Let b : 2V → Z+
0 be a symmetric, skew-submodular function with b(∅) = 0 and b(X) ≡

|X ∩ Tb| mod 2. Then there exists a pairing M on Tb that satisfies

dM (X) ≤ b(X) ∀ X ⊆ V. (17)

Counter-example 8. Let b(X) be defined on V with |V | = 6 as follows: b(X) := 0 if X = ∅, or
X = V ; 1 if |X | is odd and 2 otherwise. It is easy to see that b satisfies all the conditions. Note that
Tb = V. For any pairing M on Tb, we may choose X ( V with dM (X) = 3 but then X violates (17).

Note that, by Theorem 3.1, the answer for Question 8 is affirmative for b(X) = bG(X).

The problem corresponding to the global case is the following open problem.

Question 9 (Open Problem). Let b : 2V → Z+
0 be a symmetric crossing submodular function with

b(∅) = 0 and b(X) ≡ |X ∩ Tb| mod 2. Then there exists a pairing M on Tb that satisfies (17).

If the answer to Question 9 was affirmative then it would imply the following theorem that can be
proved directly.

Theorem 10.1. Let G = (V, E) be an undirected graph. Let b : 2V → Z+
0 be a crossing submodular

function with b(X) + dG(X) even for every X ⊆ V . Then there exists an orientation ~G of G satisfying

f ~G(X) ≤ b(X) ∀ X ⊆ V. (18)

Proof. Let ~G = (V, A) be an arbitrary orientation of G. Let P := {z ∈ RA : 0 ≤ z(a) ≤ 1 ∀a ∈
A, δz

~G
(X) − ̺z

~G
(X) ≤ (b(X)− f ~G(X))/2 ∀X ⊆ V }. By the modularity of f ~G and by the assumptions,

(b(X) − f ~G(X))/2 is integral and crossing submodular. Then, by the Edmonds-Giles theorem [4], P is
an integral polyhedron. The vector 1

21 belongs to P because b is non-negative. Then P contains an

integral vector z. Let ~G′ be the orientation obtained from ~G by reversing the arcs a ∈ A(~G) for which
z(a) = 1. Then, since z is a 0−1 vector in P, f ~G′(X) = ̺~G′(X)− δ~G′(X) = (̺~G(X)−̺z

~G
(X)+ δz

~G
(X))−

(δ~G(X)− δz
~G
(X) + ̺z

~G
(X)) = f ~G(X) + 2(δz

~G
(X)− ̺z

~G
(X)) ≤ b(X) ∀X ⊆ V, and hence ~G′ is the desired

orientation.

Note that if G is 2k-edge-connected and b(X) = dG(X)− 2k for all ∅ 6= X ( V and b(∅) = b(V ) = 0,
then Theorem 10.1 is equivalent to Theorem 3.4. We remark that Theorem 10.1 also follows from a
theorem of Frank [7] on orientations covering a G-supermodular function.
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Question 10. Let d : 2V → Z+
0 be a symmetric function that satisfies d(∅) = 0 and for all X, Y ⊆ V

d(X) + d(Y ) + d(X △ Y ) = d(X ∩ Y ) + d(X ∪ Y ) + d(X − Y ) + d(Y −X), (19)

d(X) + d(Y )− d(X ∪ Y ) is even if X ∩ Y = ∅. (20)

Let R̂ : 2V → Z+
0 be an even valued, symmetric, skew-supermodular function. Suppose that R̂(X) ≤ d(X)

for all X ⊆ V. Then there exists a pairing M on Td that satisfies

dM (X) ≤ d(X)− R̂(X) ∀ X ⊆ V. (21)

Counter-example 10. Let V := {u, v, w, z}, G := (V, {uw, uz, vw, vz, wz}), H := (V, {uv}), d(X) :=
dG(X)−dH(X), R̂(X) := 2 if |X∩{w, z}| = 1, and 0 otherwise. Since for a proper subset X, dG(X) ≥ 1
and dH(X) ≤ 1, d(X) ≥ 0 ∀X ⊆ V. Clearly, d is integer valued and symmetric. dG and dH satisfy (19)
and (20), consequently d also satisfies them. It is easy to see that R̂ satisfies all the conditions. Note that
Td = V. Let M be an arbitrary pairing on Td. Let e be the edge of M incident to w. Let X := {u, w}
and let Y := {v, w}. Then e leaves either X or Y but d(X) − R̂(X) = 0 = d(Y ) − R̂(Y ) so either X or
Y violates (21).

Note that, by Theorem 3.1, the answer for Question 10 is affirmative for d(X) = dG(X) and R̂(X) =
R̂G(X).

Question 11 (Open Problem). Let G = (V, E) be a graph and R̂ : 2V → Z+
0 an even valued, symmetric,

skew-supermodular function. Suppose that R̂(X) ≤ dG(X) ∀X ⊆ V. Then there exists a pairing M on
TG that satisfies

dM (X) ≤ dG(X)− R̂(X) ∀ X ⊆ V. (22)

Question 11 is an open problem. If R̂ satisfies R̂(X ∪ Y ) ≤ max{R̂(X), R̂(Y )} for all X, Y ⊆ V then
R̂(X) = max{r(x, y) : x ∈ X, y ∈ V −X} for some symmetric, even valued r : V × V → Z+

0 and hence,
by Theorem 3.1, such a pairing exists.

11 Matroid property

If ~G is an orientation of G then let T +
~G

:= {v ∈ V (G) : ̺~G(v) > δ~G(v)}. Note that if ~G is smooth, then

|T +
~G
| = |TG|/2.
The following strict reorientation property was proved for k-arc-connected orientations by Frank in

[8]: if ~G1 and ~G2 are k-arc-connected orientations of a graph G = (V, E) and ̺~G1

(u) < ̺~G2

(u) at a vertex

u ∈ V then there exists a directed path in ~G1 from u to some vertex v ∈ V with ̺~G1

(v) > ̺~G2

(v) such that

reversing this path in ~G1 results in a k-arc-connected digraph. This result has interesting consequences,
for example when restricted to smooth k-arc-connected orientations (which is not destroyed by such a
reorientation) then it is equivalent with the following statement: for a 2k-edge-connected graph G the

family T := {T +
~G

: ~G is a smooth k-arc-connected orientation of G} is the base family of a matroid.
Another consequence of the strict reorientation property is that k-arc-connected orientations of a graph
satisfy the so called linkage property. In this section we investigate whether any of the above properties
hold for well-balanced orientations.

First we investigate the matroid property:

Question 12. T := {T +
~G

: ~G ∈ Ob(G)} is the base family of a matroid.

Counter-example 12. Let G, ~G, X, Y and Z be as in Figure 6. Then
←−
G ∈ Ob(G) hence B1 :=

{a, b, c} and B2 := {x, y, z} are in T . Suppose that T is the base family of a matroid. Then for c ∈
B1 − B2 there must exist u ∈ B2 − B1 such that B1 − {c} + {u} ∈ T , by symmetry we may suppose

that {a, b, x} ∈ T . Then there exists ~G′ ∈ Ob(G) so that T +
~G′

= {a, b, x}. Whence, by (10) and (1),

1=bG(X)≥f ~G′(X)=
∑

u∈X f ~G′(u)=3, a contradiction.

We can see from the previous proof that the reorientation property in the strict sense as introduced
above is not true for well-balanced orientations. Furthermore, a weaker reorientation property was shown
not to hold in [1], namely the following statement was disproved there: if ~G1, ~G2 ∈ Ow(G) such that
there is an x ∈ V (G) with ̺~G1

(x) 6= ̺~G2

(x) then there exist u, v ∈ V (G) with ̺~G1

(u) < ̺~G2

(u) and

̺~G1

(v) > ̺~G2

(v) such that reversing a directed path in ~G1 from u to v results in another well-balanced
orientation. We formulate here an even weaker reorientation property and pose the following question:
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Question 13 (Open Problem). Let ~Ga, ~Gb ∈ Ow(G). Then there exist ~G0 = ~Ga, ~G1, ..., ~Gl = ~Gb such that
~Gk ∈ Ow(G) and ~Gk is obtained from ~Gk−1 by reversing a directed path or a directed cycle (1 ≤ k ≤ l).

This is an open problem, but it is known that, by Frank [8], the answer for Question 13 is affirmative
for the case of global edge-connectivity.

Now we investigate whether the linkage property holds for well-balanced orientations.

Question 14. Let l, u : V → Z+
0 such that l(v) ≤ u(v) for all v ∈ V . Then there exists ~G ∈ Ow(G) such

that l(v) ≤ ̺~G(v) ≤ u(v) ∀v ∈ V if and only if there exist ~G1, ~G2 ∈ Ow(G) such that l(v) ≤ ̺~G1(v) ∀v ∈ V
and ̺~G2(v) ≤ u(v) ∀v ∈ V.

Counter-example 14. Let G, ~G1 := ~G, ~G2 :=
←−
G ∈ Ow(G), X, Y and Z as in Figure 6. Let

the functions l and u be defined as follows: l(a) = l(b) =: 2 and l(t) := ⌊dG(t)
2 ⌋ ∀t ∈ V − a − b,

u(c) := 1 and u(t) := ⌈dG(t)
2 ⌉ ∀t ∈ V − c. Then l(v) ≤ ̺~G1(v) ∀v ∈ V and ̺~G2(v) ≤ u(v) ∀v ∈ V. Let

~G3 ∈ Ow(G) such that l(v) ≤ ̺~G3(v) ∀v ∈ V. Recall that bG(X) = bG(Y ) = bG(Z) = 1. Then, by Claim
3.5, 1 = bG(X) ≥ f ~G3(X) = f ~G3(x) + f ~G3(p) + f ~G3(a) + f ~G3(b) + f ~G3(r) = f ~G3(x) + 0 + 1 + 1 + 0,
so f ~G3(x) ≤ −1 and hence f ~G3(x) = −1. Similarly, f ~G3(y) = f ~G3(z) = −1. Then, since f ~G3(V ) = 0,
f ~G3(c) = 1, that is ̺~G3(c) = 2 > 1 = u(c). Thus there is no well-balanced orientation of G whose
in-degree function satisfies both the lower and upper bounds.

Question 14 is valid for the global case by Frank [7]. This follows from the facts that the in-degree vec-
tors of k-arc-connected orientations form a base-polyhedron and for such polyhedra the linkage property
holds. As mentioned above, this also follows easily from the strict reorientation property.
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