
Edge-connectivity of permutation hypergraphs

Neil Jami∗ Zoltán Szigeti†

July 26, 2011

Abstract

In this note we provide a generalization of a result of Goddard, Raines and Slater [4] on
edge-connectivity of permutation graphs for hypergraphs. A permutation hypergraph Gπ

is obtained from a hypergraph G by taking two disjoint copies of G and by adding a perfect
matching between them. The main tool in the proof of the graph result was the theorem
on partition constrained splitting off preserving k-edge-connectivity due to Bang-Jensen,
Gabow, Jordán and Szigeti [1]. Recently, this splitting off theorem was extended for
hypergraphs by Bernáth, Grappe and Szigeti [2]. This extension made it possible to find
a characterization of hypergraphs for which there exists a k-edge-connected permutation
hypergraph.

1 Definitions

Let G = (V,E) be a graph. For a vertex set X of V , the set of edges between X and V −X is
called a cut of G. The size of this cut of G is denoted by dG(X). For disjoint subsets X and
Y of V , we denote by dG(X, Y ) the number of edges between X and Y. The minimum size
of a cut of G is denoted by λ(G). The graph G is called k-edge-connected if λ(G) ≥ k.
The minimum degree δ(G) of G is defined as min{dG(v) : v ∈ V }. A graph H = (V +s,E)
is called k-edge-connected in V if each cut, except eventually the one defined by s and V ,
contains at least k edges. The set of neighbors of the vertex s, that is the vertices adjacent
to s, is denoted by NH(s). The complete graph on n vertices is denoted by Kn. By taking
two disjoint copies of Kn we get the graph 2Kn.

Let G = (V, E) be a hypergraph, where V is a finite set and E is a set of non-empty
subsets of V , called hyperedges. A hyperedge of cardinality 2 is a graph edge. For a
vertex set X of V , the set of hyperedges intersecting X and V − X is called a cut and is
denoted by δG(X). The size of a cut of G is denoted by dG(X). For disjoint subsets X

and Y of V , we denote by dG(X, Y ) the number of hyperedges intersecting both X and Y.

The hypergraph G is called k-edge-connected if each cut contains at least k hyperedges. A
1-edge-connected hypergraph is called connected. A maximal connected subhypergraph of
G is called a connected component of G. Let ωk(G) be defined as the maximum number
of connected components of G − F minus 1, where F is a set of k − 1 hyperedges in E . A
hypergraph H = (V + s, E) is called k-edge-connected in V if each cut, except eventually
the one defined by s and V , contains at least k hyperedges. The set of vertices adjacent to
the vertex s in H is denoted by NH(s).
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2 Permutation graphs

Given a graph G on n vertices and a permutation π of [n], Chartrand and Harary [3] defined
the permutation graph Gπ as follows: we duplicate the graph G and we add a perfect
matching defined by the permutation π between the two copies of the graph, in other words
:

1. we take 2 disjoint copies G1 = (V1, E1) and G2 = (V2, E2) of G,

2. for every vertex vi ∈ V1, we add an edge between vi of G1 and vπ(i) of G2, this edge set
is denoted by E3,

3. Gπ = (V1 ∪ V2, E1 ∪ E2 ∪ E3).

Since, for any graph, the minimum size of a cut is less than or equal to the minimum
degree, we have

λ(Gπ) ≤ δ(Gπ) = δ(G) + 1.

For simple graphs, the following result answers when this upper bound can be achieved.

Theorem 1 [Goddard, Raines, Slater [4]] Let G be a simple graph without isolated vertices.
Then there exists a permutation π such that λ(Gπ) = δ(G) + 1 if and only if G 6= 2Kk for
some odd k.

The tool to prove this result is presented in the next section.

3 k-admissible P-allowed complete splitting off in graphs

Let H = (V + s,E) be a graph with a specified vertex s, P = {P1, P2} a partition of V

and k ≥ 2 an integer. Splitting off at s means taking two edges {su, sv} incident to s and
replacing them by a new edge uv. Complete splitting off at s is a sequence of splitting
off isolating s. A complete splitting off is called k-admissible if the new graph without the
isolated vertex s is k-edge-connected and it is P-allowed if the new edges are between P1

and P2.

A partition {A1, . . . , A4} of V is called a C4-obstacle of H if there exists j ∈ {1, 2} such
that

dH(Ai) = k for i = 1, . . . , 4, (1)

dH(A1, A3) = dH(A2, A4) = 0, (2)

k is odd, (3)

dH(s, P1) = dH(s, P2), (4)

(Aj ∪ Aj+2) ∩ NH(s) = P1 ∩ NH(s). (5)

The following theorem is a special case of a general result on partition constrained k-
edge-connected complete splitting off in graphs.

Theorem 2 [Bang-Jensen, Gabow, Jordán, Szigeti [1]] Let H = (V + s,E) be a graph,
P = {P1, P2} a partition of V and k ≥ 2 an integer. Then there exists a k-admissible
P-allowed complete splitting off at s if and only if

H is k-edge-connected in V, (6)

dH(s, P1) = dH(s, P2), (7)

H contains no C4-obstacle. (8)
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4 Sketch of the proof of Theorem 1

We only prove the sufficiency. The main idea is the following : instead of finding the required
permutation in one step we will find it in two steps. First we make an extension and then we
apply splitting off. The extended graph H is obtained from G by taking two disjoint copies G1

and G2 of G, adding a new vertex s and connecting it to every other vertex. Since G is simple,
it is easy to see that H is k-edge-connected, where k = δ(G) + 1. Let P := {V (G1), V (G2)}.

Theorem 1 follows from the equivalence of the following conditions:

(a) there exists a permutation π such that λ(Gπ) = δ(G) + 1,

(b) there exists a k-admissible P-allowed complete splitting off at s in H,

(c) H contains no C4-obstacle,

(d) G 6= 2Kk if k is odd.

It is easy to verify that (a) and (b) are equivalent. Theorem 2 implies that (b) and (c)
are equivalent. An easy calculation shows that (c) and (d) are equivalent.

5 Permutation hypergraphs

We define permutation hypergraphs as a natural generalization of permutation graphs. Given
a hypergraph G on n vertices and a permutation π of [n], we define the permutation
hypergraph Gπ as follows:

1. we take 2 disjoint copies G1 = (V1, E1) and G2 = (V2, E2) of G,

2. for every vertex vi ∈ V1, we add an edge between vi of G1 and vπ(i) of G2, this edge set
is denoted by E3,

3. Gπ = (V1 ∪ V2, E1 ∪ E2 ∪ E3).

The main result of this paper characterizes hypergraphs that admit a k-edge-connected
permutation hypergraph.

Theorem 3 Let G = (V, E) be a hypergraph and k ≥ 2 an integer. Then there exists a
permutation π such that Gπ is k-edge-connected if and only if

dG(X) ≥ k − |X| for all ∅ 6= X ⊆ V, (9)

G is not composed of two connected components, both of k vertices, k being odd.(10)

Theorem 3 will be proved in Section 7 using the result presented in Section 6.

6 k-admissible P-allowed complete splitting off in hypergraphs

Let H = (V + s, E) be a hypergraph with a specified vertex s, P = {P1, P2} a partition of
V and k ≥ 1 an integer. A partition {A1, . . . , A4} of V is called a C4-obstacle of H if there
exists j ∈ {1, 2} such that

dH(Ai) = k, for i = 1, . . . , 4, (11)

δH(A1) ∩ δH(A3) = δH(A2) ∩ δH(A4), (12)

k − |δH(A1) ∩ δH(A3)| 6= 1 is odd, (13)

dH(s, P1) = dH(s, P2), (14)

(Aj ∪ Aj+2) ∩ NH(s) = P1 ∩ NH(s). (15)
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The following theorem generalizes Theorem 2 and is a special case of a general result on
partition constrained k-edge-connected complete splitting off in hypergraphs.

Theorem 4 [Bernáth, Grappe, Szigeti [2]] Let H = (V + s, E) be a hypergraph, where s is
incident only to graph edges, P = {P1, P2} a partition of V and k ≥ 1 an integer. Then there
exists a k-admissible P-allowed complete splitting off at s if and only if

H is k-edge-connected in V, (16)

dH(s) ≥ 2ωk(H− s), (17)

dH(s, P1) = dH(s, P2), (18)

H contains no C4-obstacle. (19)

7 Proof of Theorem 3

7.1 Proof of the necessity

Suppose that there exists a permutation π such that Gπ is k-edge-connected. We prove that
(9) and (10) are satisfied.

(9) Let X be an arbitrary non-empty subset of V and X1 the corresponding vertex set
in V1. Then, by the k-edge-connectivity of Gπ, k ≤ dGπ

(X1) = dG(X) + |X|, and (9)
follows.

(10) Suppose that (10) is not satisfied that is G has exactly two connected components
on vertex sets V 1 and V 2 and |V 1| = |V 2| = k is odd. Then the vertex set of Gπ is
partitioned into 4 sets V 1

1 , V 2
1 , V 1

2 , V 2
2 of size k, where {V 1

i , V 2
i } corresponds to {V 1, V 2}

for i = 1, 2. Since G[V 1] and G[V 2] are connected components of G, no hyperedge
exists between V 1

i and V 2
i in Gπ for i = 1, 2. Then, by dGπ

(V 1
1 , V 1

2 ) + dGπ
(V 1

1 , V 2
2 ) =

dGπ
(V 1

1 ) = |V 1
1 | = k and k is odd, one of them, say dGπ

(V 1
1 , V 1

2 ), is larger than k
2 .

Since only graph edges exist between V 1
1 and V 1

2 in Gπ and Gπ is k-edge-connected, we
have k ≤ dGπ

(V 1
1 ∪ V 1

2 ) = dGπ
(V 1

1 ) + dGπ
(V 1

2 ) − 2dGπ
(V 1

1 , V 1
2 ) < k + k − 2k

2 = k. This
contradiction shows that (10) is satisfied.

7.2 Proof of the sufficiency

Suppose that the conditions (9) and (10) are satisfied for the hypergraph G and for the integer
k. As for the graphic case, we extend first the hypergraph and then we apply splitting off. The
extended hypergraph H is obtained from G by taking two disjoint copies G1 = (V1, E1) and
G2 = (V2, E2) of G, adding a new vertex s and connecting it by the edge set E′ to all the other
vertices. Then H = (V1∪V2∪{s}, E1∪E2∪E′). Note that for all X ⊆ V1∪V2, dH(s,X) = |X|.
We define the partition P of the vertex set of H− s to be {V1, V2}. We show that there exists
a k-admissible P-allowed complete splitting off at s. After executing this complete splitting
off at s, we get the permutation hypergraph Gπ that is k-edge-connected and the theorem is
proved. By Theorem 4, we must verify that the conditions (16)–(19) are satisfied for H,P
and k.

(16) Let ∅ 6= X ⊂ V1∪V2. Let X1 := X ∩V1 and X2 := X ∩V2. Then one of them, say X1, is
not empty. Let X ′ ⊆ V be the vertex set of G that corresponds to X1 of G1. Then, by
the construction of H and (9) applied for X ′, dH(X) = dH(X1) + dH(X2) ≥ dH(X1) =
dG1

(X1) + |X1| = dG(X ′) + |X ′| ≥ k, and (16) follows.
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(17) Let F be a set of k−1 hyperedges in E such that the number m of connected components
of H′ := H− s −F minus 1 to be ωk(H− s). We distinguish two cases :

Case 1. Suppose first that H′ contains no isolated vertices. Then each connected
component K ′

i of H′ contains at least 2 vertices and hence ωk(H − s) + 1 = m =
1
2

∑m
i=1 2 ≤ 1

2

∑m
i=1 |V (K ′

i)| = 1
2 |V (H′)| = 1

2dH(s).

Case 2. Suppose next that H′ contains some isolated vertices, let v be one of them.
Then, by |F| = k− 1 and by (9) applied for v, 0 = dH′(v) ≥ dG(v)− |F| = dG(v)− (k−
1) ≥ 0. Hence we have equality everywhere, that is all the hyperedges of F contain the
vertex v. Thus all the hyperedges of F belong to the same connected component of
H − s, say K1

1 of G1. Note that, by the above argument, all the isolated vertices of H′

belong to K1
1 . Let K1

2 , . . . ,K1
t be the other connected components of G1. Note that G2

has also t connected components. By 2 ≤ |V (K1
i )| for i = 2, . . . , t, ωk(H−s) = m−1 ≤

2t − 2 + |V (K1
1 )| ≤

∑t
i=1 |V (K1

i )| = |V1| = 1
2dH(s).

In both cases (17) is satisfied.

(18) dH(s, P1) = |V1| = |V2| = dH(s, P2) and (18) is satisfied.

(19) Let us suppose that a C4-obstacle exists in H, let {A1, . . . , A4} be the partition of
V1 ∪ V2 satisfying (11)–(15) with say j = 1. By (15) and P = {V1, V2}, V1 = A1 ∪A3 et
V2 = A2∪A4. By (12), all hyperedges intersecting both A1 and A3 also intersect A2 and
A4. By construction, no such hyperedge exists, and then by (13), k 6= 1 is odd. It also
follows by (11), that |Ai| = dH(Ai) = k. By (9), all connected components of G contains
at least k vertices, so G has exactly two connected components, G[A1] and G[A3], both
of k vertices and k is odd, that is (10) is violated. This contradiction finishes the proof
of Theorem 3.

8 Application

We show in this section that Theorem 3 is a generalization of Theorem 1.

Let G be a graph satisfying the conditions of Theorem 1. Let us consider G as a hyper-
graph and let k := δ(G)+1. Since G contains no isolated vertices, k = δ(G)+1 ≥ 2. Let X be
an arbitrary non-empty vertex set in V. Since G is simple, for any vertex v ∈ X, dG(v,X−v) ≤
|X| − 1. Then dG(X) ≥ dG(v, V − X) = dG(v) − dG(v,X − v) ≥ δ(G) − (|X| − 1) = k − |X|,
so (9) is satisfied. Suppose that (10) is not satisfied, that is G has exactly two connected
components, both of k vertices and k is odd. Then, since the graph is simple, each vertex has
degree at most k−1. But k = δ(G)+1, so each vertex has degree at least k−1. It follows that
G = 2Kk and k is odd. This contradiction shows that G satisfies all the conditions of The-
orem 3, so by this theorem, there exists a permutation π such that Gπ is k-edge-connected,
hence δ(G) + 1 = k ≤ λ(Gπ) ≤ δ(G) + 1 and Theorem 1 is proved.
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