Edge-connectivity of permutation hypergraphs

Neil Jami^{*}

Zoltán Szigeti[†]

July 26, 2011

Abstract

In this note we provide a generalization of a result of Goddard, Raines and Slater [4] on edge-connectivity of permutation graphs for hypergraphs. A permutation hypergraph \mathcal{G}_{π} is obtained from a hypergraph \mathcal{G} by taking two disjoint copies of \mathcal{G} and by adding a perfect matching between them. The main tool in the proof of the graph result was the theorem on partition constrained splitting off preserving k-edge-connectivity due to Bang-Jensen, Gabow, Jordán and Szigeti [1]. Recently, this splitting off theorem was extended for hypergraphs by Bernáth, Grappe and Szigeti [2]. This extension made it possible to find a characterization of hypergraphs for which there exists a k-edge-connected permutation hypergraph.

1 Definitions

Let G = (V, E) be a graph. For a vertex set X of V, the set of edges between X and V - X is called a **cut** of G. The size of this cut of G is denoted by $d_G(X)$. For disjoint subsets X and Y of V, we denote by $d_G(X, Y)$ the number of edges between X and Y. The minimum size of a cut of G is denoted by $\lambda(G)$. The graph G is called k-edge-connected if $\lambda(G) \ge k$. The **minimum degree** $\delta(G)$ of G is defined as $\min\{d_G(v) : v \in V\}$. A graph H = (V + s, E)is called k-edge-connected in V if each cut, except eventually the one defined by s and V, contains at least k edges. The set of neighbors of the vertex s, that is the vertices adjacent to s, is denoted by $N_H(s)$. The complete graph on n vertices is denoted by K_n . By taking two disjoint copies of K_n we get the graph $2K_n$.

Let $\mathcal{G} = (V, \mathcal{E})$ be a hypergraph, where V is a finite set and \mathcal{E} is a set of non-empty subsets of V, called hyperedges. A hyperedge of cardinality 2 is a graph edge. For a vertex set X of V, the set of hyperedges intersecting X and V - X is called a **cut** and is denoted by $\delta_{\mathcal{G}}(X)$. The size of a cut of \mathcal{G} is denoted by $d_{\mathcal{G}}(X)$. For disjoint subsets X and Y of V, we denote by $d_{\mathcal{G}}(X, Y)$ the number of hyperedges intersecting both X and Y. The hypergraph \mathcal{G} is called **k**-edge-connected if each cut contains at least k hyperedges. A 1-edge-connected hypergraph is called **connected**. A maximal connected subhypergraph of \mathcal{G} is called a **connected component** of \mathcal{G} . Let $\omega_k(\mathcal{G})$ be defined as the maximum number of connected components of $\mathcal{G} - \mathcal{F}$ minus 1, where \mathcal{F} is a set of k - 1 hyperedges in \mathcal{E} . A hypergraph $\mathcal{H} = (V + s, \mathcal{E})$ is called **k-edge-connected in** V if each cut, except eventually the one defined by s and V, contains at least k hyperedges. The set of vertices adjacent to the vertex s in \mathcal{H} is denoted by $N_{\mathcal{H}}(s)$.

^{*}Ensimag, Grenoble Institute of Technology, 681, rue de la Passerelle, Domaine Universitaire, Saint Martin d'Hères, France, 38402

[†]Laboratoire G-SCOP, CNRS, Grenoble INP, UJF, 46, Avenue Félix Viallet, Grenoble, France, 38000.

2 Permutation graphs

Given a graph G on n vertices and a permutation π of [n], Chartrand and Harary [3] defined the **permutation graph** G_{π} as follows: we duplicate the graph G and we add a perfect matching defined by the permutation π between the two copies of the graph, in other words :

- 1. we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G,
- 2. for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2 , this edge set is denoted by E_3 ,
- 3. $G_{\pi} = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3).$

Since, for any graph, the minimum size of a cut is less than or equal to the minimum degree, we have

$$\lambda(G_{\pi}) \le \delta(G_{\pi}) = \delta(G) + 1.$$

For simple graphs, the following result answers when this upper bound can be achieved.

Theorem 1 [Goddard, Raines, Slater [4]] Let G be a simple graph without isolated vertices. Then there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

The tool to prove this result is presented in the next section.

3 k-admissible \mathcal{P} -allowed complete splitting off in graphs

Let H = (V + s, E) be a graph with a specified vertex s, $\mathcal{P} = \{P_1, P_2\}$ a partition of Vand $k \geq 2$ an integer. Splitting off at s means taking two edges $\{su, sv\}$ incident to s and replacing them by a new edge uv. Complete splitting off at s is a sequence of splitting off isolating s. A complete splitting off is called k-admissible if the new graph without the isolated vertex s is k-edge-connected and it is \mathcal{P} -allowed if the new edges are between P_1 and P_2 .

A partition $\{A_1, \ldots, A_4\}$ of V is called a C_4 -obstacle of H if there exists $j \in \{1, 2\}$ such that

$$d_H(A_i) = k \text{ for } i = 1, \dots, 4,$$
 (1)

$$d_H(A_1, A_3) = d_H(A_2, A_4) = 0,$$
(2)

$$k ext{ is odd},$$
 (3)

 $d_H(s, P_1) = d_H(s, P_2), (4)$

$$(A_{j} \cup A_{j+2}) \cap N_{H}(s) = P_{1} \cap N_{H}(s).$$
(5)

The following theorem is a special case of a general result on partition constrained k-edge-connected complete splitting off in graphs.

Theorem 2 [Bang-Jensen, Gabow, Jordán, Szigeti [1]] Let H = (V + s, E) be a graph, $\mathcal{P} = \{P_1, P_2\}$ a partition of V and $k \geq 2$ an integer. Then there exists a k-admissible \mathcal{P} -allowed complete splitting off at s if and only if

$$H \text{ is } k\text{-edge-connected in } V, \tag{6}$$

$$d_H(s, P_1) = d_H(s, P_2), (7)$$

 $H \ contains \ no \ C_4 \text{-}obstacle. \tag{8}$

4 Sketch of the proof of Theorem 1

We only prove the sufficiency. The main idea is the following : instead of finding the required permutation in one step we will find it in two steps. First we make an extension and then we apply splitting off. The extended graph H is obtained from G by taking two disjoint copies G_1 and G_2 of G, adding a new vertex s and connecting it to every other vertex. Since G is simple, it is easy to see that H is k-edge-connected, where $k = \delta(G) + 1$. Let $\mathcal{P} := \{V(G_1), V(G_2)\}$. Theorem 1 follows from the equivalence of the following conditions:

(a) there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$,

- (b) there exists a k-admissible \mathcal{P} -allowed complete splitting off at s in H,
- (c) H contains no C_4 -obstacle,
- (d) $G \neq 2K_k$ if k is odd.

It is easy to verify that (a) and (b) are equivalent. Theorem 2 implies that (b) and (c) are equivalent. An easy calculation shows that (c) and (d) are equivalent.

5 Permutation hypergraphs

We define permutation hypergraphs as a natural generalization of permutation graphs. Given a hypergraph \mathcal{G} on n vertices and a permutation π of [n], we define the **permutation** hypergraph \mathcal{G}_{π} as follows:

- 1. we take 2 disjoint copies $\mathcal{G}_1 = (V_1, \mathcal{E}_1)$ and $\mathcal{G}_2 = (V_2, \mathcal{E}_2)$ of \mathcal{G} ,
- 2. for every vertex $v_i \in V_1$, we add an edge between v_i of \mathcal{G}_1 and $v_{\pi(i)}$ of \mathcal{G}_2 , this edge set is denoted by E_3 ,
- 3. $\mathcal{G}_{\pi} = (V_1 \cup V_2, \mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3).$

The main result of this paper characterizes hypergraphs that admit a k-edge-connected permutation hypergraph.

Theorem 3 Let $\mathcal{G} = (V, \mathcal{E})$ be a hypergraph and $k \geq 2$ an integer. Then there exists a permutation π such that \mathcal{G}_{π} is k-edge-connected if and only if

$$d_{\mathcal{G}}(X) \ge k - |X| \text{ for all } \emptyset \neq X \subseteq V, \tag{9}$$

 \mathcal{G} is not composed of two connected components, both of k vertices, k being odd.(10)

Theorem 3 will be proved in Section 7 using the result presented in Section 6.

6 k-admissible \mathcal{P} -allowed complete splitting off in hypergraphs

Let $\mathcal{H} = (V + s, \mathcal{E})$ be a hypergraph with a specified vertex $s, \mathcal{P} = \{P_1, P_2\}$ a partition of V and $k \ge 1$ an integer. A partition $\{A_1, \ldots, A_4\}$ of V is called a \mathcal{C}_4 -obstacle of \mathcal{H} if there exists $j \in \{1, 2\}$ such that

$$d_{\mathcal{H}}(A_i) = k, \text{ for } i = 1, \dots, 4,$$
 (11)

$$\delta_{\mathcal{H}}(A_1) \cap \delta_{\mathcal{H}}(A_3) = \delta_{\mathcal{H}}(A_2) \cap \delta_{\mathcal{H}}(A_4), \tag{12}$$

$$k - |\delta_{\mathcal{H}}(A_1) \cap \delta_{\mathcal{H}}(A_3)| \neq 1 \text{ is odd}, \tag{13}$$

$$d_{\mathcal{H}}(s, P_1) = d_{\mathcal{H}}(s, P_2),\tag{14}$$

$$(A_j \cup A_{j+2}) \cap N_{\mathcal{H}}(s) = P_1 \cap N_{\mathcal{H}}(s).$$

$$(15)$$

The following theorem generalizes Theorem 2 and is a special case of a general result on partition constrained k-edge-connected complete splitting off in hypergraphs.

Theorem 4 [Bernáth, Grappe, Szigeti [2]] Let $\mathcal{H} = (V + s, \mathcal{E})$ be a hypergraph, where s is incident only to graph edges, $\mathcal{P} = \{P_1, P_2\}$ a partition of V and $k \ge 1$ an integer. Then there exists a k-admissible \mathcal{P} -allowed complete splitting off at s if and only if

$$\mathcal{H} \text{ is } k\text{-edge-connected in } V,$$
 (16)

$$d_{\mathcal{H}}(s) \ge 2\omega_k(\mathcal{H} - s), \tag{17}$$

$$d_{\mathcal{H}}(s, P_1) = d_{\mathcal{H}}(s, P_2), \tag{18}$$

$$\mathcal{H}$$
 contains no \mathcal{C}_4 -obstacle. (19)

7 Proof of Theorem 3

7.1 Proof of the necessity

Suppose that there exists a permutation π such that \mathcal{G}_{π} is k-edge-connected. We prove that (9) and (10) are satisfied.

- (9) Let X be an arbitrary non-empty subset of V and X_1 the corresponding vertex set in V_1 . Then, by the k-edge-connectivity of \mathcal{G}_{π} , $k \leq d_{\mathcal{G}_{\pi}}(X_1) = d_{\mathcal{G}}(X) + |X|$, and (9) follows.
- (10) Suppose that (10) is not satisfied that is \mathcal{G} has exactly two connected components on vertex sets V^1 and V^2 and $|V^1| = |V^2| = k$ is odd. Then the vertex set of \mathcal{G}_{π} is partitioned into 4 sets $V_1^1, V_1^2, V_2^1, V_2^2$ of size k, where $\{V_i^1, V_i^2\}$ corresponds to $\{V^1, V^2\}$ for i = 1, 2. Since $\mathcal{G}[V^1]$ and $\mathcal{G}[V^2]$ are connected components of \mathcal{G} , no hyperedge exists between V_i^1 and V_i^2 in \mathcal{G}_{π} for i = 1, 2. Then, by $d_{\mathcal{G}_{\pi}}(V_1^1, V_2^1) + d_{\mathcal{G}_{\pi}}(V_1^1, V_2^2) =$ $d_{\mathcal{G}_{\pi}}(V_1^1) = |V_1^1| = k$ and k is odd, one of them, say $d_{\mathcal{G}_{\pi}}(V_1^1, V_2^1)$, is larger than $\frac{k}{2}$. Since only graph edges exist between V_1^1 and V_2^1 in \mathcal{G}_{π} and \mathcal{G}_{π} is k-edge-connected, we have $k \leq d_{\mathcal{G}_{\pi}}(V_1^1 \cup V_2^1) = d_{\mathcal{G}_{\pi}}(V_1^1) + d_{\mathcal{G}_{\pi}}(V_2^1) - 2d_{\mathcal{G}_{\pi}}(V_1^1, V_2^1) < k + k - 2\frac{k}{2} = k$. This contradiction shows that (10) is satisfied.

7.2 Proof of the sufficiency

Suppose that the conditions (9) and (10) are satisfied for the hypergraph \mathcal{G} and for the integer k. As for the graphic case, we extend first the hypergraph and then we apply splitting off. The extended hypergraph \mathcal{H} is obtained from \mathcal{G} by taking two disjoint copies $\mathcal{G}_1 = (V_1, \mathcal{E}_1)$ and $\mathcal{G}_2 = (V_2, \mathcal{E}_2)$ of \mathcal{G} , adding a new vertex s and connecting it by the edge set E' to all the other vertices. Then $\mathcal{H} = (V_1 \cup V_2 \cup \{s\}, \mathcal{E}_1 \cup \mathcal{E}_2 \cup E')$. Note that for all $X \subseteq V_1 \cup V_2, d_{\mathcal{H}}(s, X) = |X|$. We define the partition \mathcal{P} of the vertex set of $\mathcal{H} - s$ to be $\{V_1, V_2\}$. We show that there exists a k-admissible \mathcal{P} -allowed complete splitting off at s. After executing this complete splitting off at s, we get the permutation hypergraph \mathcal{G}_{π} that is k-edge-connected and the theorem is proved. By Theorem 4, we must verify that the conditions (16)–(19) are satisfied for \mathcal{H}, \mathcal{P} and k.

(16) Let $\emptyset \neq X \subset V_1 \cup V_2$. Let $X_1 := X \cap V_1$ and $X_2 := X \cap V_2$. Then one of them, say X_1 , is not empty. Let $X' \subseteq V$ be the vertex set of \mathcal{G} that corresponds to X_1 of \mathcal{G}_1 . Then, by the construction of \mathcal{H} and (9) applied for X', $d_{\mathcal{H}}(X) = d_{\mathcal{H}}(X_1) + d_{\mathcal{H}}(X_2) \geq d_{\mathcal{H}}(X_1) = d_{\mathcal{G}_1}(X_1) + |X_1| = d_{\mathcal{G}}(X') + |X'| \geq k$, and (16) follows. (17) Let \mathcal{F} be a set of k-1 hyperedges in \mathcal{E} such that the number m of connected components of $\mathcal{H}' := \mathcal{H} - s - \mathcal{F}$ minus 1 to be $\omega_k(\mathcal{H} - s)$. We distinguish two cases :

Case 1. Suppose first that \mathcal{H}' contains no isolated vertices. Then each connected component K'_i of \mathcal{H}' contains at least 2 vertices and hence $\omega_k(\mathcal{H} - s) + 1 = m = \frac{1}{2} \sum_{i=1}^m 2 \leq \frac{1}{2} \sum_{i=1}^m |V(K'_i)| = \frac{1}{2} |V(\mathcal{H}')| = \frac{1}{2} d_{\mathcal{H}}(s).$

Case 2. Suppose next that \mathcal{H}' contains some isolated vertices, let v be one of them. Then, by $|\mathcal{F}| = k - 1$ and by (9) applied for $v, 0 = d_{\mathcal{H}'}(v) \ge d_{\mathcal{G}}(v) - |\mathcal{F}| = d_{\mathcal{G}}(v) - (k - 1) \ge 0$. Hence we have equality everywhere, that is all the hyperedges of \mathcal{F} contain the vertex v. Thus all the hyperedges of \mathcal{F} belong to the same connected component of $\mathcal{H} - s$, say K_1^1 of \mathcal{G}_1 . Note that, by the above argument, all the isolated vertices of \mathcal{H}' belong to K_1^1 . Let K_2^1, \ldots, K_t^1 be the other connected components of \mathcal{G}_1 . Note that \mathcal{G}_2 has also t connected components. By $2 \le |V(K_t^1)|$ for $i = 2, \ldots, t, \omega_k(\mathcal{H} - s) = m - 1 \le 2t - 2 + |V(K_1^1)| \le \sum_{i=1}^t |V(K_i^1)| = |V_1| = \frac{1}{2}d_{\mathcal{H}}(s)$.

In both cases (17) is satisfied.

- (18) $d_{\mathcal{H}}(s, P_1) = |V_1| = |V_2| = d_{\mathcal{H}}(s, P_2)$ and (18) is satisfied.
- (19) Let us suppose that a C_4 -obstacle exists in \mathcal{H} , let $\{A_1, \ldots, A_4\}$ be the partition of $V_1 \cup V_2$ satisfying (11)–(15) with say j = 1. By (15) and $\mathcal{P} = \{V_1, V_2\}$, $V_1 = A_1 \cup A_3$ et $V_2 = A_2 \cup A_4$. By (12), all hyperedges intersecting both A_1 and A_3 also intersect A_2 and A_4 . By construction, no such hyperedge exists, and then by (13), $k \neq 1$ is odd. It also follows by (11), that $|A_i| = d_{\mathcal{H}}(A_i) = k$. By (9), all connected components of \mathcal{G} contains at least k vertices, so \mathcal{G} has exactly two connected components, $\mathcal{G}[A_1]$ and $\mathcal{G}[A_3]$, both of k vertices and k is odd, that is (10) is violated. This contradiction finishes the proof of Theorem 3.

8 Application

We show in this section that Theorem 3 is a generalization of Theorem 1.

Let G be a graph satisfying the conditions of Theorem 1. Let us consider G as a hypergraph and let $k := \delta(G) + 1$. Since G contains no isolated vertices, $k = \delta(G) + 1 \ge 2$. Let X be an arbitrary non-empty vertex set in V. Since G is simple, for any vertex $v \in X$, $d_G(v, X-v) \le$ |X| - 1. Then $d_G(X) \ge d_G(v, V - X) = d_G(v) - d_G(v, X - v) \ge \delta(G) - (|X| - 1) = k - |X|$, so (9) is satisfied. Suppose that (10) is not satisfied, that is G has exactly two connected components, both of k vertices and k is odd. Then, since the graph is simple, each vertex has degree at most k-1. But $k = \delta(G)+1$, so each vertex has degree at least k-1. It follows that $G = 2K_k$ and k is odd. This contradiction shows that G satisfies all the conditions of Theorem 3, so by this theorem, there exists a permutation π such that G_{π} is k-edge-connected, hence $\delta(G) + 1 = k \le \lambda(G_{\pi}) \le \delta(G) + 1$ and Theorem 1 is proved.

References

- J. Bang-Jensen, H. Gabow, T. Jordán, Z. Szigeti, Edge-connectivity augmentation with partition constraints, SIAM Journal on Disc. Math. Vol. 12 No. 2 (1999) 160–207.
- [2] A. Bernáth, R. Grappe, Z. Szigeti, Augmenting the edge-connectivity of a hypergraph by adding a multipartite graph, accepted in Journal of Graph Theory
- [3] G. Chartrand, F. Harary, Planar permutation graphs. Ann. Inst. H. Poincaré Sect. B (N.S.) 3 1967 433–438.

[4] W. Goddard, M. E. Raines, P. J. Slater, Distance and connectivity measures in permutation graphs. Discrete Math. 271 (2003), no. 1-3, 61–70.