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Abstract

In this note we provide a generalization of a result of Goddard, Raines and Slater [4] on
edge-connectivity of permutation graphs for hypergraphs. A permutation hypergraph G,
is obtained from a hypergraph G by taking two disjoint copies of G and by adding a perfect
matching between them. The main tool in the proof of the graph result was the theorem
on partition constrained splitting off preserving k-edge-connectivity due to Bang-Jensen,
Gabow, Jorddn and Szigeti [1]. Recently, this splitting off theorem was extended for
hypergraphs by Berndth, Grappe and Szigeti [2]. This extension made it possible to find
a characterization of hypergraphs for which there exists a k-edge-connected permutation
hypergraph.

1 Definitions

Let G = (V, E) be a graph. For a vertex set X of V', the set of edges between X and V — X is
called a cut of G. The size of this cut of G is denoted by dg(X'). For disjoint subsets X and
Y of V, we denote by dg(X,Y) the number of edges between X and Y. The minimum size
of a cut of G is denoted by A(G). The graph G is called k-edge-connected if A\(G) > k.
The minimum degree §(G) of G is defined as min{dg(v) : v € V}. A graph H = (V +s, E)
is called k-edge-connected in V if each cut, except eventually the one defined by s and V,
contains at least k edges. The set of neighbors of the vertex s, that is the vertices adjacent
to s, is denoted by Ngr(s). The complete graph on n vertices is denoted by K,,. By taking
two disjoint copies of K, we get the graph 2K,,.

Let G = (V,€) be a hypergraph, where V is a finite set and £ is a set of non-empty
subsets of V, called hyperedges. A hyperedge of cardinality 2 is a graph edge. For a
vertex set X of V, the set of hyperedges intersecting X and V — X is called a cut and is
denoted by dg(X). The size of a cut of G is denoted by dg(X). For disjoint subsets X
and Y of V, we denote by dg(X,Y) the number of hyperedges intersecting both X and Y.
The hypergraph G is called k-edge-connected if each cut contains at least k hyperedges. A
l-edge-connected hypergraph is called connected. A maximal connected subhypergraph of
G is called a connected component of G. Let wg(G) be defined as the maximum number
of connected components of G — F minus 1, where F is a set of k — 1 hyperedges in £. A
hypergraph H = (V + s, &) is called k-edge-connected in V' if each cut, except eventually
the one defined by s and V, contains at least k hyperedges. The set of vertices adjacent to
the vertex s in H is denoted by No¢(s).

*Ensimag, Grenoble Institute of Technology, 681, rue de la Passerelle, Domaine Universitaire, Saint Martin
d’Heres, France, 38402
fLaboratoire G-SCOP, CNRS, Grenoble INP, UJF, 46, Avenue Félix Viallet, Grenoble, France, 38000.



2 Permutation graphs

Given a graph G on n vertices and a permutation 7 of [n], Chartrand and Harary [3] defined
the permutation graph G, as follows: we duplicate the graph G and we add a perfect
matching defined by the permutation m between the two copies of the graph, in other words

1. we take 2 disjoint copies G; = (Vi, E1) and Gy = (Va, Es) of G,

2. for every vertex v; € V1, we add an edge between v; of G1 and v ;) of G, this edge set
is denoted by Fj3,

3. Gy = (Vl UV, By U Ey U E3).

Since, for any graph, the minimum size of a cut is less than or equal to the minimum
degree, we have

MGr) < 8(Gy) = 8(G) + 1.

For simple graphs, the following result answers when this upper bound can be achieved.

Theorem 1 /Goddard, Raines, Slater [4]] Let G be a simple graph without isolated vertices.
Then there exists a permutation m such that A(Gr) = 6(G) + 1 if and only if G # 2K}, for
some odd k.

The tool to prove this result is presented in the next section.

3 k-admissible P-allowed complete splitting off in graphs

Let H = (V + s,E) be a graph with a specified vertex s, P = {P, P»} a partition of V
and k > 2 an integer. Splitting off at s means taking two edges {su, sv} incident to s and
replacing them by a new edge uwv. Complete splitting off at s is a sequence of splitting
off isolating s. A complete splitting off is called k-admissible if the new graph without the
isolated vertex s is k-edge-connected and it is P-allowed if the new edges are between Pj
and Ps.

A partition {A1,..., A4} of V is called a Cy-obstacle of H if there exists j € {1,2} such
that

dg(A;j) =kfori=1,...,4,

di (A1, Az) = du (A2, Ag) =0,

k is odd,

di (s, P1) =du(s, P),

(AjUAj12) N NE(s) = PLN Np(s).
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The following theorem is a special case of a general result on partition constrained k-
edge-connected complete splitting off in graphs.

Theorem 2 [Bang-Jensen, Gabow, Jorddn, Szigeti [1]] Let H = (V + s,E) be a graph,
P = {P1, Py} a partition of V and k > 2 an integer. Then there exists a k-admissible
P-allowed complete splitting off at s if and only if

H is k-edge-connected in 'V, (6)
du (s, P1) = du(s, P2), (7)
H contains no Cy-obstacle. (8)



4 Sketch of the proof of Theorem 1

We only prove the sufficiency. The main idea is the following : instead of finding the required

permutation in one step we will find it in two steps. First we make an extension and then we

apply splitting off. The extended graph H is obtained from G by taking two disjoint copies G

and G4 of G, adding a new vertex s and connecting it to every other vertex. Since G is simple,

it is easy to see that H is k-edge-connected, where k = §(G) + 1. Let P := {V(G1),V(G2)}.
Theorem 1 follows from the equivalence of the following conditions:

(a) there exists a permutation 7 such that \(G) = §(G) + 1,

(b) there exists a k-admissible P-allowed complete splitting off at s in H,
(¢) H contains no Cy-obstacle,

(d) G # 2K, if k is odd.

It is easy to verify that (a) and (b) are equivalent. Theorem 2 implies that (b) and (c)
are equivalent. An easy calculation shows that (¢) and (d) are equivalent.

5 Permutation hypergraphs

We define permutation hypergraphs as a natural generalization of permutation graphs. Given
a hypergraph G on n vertices and a permutation 7 of [n], we define the permutation
hypergraph G, as follows:

1. we take 2 disjoint copies G; = (V4,&1) and Go = (V5, &) of G,

2. for every vertex v; € V1, we add an edge between v; of G; and vy (;) of Ga, this edge set
is denoted by Ej,

3. G = (V1UV2,51U€2UE3).

The main result of this paper characterizes hypergraphs that admit a k-edge-connected
permutation hypergraph.

Theorem 3 Let G = (V,€) be a hypergraph and k > 2 an integer. Then there exists a
permutation w such that G, is k-edge-connected if and only if
dg(X) >k —|X| for all) # X CV, 9)

G is not composed of two connected components, both of k vertices, k being odd.(10)

Theorem 3 will be proved in Section 7 using the result presented in Section 6.

6 k-admissible P-allowed complete splitting off in hypergraphs

Let H = (V + s,&) be a hypergraph with a specified vertex s, P = {P;, P»} a partition of
V and k£ > 1 an integer. A partition {Aq,..., A4} of V is called a C4-obstacle of H if there
exists j € {1,2} such that
dn(4;) =k, fori=1,...,4, (11)
6r (A1) N0y (Asz) = 63 (A2) N I3 (Aa), (12)
k —101(A1) N op(As) # 1 is odd, (13)
d?‘((s>P1):d7'((s>P2)v ( )
(Aj U Aji2) N Ny(s) = Pr N N(s). (15)
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The following theorem generalizes Theorem 2 and is a special case of a general result on
partition constrained k-edge-connected complete splitting off in hypergraphs.

Theorem 4 [Berndth, Grappe, Szigeti [2]] Let H = (V + s,E) be a hypergraph, where s is
incident only to graph edges, P = { Py, P2} a partition of V and k > 1 an integer. Then there
exists a k-admissible P-allowed complete splitting off at s if and only if

H is k-edge-connected in 'V, (16)
dy(s) > 2wi(H — s), (17)
dy (s, P1) = dy(s, Py), (18)
H contains no Cy-obstacle. (19)

7 Proof of Theorem 3

7.1 Proof of the necessity

Suppose that there exists a permutation 7 such that G, is k-edge-connected. We prove that
(9) and (10) are satisfied.

(9) Let X be an arbitrary non-empty subset of V' and X;j the corresponding vertex set
in V7. Then, by the k-edge-connectivity of G, k < dg,(X1) = dg(X) + |X|, and (9)
follows.

(10) Suppose that (10) is not satisfied that is G has exactly two connected components
on vertex sets V! and V2 and |V!| = |V2| = k is odd. Then the vertex set of G, is
partitioned into 4 sets Vi', V2, V', Vi of size k, where {V;!, V:2} corresponds to {V?1,V?}
for i = 1,2. Since G[V''] and G[V?] are connected components of G, no hyperedge
exists between V! and V2 in G, for i = 1,2. Then, by dg, (Vi}, V) + dg,. (VL VE) =
dg, (Vi) = |V}}| = k and k is odd, one of them, say dg, (Vi',V4), is larger than %

Since only graph edges exist between Vi! and V3! in G, and G, is k-edge-connected, we

have k < dg, (VEUVy) = dg, (Vi) + dg, (V3) — 2dg, (Vi1 Vi) < k+k — 25 = k. This

contradiction shows that (10) is satisfied.

7.2 Proof of the sufficiency

Suppose that the conditions (9) and (10) are satisfied for the hypergraph G and for the integer
k. As for the graphic case, we extend first the hypergraph and then we apply splitting off. The
extended hypergraph H is obtained from G by taking two disjoint copies G; = (V4,&1) and
Go = (Vo,&7) of G, adding a new vertex s and connecting it by the edge set E’ to all the other
vertices. Then H = (VUVLU{s}, E1UEUE"). Note that for all X C V3 U Vs, dy (s, X) = | X]|.
We define the partition P of the vertex set of H — s to be {Vi, Va}. We show that there exists
a k-admissible P-allowed complete splitting off at s. After executing this complete splitting
off at s, we get the permutation hypergraph G, that is k-edge-connected and the theorem is
proved. By Theorem 4, we must verify that the conditions (16)—(19) are satisfied for H, P
and k.

(16) Let 0 = X C VU V4. Let X7 := XNV and X5 := X N V5. Then one of them, say X7, is
not empty. Let X’ C V be the vertex set of G that corresponds to X; of G;. Then, by
the construction of H and (9) applied for X', dp(X) = dp(X1) + dy(X2) > dn(X7) =
dg,(X1) + | X1| = dg(X') + |X'| > k, and (16) follows.



(17) Let F be a set of k—1 hyperedges in £ such that the number m of connected components
of H' :="H — s — F minus 1 to be wi(H — s). We distinguish two cases :

Case 1. Suppose first that H’' contains no isolated vertices. Then each connected
component K/ of H' contains at least 2 vertices and hence wi(H —s) +1 = m =
32 < 5 X0 V(KD = 5|V(H)| = gduls).

Case 2. Suppose next that H’ contains some isolated vertices, let v be one of them.
Then, by |F| = k—1 and by (9) applied for v, 0 = dyy(v) > dg(v) — |F| = dg(v) — (k —
1) > 0. Hence we have equality everywhere, that is all the hyperedges of F contain the
vertex v. Thus all the hyperedges of F belong to the same connected component of
H — s, say K{ of G;. Note that, by the above argument, all the isolated vertices of H’
belong to Ki. Let Ki,..., K} be the other connected components of G;. Note that Gy
has also ¢ connected components. By 2 < |V (K})| fori=2,...,t,wp(H—5)=m—1<
2t — 2+ [V(E])| < i V(KD = [Vi] = gda(s).

In both cases (17) is satisfied.

(18) dp (s, P1) = |Vh| = |Va| = dn(s, P») and (18) is satisfied.

(19) Let us suppose that a Cs-obstacle exists in H, let {Aj,..., A4} be the partition of
V1 U V4, satisfying (11)—(15) with say j = 1. By (15) and P = {V3, 5}, V3 = A U A3 et
Vo = AsUAy. By (12), all hyperedges intersecting both A; and Ajg also intersect As and
Ay. By construction, no such hyperedge exists, and then by (13), k # 1 is odd. It also
follows by (11), that |A;| = dn(A;) = k. By (9), all connected components of G contains
at least k vertices, so G has exactly two connected components, G[A;] and G[A3], both
of k vertices and k is odd, that is (10) is violated. This contradiction finishes the proof
of Theorem 3.

8 Application

We show in this section that Theorem 3 is a generalization of Theorem 1.

Let G be a graph satisfying the conditions of Theorem 1. Let us consider G as a hyper-
graph and let k := 6(G)+1. Since G contains no isolated vertices, k = §(G)+1 > 2. Let X be
an arbitrary non-empty vertex set in V. Since G is simple, for any vertex v € X, dg(v, X —v) <
[ X[ = 1. Then d¢(X) 2 da(v,V — X) = da(v) — da(v, X —v) 2 0(G) — (|X] - 1) =k — | X|,
so (9) is satisfied. Suppose that (10) is not satisfied, that is G has exactly two connected
components, both of k vertices and k is odd. Then, since the graph is simple, each vertex has
degree at most k—1. But k = §(G)+1, so each vertex has degree at least k—1. It follows that
G = 2K}, and k is odd. This contradiction shows that G satisfies all the conditions of The-
orem 3, so by this theorem, there exists a permutation 7 such that G, is k-edge-connected,
hence §(G) +1 =k < A(Gr) < 6(G) + 1 and Theorem 1 is proved.
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