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Abstract
In this note we solve the edge-connectivity augmentation problem over symmetric parity

families. It provides a solution for the minimum T-cut augmentation problem. We also
extend a recent result of C. Q. Zhang [8].

1 Introduction

Parity families were introduced in Goemans, Ramakrishnan [2]. In this note we consider only
symmetric parity families. The definition and some examples for such families can be found in
Section 2. Our definition is equivalent to that of Goemans, Ramakrishnan by Lemma 9 in [2].

The main purpose of this paper is to solve the minimum T-cut augmentation problem,
namely for a given connected undirected graph G, a subset T" of vertices of G of even cardinality
and an integer k, what is the minimum number of new edges whose addition results in a graph
where the minimum cardinality of a T-cut is at least k. In fact we will solve a more general
problem, namely the minimum F-cut augmentation problem where F is a symmetric parity
family. Our main result (Theorem 5) also contains as a special case the min-max theorem of
Watanabe, Nakamura [7] for the global edge-connectivity augmentation problem.

This paper is organized as follows. After the necessary definitions we give some easy prop-
erties of symmetric parity families and F-joins. Then, in Section 4, we present a min-max
theorem on the minimum value of a symmetric submodular function over a symmetric parity
family. We need this result to prove, in Section 5, the existence of a splitting off that maintains
the minimum F-cut in a graph G for a symmetric parity family F. This splitting off theorem
will be applied, in Section 6, to solve the global edge-connectivity augmentation problem over
a symmetric parity family. In Section 5 we also provide a common generalization of the weak
orientation theorem of Nash-Williams [4] and a result of Rizzi [5]. In Section 7, we generalize
a splitting off result of C. Q. Zhang [8].

2 Definitions

Let G = (V,E) be an undirected graph. For a vertex s of G we denote by I'g(s) the set
of neighbours of s. For X,Y C V, §g(X,Y) denotes the set of edges between X — Y and
Y — X, 0c(X)=0a(X,V - X), da(X)= [0ag(X)|, da(X,Y)= |0c(X,Y)| and da(X,Y)=
de(X NY,V — (X UY)). The subgraph of G induced by X is denoted by G[X]. For all
X,YCV,

de(X)+da(Y) = de(XNY)+da(XUY)+2da(X,Y), (1)
do(X) +da(Y) = da(X —Y) +da(Y — X) + 2d6(X,Y). ()
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For two vertices u and v of GG, the local edge-connectivity between u and v is defined
Ag(u, v)=min{dg(X): X CViue X,v € V - X}. Let D = (V, A) be a directed graph. For
a set X C V, the number of arcs leaving X is denoted by dj;(X ). For two vertices u and v of
D, the local edge-connectivity from u to v is defined Ap (u, v)= min{d}(X): X C V,u €
X,v € V — X}. More generally, for a function f on V and for u,v € V, we define the local
f-connectivity as Af(x,y):=min{f(X): X CVixe X,y V - X}

Suppose G is connected and let T C V with |T| even. The pair (G,T) is called graft. A
subset X of V is called T-odd if | X N T is odd and then the cut 6(X) is called a T-cut. An
edge set F is called a T-join if T'= {v € V : dr(v) is odd}. A T-pairing is a perfect matching
of the complete graph on T

A family F of subsets of V is called symmetric parity family if (i),(ii),(iii) are satisfied:
(i)0,Ve¢F, (ii)if Ae F,then V—-AeF, (iii)if A,B¢ F and ANB =0, then AUB ¢ F.
The most important examples for symmetric parity families are the following: F := 2V — {0, V'}
and F:={X CcV:|XNT|is odd} where T C V with |T| even; for others see [2].

Let F be a symmetric parity family on V. Let H = (V, E’) be a tree. For each edge e of
H,let V. C V so that 6y(Ve,V —V,) = {e}. Let Je(H):= {e € E' : V, € F}. An edge set
F CV xV is called F-join if there exists a tree H on V so that F' = Jz(H). For a symmetric
function f on V, let us define the value of an F-join F' by valg(F'):= min{\¢(z,y) : zy € F}.
If G = (V,E) is a graph and X € F, then 6¢(X) is called an F-cut. Let AZ denote the
minimum size of an F-cut, that is \¢ = min{dg(X) : X € F}.

Let G = (U, E) be a graph and s € U. For two edges sr, st, the graph obtained from G
by splitting off sr, st is denoted by G, := G — {sr,st} + rt. Let F be a symmetric parity
family on V' C U. The pair {sr, st} is called Az-admissible if after splitting off this pair, the
minimum F-cut does not decrease that is if )\f_f’t > )\g.

A function f on 2V is called symmetric and submodular if for all X,Y C V, f(X) =
f(V—=X)and f(X)+ f(Y) > f(XNY)+ f(X UY). Note that the degree function of an
undirected graph is symmetric and, by (1), it is submodular. A function p on 2V is called
skew-supermodular if at least one of (3) and (4) hold for all X, Y C V.

p(X) +p(Y)
p(X) +p(Y)

p(XNY)+p(XUY), (3)

<
< p(X=Y)+p(Y - X). (4)

3 Preliminaries

An easy observation on T-odd sets, namely if we have two T-odd sets then either their inter-
section and union or their differences are T-odd sets, can be generalized for symmetric parity
families as follows.

Claim 1 Let F be a symmetric parity family. Then, for all X,Y € F, either XNY, XUY € F
orX-YY-XekF.

Proof. Suppose X NY ¢ F. Then, by X € F and (iii), X — Y € F. Similarly, by Y € F and
(iii), Y — X € F. Now suppose that X UY ¢ F, so by (ii), V — (X UY) ¢ F. Since X,Y € F,
we have, by (i), V — X,V =Y € F. Then, by V — X € F and (iii), Y — X € F. Similarly, by
V—-Y € Fand (ili), X - Y € F. a

Now we generalize the fact that a T-join and a T-cut always have an edge in common.
Lemma 1 Let F be a symmetric parity family. If F is an F-join and A € F, then dp(A) # 0.

Proof. By definition there exists a tree H on V so that F' = Jz(H). Let us denote by
Aq, ..., Aj the connected components of H[A]. Since A € F and |J A; = A, there exists an index
i so that A; € F by (iii). Let us denote by By, ..., B; the connected components of H — A;.
Since V — A; € F by (ii) and | B; = V — A;, there exists an index j so that B; € F by (iii). H



is a tree, H[A;] and H[B,] are connected and Bj is a connected component of H — A;, so there
exists exactly one edge e € E(H) between H[A;] and H[B;]. It follows that e € Jr(H) = F
and e enters A which was to be proved. O

If F = {T-odd sets}, then F-joins can be characterized as follows.

Claim 2 If F :={X CV : | X NT| is odd} where T CV with |T| even, then the F-joins are
exactly the cycle free T-joins.

Proof. Note that any tree H on V' contains a T-join F' and a set X belongs to F if and only if
dp(X) is odd. Thus if F is a T-join and H is a tree on V containing F', then Jz(H) = F and
the claim follows. |

4 Min-max theorems

Let f be a symmetric submodular function on 2" and F a symmetric parity family on V. It is
mentioned in Goemans, Ramakrishnan [2] that there exists a cut equivalent tree Hy for f and
f can be minimized over F using Hy, namely min{f(X) : X € F} = vals(Jr(Hy)). This can
be presented as a min-max result.

Theorem 1 Let f be a symmetric submodular function on 2V and F a symmetric parity family
on V. Then
min{ f(X) : X € F} = max{val;(F) : F is an F-join}.

Proof. To prove max < min, let X’ € F and let F’ be an F-join. By Lemma 1, there exists an
edge z'y’ € 0p/(X'). Then valy(F') = min{A;(z,y) : zy € F'} < Ap(2’,y') = min{f(Y): Y C
Vo' €Y,y € V-Y} < f(X') and the inequality follows. As we mentioned above, Jz(Hy)
provides equality, thus min = max. O

If 7 := {T-odd sets} then the dual objects in Theorem 1 can be simplified. For f = dg,
the following theorem gives a result of R. Rizzi [5] on T-cuts.

Theorem 2 Let f be a symmetric submodular function on 2V and F :={X CV : | X NT)| is
odd} where T CV with |T| even. Then

min{f(X) : X € F} = max{vals(P) : P is a T-pairing}.

Proof. Let o := max{vals(F) : F is an F-join} and  := max{valy(P) : P is a T-pairing}.
We show that o = § and then Theorem 1 implies Theorem 2. Since a perfect matching P on
T is a T-join and, by Claim 2, is an F-join, we have o > (3. Now, let F' be an F-join of value
« for which |F| is minimum. We prove that F' is a T-pairing implying o < . Otherwise, F’
contains two adjacent edges uv and vw. Let I’ be obtained from I by splitting off these edges.
By Claim 2, F’ is an F-join. Since a set separating u and w separates either v and v or v and
w, valy(F') > valy(F) = a. Then F’ is an optimum F-join and |F’| < |F|, a contradiction. O

We note that Theorem 2 is true for symmetric parity families that satisfy the following
condition: if X, Y € F and X NY =0, then X UY ¢ F. However, it can be shown that such a
family can be defined as the T-odd sets for some T' C V' with |T'| even.

5 Local edge-connectivity

Lemma 2 Let G = (U, E) be a graph, s ¢ U,U —s CV CU and let F be a symmetric parity
family on V. Then for all A € F there existx € A andy € V — A so that A\g(z,y) > \G.



Proof. Let f(X) := min{dg(X),dc(V — X)} for all X C V. It is easy to check, by (1) and
(2), that f is a symmetric submodular function on 2. Then, by Theorem 1, there exists an
F-join F on V with min{A¢(a,b) : ab € F} = min{f(X) : X € F}. By Lemma 1, there exists
an edge zy € F with z € A and y € V — A. Let 6¢(Y) be a minimum cut in G separating
x and y so that s ¢ Y. Then Ag(z,y) = dg(Y) and f(Y) > As(x,y). Since V.=U — s or U,
we have Y C V, thus dg(Y) > f(Y). It follows that A\g(z,y) = da(Y) > f(Y) > Af(z,y) >
min{\;(a,b) : ab € F} = min{f(X) : X € F} = min{min{dg(X),da(V — X)}: X € F} > \&
and we are done. |

We show two applications of the above lemma. The first result is on splitting off and it will
be applied in Section 6 to prove the augmentation result.

Lemma 3 Let G = (V + s, E) be a graph so that d(s) # 3 and no cut edge is incident to s.
Let F be a symmetric parity family on V. Then there exists a \r-admissible pair.

Proof. By Mader’s local splitting off theorem [3], there exists a pair of edges {sr, st} so that
g, (z,y) = Ag(x,y) for all z,y € V. By Lemma 2, applied for U = V + s and V, for all
X € F, there exist z € X and y € V — X so that Ag(z,y) > A¢. Then dg, , (X) > Ag, ,(z,y) =

e (z,y) > A\ so )\g” > A% that is {sr, st} is a Ar-admissible pair. a

The second application of Lemma 2 is the following orientation result. It is a common
generalization of the weak orientation theorem of Nash-Williams [4] (if 7 = 2V — {, V}) and
an orientation theorem on T-cuts of Rizzi [5] (if F = {T-odd sets}).

Theorem 3 Let G = (V, E) be an undirected graph and F a symmetric parity family on V.
Then G has an orientation G so that dg(X) >k for all X € F if and only if dg(X) > 2k for
all X € F.

Proof. We prove only the non-trivial if part. By Nash-Williams’ well-balanced orientation
theorem [4], there exists an orientation G of G such that Ag(z,y) > [Aa(z,y)/2] for all (z,y) €
V2. We show that G will do. By Lemma 2, applied for U = V, for every X € F, there exist
r€ X and y € V — X so that Ag(z,y) > A%. Then, since, by the condition, A& > 2k, we have
d5(X) > Ag(z,y) > [al@,y)/2) > [MF/2] > k. 0

6 Augmentation

In this section we solve the following augmentation problem: Given a graph G = (V, E), a
symmetric parity family F on V and an integer k, what is the minimum number of edges whose
addition results in a graph in which each F-cut contains at least k edges. As a special case
it solves the minimum T-cut augmentation problem: how many new edges must be added to
a graft so that the minimum T-cut contains at least k edges. It also contains as a special
case the global edge-connectivity augmentation problem, namely how many new edges must be
added to a graph to make it k-edge-connected. A general approach to solve edge-connectivity
augmentation problems is summarized in the following theorem.

Theorem 4 (Frank [1]) Letp:2Y — ZU{—o00} be a symmetric skew-supermodular function.
Then there exists a graph (V + s, K) with 2v edges, all incident to s so that dix(X) > p(X) for

all X C V if and only if for each subpartition {X1,...,X;} of V, Zizl p(X;) < 2.

Theorem 4 and Lemma 3 will provide the main result of this paper. We mention that it
provides a new special case of the NP-hard problem of covering symmetric skew-supermodular
functions (see in [6]) that can be polynomially solved.

Theorem 5 For a connected graph G = (V, E), a symmetric parity family F on V and an
integer k > 2, the minimum cardinality of an F-cut can be augmented to k by adding at most ~y
edges if and only if for each subpartition {X1, ..., X;} of V with X; € F, Zizl(k—dg(Xi)) < 2.



Proof. For X C V, let p(X) := k — dg(X) if X € F, and —oo otherwise. Since F and d are
symmetric so is p. We show that p is skew-supermodular. Let X, Y CV. If X ¢ ForY ¢ F
then (3) and (4) are satisfied. If X,Y € F, then, by Claim 1, either X NY, X UY € F and
then (3) is satisfied by (1) or X —Y,Y — X € F and then (4) is satisfied by (2).

The subpartition condition of Theorem 5 implies that the subpartition condition of Theorem
4 is satisfied, thus, by Theorem 4, there exists a graph (V +s, K) with 2v edges, all incident to s
so that dg (X) > p(X) forall X C V. Let L := (V+s, FUK). Thendp(X) = dg(X)+dg(X) >
da(X) +p(X) =k for all X € F that is A% > k. Note that d(s) = 2y # 3 and, since G is
connected, no cut edge of L is incident to s. Then, by Lemma 3, we can split off all the edges
of L incident to s by preserving Ax. Thus the resulting graph G’ is obtained from G by adding
v edges and A = Ak > k. ]

By applying Theorem 5, for F = 2V — {(), V'}, we get the theorem of Watanabe, Nakamura
[7], and for F = {T-odd sets}, we get the following theorem on T-cuts.

Theorem 6 For a graft (G,T), the minimum cardinality of a T-cut can be augmented to k (k >
2) by adding at most v edges if and only if le (k—d(X;)) < 2v for each subpartition { X1, ..., X;}
of V(G) into T-odd sets. a

7 Splitting off

In this section we present a generalization of a result of Zhang [8].

For a graph G = (V, E), Fg:= {X C V : dg(X) is odd} is a symmetric parity family such
that each Fg-cut is odd. The odd-edge-connectivity A, of G is defined as )\f-c.

Theorem 7 (Zhang [8]) Let G be a graph with odd-edge-connectivity \,. Let s be a vertex of
G such that d(s) # Ao and # 2. Arbitrarily label the edges of G incident with s as {e1, ..., eq(s) }-
Then there is an integer i € {1,...,d(s)} such that the new graph obtained from G by splitting
e; and e;11 (mod d(s)) off at s remains of odd-edge-connectivity \,.

Let s be a vertex of a graph G = (V, E) and let N be a graph on vertex set I'g(s). A
pair {sr, st} of edges of G is called N-allowed if ¢t € E(N). This definition is motivated by
Theorem 7 in which we are only allowed to split off consecutive pairs of edges, e; = sv; and
ei+1 = sv;41 for some 1 < i < d(s), that is if Nz = (Dg(s), {vivit1 : 1 < i < d(s)}), then we
can only split off Nz-allowed pairs. Note that viva, vovs, ..., vg(s)v1 provides an eulerian walk
of Nz, and hence Nz is connected.

In the following we generalize Theorem 7 and provide a proof that is much shorter than
that of [8].

Theorem 8 Let G = (V, E) be a graph, s € V. Let F be a symmetric parity family on V
such that dg(X) = AE (mod 2) for all X € F. Let 2 < d(s) # A\%. Let N = (I'g(s), M) be a
connected graph with M # (. Then there exists an N -allowed )\ r-admissible pair.

Proof. We call a set X C V — s tight if X € F and dg(X) = A\%. Since each element of
F has the same parity as /\g;_-, a pair {sr, st} is not Agr-admissible if and only if there exists
a tight set containing r and t. Let t € I'g(s). If ¢ belongs to no tight set, then for an edge
rt € M (r exists since N is connected and M # @) {sr, st} is an N-allowed \r-admissible pair.
Otherwise, let @ be a maximal tight set containing ¢. Suppose I'g(s) —Q = 0. If {s} € F, then
A < d(s). Since 6(s) C §(Q) and Q is tight, d(s) < d(Q) = A%. These inequalities provides
A% = d(s), a contradiction. If {s} ¢ F, then, since V —Q € F, V — Q — s € F and then, by
d(s) > 2, ¢ <d(V —Q —s) =d(Q) — d(s) < d(Q) = \E, contradiction. Thus T'(s) — Q # 0,
t € Te(s)NQ and N is connected so there exists an edge gr € M such that r € Q,q ¢ Q. Then
{sq, sr} is N-allowed. The following claim completes the proof.

Claim 3 {sq, sr} is Ax-admissible.



Proof. Suppose that {sq,sr} is not Az-admissible that is there is a tight set R containing
g and r. By Claim 1, either R — Q,Q — R € F and then, by (2) and the existence of sr,
AZ+AE = d(R) +d(Q) = d(R — Q) + d(Q — R) +2d(Q,R) > A& + A\ + 2, contradiction
or QN R,QUR € F and then, by (1) and the maximality of @, AG+A% = d(Q) + d(R) >
d(QNR) +d(QU R) > A& + X%, contradiction. a

Example: The following example shows that the condition that each element of F is of the
same parity can not be omitted from Theorem 8. Let G := ({q,r, s,t}, {qr, gs,qs,rs,rt, st, st}).
Let F := {X : XN{q,t} = 1}. Then A\ = 3 and dg(s) = 5. Let N := ({g,7,t}, {gr,rt}). Then
for the N-allowed splittings, )\g’;/ =2<3= )\ff_-.
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