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Abstract

We provide the directed counterpart of a slight extension of Katoh and Tanigawa’s result
[8] on rooted-tree decompositions with matroid constraints. Our result characterizes digraphs
having a packing of arborescences with matroid constraints. It is a proper extension of Edmonds’
result [1] on packing of spanning arborescences and implies – using a general orientation result
of Frank [4] – the above result of Katoh and Tanigawa.

We also give a complete description of the convex hull of the incidence vectors of the matroid-
based packings of arborescences and prove that the minimum cost version of the problem can
be solved in polynomial time.

1 Introduction

Let G = (V,E) be a graph. For a vertex set X of G, E(X) denotes the set of edges of G with
both extremities in X. A tree is a connected cycle free graph. A subgraph H of G is called
spanning if its vertex set V (H) coincides with V.

Our starting point is the following result of Tutte [10] and Nash-Williams [9] on packing of
spanning trees. For a partition P of V, eG(P) denotes the number of edges of G between the
different members of P. We always suppose that the members of P are not empty. Following
Frank [5], G is called k-partition-connected if

eG(P) ≥ k(|P| − 1) for every partition P of V. (1)

Theorem 1.1 (Tutte [10], Nash-Williams [9]). There exist k edge-disjoint spanning trees in a
graph G = (V,E) if and only if G is k-partition-connected.

Let D = (V,A) be a digraph. For a vertex set X of D, we denote by D[X] the induced
subgraph of D on X, by R−

D(X) the set of arcs entering X and we define the in-degree of X as
ρD(X) = |R−

D(X)|. For the sake of convenience, we will not distinguish the vertex v from the
set {v}. We say that a vertex v is reachable from a vertex u in D if there exists a directed path
from u to v in D. We say that D is an r-arborescence if D is a directed tree, r is a vertex of D
of in-degree 0 and all the other vertices of D are of in-degree 1. We note that an r-arborescence
may consist of only the vertex r and no arcs. Note also that an r-arborescence has a unique
vertex of in-degree 0, namely r. A subgraph H of D is called spanning if its vertex set V (H)
coincides with V. It is well-known that a spanning r-arborescence of D exists if and only if every
non-empty vertex set not containing r has in-degree at least 1.
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The directed counterpart of Theorem 1.1 is the following result of Edmonds [1] on packing
of spanning r-arborescences. Following Frank [5], D is called k-rooted-connected if

ρD(X) ≥ k for all non-empty X ⊆ V \ r. (2)

Theorem 1.2 (Edmonds [1]). There exist k arc-disjoint spanning r-arborescences of a digraph
D = (V,A) if and only if D is k-rooted-connected.

Frank [2] showed how to deduce Theorem 1.1 from Theorem 1.2. He proved that (1) is the
necessary and sufficient condition for the undirected graph G to have an orientation D that
satisfies (2). Then, by Theorem 1.2, D contains k arc-disjoint spanning r-arborescences that
provide the k edge-disjoint spanning trees in G.

A function b : 2Ω → Z is called submodular (respectively intersecting submodular) if for all
X,Y ⊆ Ω (resp. for all X,Y ⊆ Ω that are intersecting),

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

A function p : 2Ω → Z is called supermodular if −p is submodular. Note that the in-degree
function ρD of a digraph D is submodular.

Let M be a matroid on S with rank function rM. It is well-known that rM is monotone
non-decreasing and submodular. A set Q ⊆ S is independent if rM(Q) = |Q|. Recall that every
subset of an independent set is independent. A maximal independent set is a base of M. Each
base has the same size, namely rM(S). Two elements s and s′ of S are called parallel if s and s′ are
independent but {s, s′} is not. A matroid M is called free if each subset of S is independent, that
is the only base is S. For a set Q ⊆ S, we define SpanM(Q) = {s ∈ S : rM(Q ∪ {s}) = rM(Q)}.
The set Q is called a spanning set of M if SpanM(Q) = S.

A matroid-based rooted-graph is a quadruple (G,M,S, π) where G = (V,E) is a graph, M
is a matroid on the set S = {s1, . . . , st} and π is a map from S to V . We may think of π as a
placement of the elements of S at vertices of V and different elements of S may be placed at the
same vertex. The elements {s1, . . . , st} placed at the vertices of V are called the roots. In this
paper t will always denote the size of S. For X ⊆ V , we denote by SX the set π−1(X) that is
the set of roots placed in X. A matroid-based rooted-digraph is defined similarly in which case
the graph is directed.

A rooted-tree is a pair (T, s) where T is a tree and s is an element of S placed at a vertex of
the tree. We say that s is the root of the rooted-tree (T, s). We note that the tree may consist
of only one vertex and no edges.

The following definition was introduced by Katoh and Tanigawa [8]. Amatroid-based packing
of rooted-trees of (G,M,S, π) is a set {(T1, s1), . . . , (Tt, st)} (where S = {s1, . . . , st}) of pairwise
edge-disjoint rooted-trees such that for each v ∈ V , the set {si ∈ S : v ∈ V (Ti)} forms a base of
M. Note that the trees are not necessarily spanning and each vertex of G belongs to exactly
rM(S) trees.

•π(s1)
π(s2)

•π(s3)

•

•

•

T3

T1

T2

Figure 1: A matroid-based packing of rooted-trees where the set
of the independent sets of the matroid on S = {s1, s2, s3} is 2S \ S.

The following result characterizes matroid-based rooted-graphs that have a matroid-based
packing of rooted-trees. It will be derived from its directed counterpart (Theorem 1.6) at the
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end of this section. We say that the map π is M-independent if Sv is independent in M for all
v ∈ V. The quadruple (G,M,S, π) is called partition-connected if

eG(P) ≥ rM(S)|P| −
∑

X∈P

rM(SX) for every partition P of V.

Theorem 1.3. Let (G,M,S, π) be a matroid-based rooted-graph. There exists a matroid-based
packing of rooted-trees in (G,M,S, π) if and only if π is M-independent and (G,M,S, π) is
partition-connected.

If M is the free matroid then S is the only base of M so a matroid-based packing of rooted-
trees consists of spanning trees and thus the problem of matroid-based packing of rooted-trees
and that of packing of spanning trees coincide. Hence Theorem 1.3 is a proper extension of
Theorem 1.1. In [8], Theorem 1.3 is implicitly obtained in the proof of the following result.
A rooted-component of (G,M,S, π) is a pair (C, s) where C is a connected subgraph of G and
s ∈ SV (C).

Theorem 1.4 (Katoh and Tanigawa [8]). Let (G,M,S, π) be a matroid-based rooted-graph.
Then (G,M,S, π) can be decomposed into rooted-components (C1, s1), . . . , (Ct, st) such that the
set {si ∈ S : v ∈ V (Ci)} is a spanning set of M for every v ∈ V if and only if (G,M,S, π) is
partition-connected.

Katoh and Tanigawa deduced Theorem 1.4 (and, implicitly, Theorem 1.3) from its dual form
given below. We show that Theorem 1.3 also implies Theorem 1.5.

Theorem 1.5 (Katoh and Tanigawa [8]). Let (G,M,S, π) be a matroid-based rooted-graph.
Let M be of rank k with rank function rM. Then (G,M,S, π) admits a matroid-based rooted-
tree decomposition if and only if π is M-independent, |E| + |S| = k|V | and |E(X)| + |SX | ≤
k|X| − k + rM(SX) for all non-empty X ⊆ V.

Proof. The necessity of the conditions is pretty straightforward as one can see in [8].
Now suppose that the conditions hold. For every partition P of V , by the inequality applied

forX ∈ P and by |E|+|S| = k|V |, we have eG(P) = |E|−
∑

X∈P |E(X)| ≥ |E|−
∑

X∈P(k|X|−k+
rM(SX)−|SX |) = k|P|−

∑
X∈P rM(SX). Hence (G,M,S, π) is partition-connected. Then, since

π is M-independent, Theorem 1.3 implies that (G,M,S, π) admits a matroid-based packing of
rooted-trees which, by |E| + |S| = k|V |, must be a matroid-based rooted-tree decomposition of
(G,M,S, π).

The main contribution of the present paper is to mimic Frank’s approach (mentioned above
on packing of spanning trees) for matroid-based packing of rooted-trees. We provide the directed
counterpart Theorem 1.6 of Theorem 1.3, a short proof of Theorem 1.6 and we show that it
implies Theorem 1.3 (and hence Theorem 1.4 and Theorem 1.5) via an orientation theorem of
Frank [4].

A rooted-arborescence is a pair (T, s) where T is an r-arborescence for some vertex r and s

is an element of S placed at r. We say that s is the root of the rooted-arborescence (T, s). We
note that a rooted-arborescence may consist of only one vertex and no arcs.

Inspired by the definition of Katoh and Tanigawa, we define an matroid-based packing of
rooted-arborescences of (D,M,S, π) as a set {(T1, s1), . . . , (Tt, st)} (where S = {s1, . . . , st}) of
pairwise arc-disjoint rooted-arborescences such that for each v ∈ V , the set {si ∈ S : v ∈ V (Ti)}
forms a base of M. For a better understanding, let us mention that the rooted-arborescences are
not necessarily spanning and each vertex of D belongs to exactly rM(S) rooted-arborescences.

Our main result is the following theorem. The quadruple (D,M,S, π) is called rooted-
connected if

ρD(X) ≥ rM(S)− rM(SX) for all non-empty X ⊆ V. (3)
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Figure 2: A matroid-based packing of rooted-arborescences where the set
of the independent sets of the matroid on S = {s1, s2, s3} is 2S \ S.

Theorem 1.6. Let (D,M,S, π) be a matroid-based rooted-digraph. There exists a matroid-
based packing of rooted-arborescences in (D,M,S, π) if and only if π is M-independent and
(D,M,S, π) is rooted-connected.

If M is the free matroid and π places every element of S at a single vertex r of D then
the problem of matroid-based packing of rooted-arborescences and that of packing of spanning
r-arborescences coincide. Hence Theorem 1.6 is a proper extension of Theorem 1.2.

Let us recall the following general orientation result of Frank [4].

Theorem 1.7 (Frank [4]). Let G = (V,E) be a graph and h : 2V → Z+ an intersecting
supermodular non-negative non-increasing set-function. There exists an orientation D of G

such that ρD(X) ≥ h(X) for all non-empty X ⊂ V if and only if for every partition P of V ,

eG(P) ≥
∑

X∈P

h(X).

Theorem 1.7 immediately implies the following corollary by taking h(X) = rM(S)−rM(SX).

Corollary 1.1. Let (G,M,S, π) be a matroid-based rooted-graph. There exists an orientation D

of G such that (D,M,S, π) is rooted-connected if and only if (G,M,S, π) is partition-connected.

Let us show that Corollary 1.1 and Theorem 1.6 imply Theorem 1.3.

Proof. (of Theorem 1.3) First suppose that there exists a matroid-based packing {(T1, s1), . . . , (Tt, st)}
of rooted-trees in (G,M,S, π). Let D be an orientation of G where each rooted-tree (Ti, si) be-
comes a rooted-arborescence (T ′

i , si). Then {(T ′
1, s1), . . . , (T

′
t , st)} is a matroid-based packing of

rooted-arborescences in (D,M,S, π). By Theorem 1.6, π is M-independent and (D,M,S, π) is
rooted-connected and hence, by Corollary 1.1, (G,M,S, π) is partition-connected.

Now suppose that π is M-independent and (G,M,S, π) is partition-connected. By Corol-
lary 1.1, there exists an orientation D of G such that (D,M,S, π) is rooted-connected. Then, by
Theorem 1.6, there exists a matroid-based packing of rooted-arborescences in (D,M,S, π) which
provides, by forgetting the orientation, a matroid-based packing of rooted-trees in (G,M,S, π).

2 Proof of the main theorem

First we prove the necessity of the conditions.

Proof. (of necessity in Theorem 1.6) Suppose that there exists a matroid-based packing
{(T1, s1), . . . , (Tt, st)} of rooted-arborescences in (D,M,S, π). Let v be an arbitrary vertex of
V and X a vertex set containing v. Then B := {si ∈ S : v ∈ V (Ti)} forms a base of M. Let
B1 = B ∩ SX and B2 = B \ SX . Then, since B1 is independent in M and Sv ⊆ B1, π is M-
independent. Moreover, since rM is monotone, |B1| = rM(B1) ≤ rM(SX). For each root si ∈ B2,

there exists an arc of Ti that enters X. Since the rooted-arborescences are arc-disjoint, we have
ρD(X) ≥ |B2| = |B| − |B1| ≥ rM(S)− rM(SX) that is (D,M,S, π) is rooted-connected.
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Before proving the sufficiency of the conditions we establish a technical claim.

Let us introduce the following definitions. A vertex set X is called tight if ρD(X) = rM(S)−
rM(SX). For vertex sets X and Y , we say that Y dominates X if SX ⊆ SpanM(SY ). Note that
since, for Q ⊆ S, SpanM(SpanM(Q)) = SpanM(Q), domination is a transitive relation. We say
that an arc uv is bad if v dominates u, otherwise it is good. We note that in a matroid-based
packing of rooted-arborescences only good arcs uv can be used in a rooted-arborescence whose
root is placed at u, since there must exist s ∈ Su such that Sv ∪ s is independent in M.

Claim 2.1. Suppose that (D,M,S, π) is rooted-connected. Let X be a tight set and v a vertex
of X.

(a) If Y is a tight set that contains v, then X ∩ Y and X ∪ Y are tight. Moreover, if s ∈
SpanM(SX) ∩ SpanM(SY), then s ∈ SpanM(SX∩Y).

(b) If no good arc exists in D[X], then v dominates X.

Proof. (a) If we have s, then let σ = s, otherwise let σ = ∅. By the monotonicity and the
submodularity of rM, s ∈ SpanM(SX)∩SpanM(SY), the tightness ofX and Y , the submodularity
of ρD, X ∩ Y 6= ∅ and (3), we have rM(SX∩Y ) + rM(SX∪Y ) = rM(SX ∩ SY ) + rM(SX ∪ SY ) ≤
rM((SX∩SY )∪σ)+rM((SX∪SY )∪σ) ≤ rM(SX∪σ)+rM(SY ∪σ) = rM(SX)+rM(SY ) = rM(S)−
ρD(X)+rM(S)−ρD(Y ) ≤ rM(S)−ρD(X∩Y )+rM(S)−ρD(X∪Y ) ≤ rM(SX∩Y )+rM(SX∪Y ).
Hence equality holds everywhere and (a) follows.

(b) Let us denote by Y the set of vertices from which v is reachable in D[X]. We show that
v dominates Y and Y dominates X and then, since domination is transitive, (b) follows.

For all y ∈ Y , there exists a directed path y = vl, . . . , v1 = v from y to v in D[X]. Since no
good arc exists in D[X], Sy = Svl ⊆ · · · ⊆ SpanM(Sv1) = SpanM(Sv). Hence SY =

⋃
y∈Y Sy ⊆

SpanM(Sv) and v dominates Y.
By the definition of Y , every arc of D that enters Y enters X as well. Then, by (3), the

tightness of X and the monotonicity of rM, we have rM(S) − rM(SY ) ≤ ρD(Y ) ≤ ρD(X) =
rM(S)− rM(SX) ≤ rM(S)− rM(SY ). Thus equality holds everywhere and Y dominates X.

Now we can prove the main result.

Proof. (of sufficiency in Theorem 1.6) We prove it by induction on |A|. We have two cases.

Case 1 : No good arc exists. (This contains the case |A| = 0.)
Then {(v, s) : v ∈ V, s ∈ Sv} forms a matroid-based packing of rooted-arborescences in

(D,M,S, π). Indeed, since V is tight, Claim 2.1(b) implies that Sv is a spanning set of M and
hence, since π is M-independent, Sv is a base of M for all v ∈ V .

Case 2 : At least one good arc exists.

For a good arc uv ∈ A and s ∈ Su \Span(Sv), let D
′ = D−uv, S′ the set obtained by adding

a new element s′ to S, M′ the matroid on S′ obtained from M by considering s′ as an element
parallel to s and π′ the placement of S′ in V obtained from π by placing the new element s′ at
v.

•

• • •

• • •

u
π(s)

v

in D

•

• • •

• • •

u
π(s)

v
π(s′)

in D′

Figure 3: Changing rooted-arborescences.
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By the choice of s and since π is M-independent, it follows that π′ is M′-independent. If
the matroid-based rooted-digraph (D′,M′,S′, π′) is rooted-connected, then, by induction, there
exists a matroid-based packing P ′ of rooted-arborescences in (D′,M′,S′, π′). Since s and s′

are parallel in M′, the rooted-arborescences (T, s) and (T ′, s′) of P ′ are vertex disjoint, so
(T ′′, s) = (T ∪ T ′ ∪ uv, s) is a rooted-arborescence. Then (P ′ ∪ {(T ′′, s)}) \ {(T, s), (T ′, s′)} is a
matroid-based packing of rooted-arborescences in (D,M,S, π). Hence the proof of the theorem
is reduced to the proof of the following claim.

Claim 2.2. There exist a good arc uv and s ∈ Su \Span(Sv) such that (D′,M′,S′, π′) is rooted-
connected.

Proof. Assume that the claim is false. Let uv ∈ A be a good arc and s ∈ Su \ Span(Sv). By
assumption, there exists ∅ 6= Xs ⊂ V such that ρD′(Xs) < rM(S)− rM′(S′Xs

). Hence, by (3) and
the monotonicity of rM′ , ρD′(Xs) + 1 ≥ ρD′(Xs) + ρuv(Xs) = ρD(Xs) ≥ rM(S) − rM(SXs

) ≥
rM(S)−rM′(S′Xs

) ≥ ρD′(Xs)+1, so equality holds everywhere and thus uv enters Xs, Xs is tight
in (D,M,S, π) and s ∈ SpanM(SXs

). Hence, by Claim 2.1(a), X = ∪s∈Su\Span(Sv)Xs is tight
and, by v ∈ X, Su = (Su \ Span(Sv)) ∪ (Su ∩ Span(Sv)) ⊆ Span(SX) ∪ Span(SX) = Span(SX).
So we proved that

every good arc uv enters a tight set X that dominates u. (4)

Among all pairs (uv,X) satisfying (4) choose one with X minimal.

Since X dominates u but v does not dominate u, v does not dominate X. Then, by
Claim 2.1(b), there exists a good arc u′v′ in D[X]. Then, by (4), u′v′ enters a tight set Y

that dominates u′. By v′ ∈ X ∩ Y , the tightness of X and Y , u′ ∈ X, Su′ ⊆ SpanM(SY ) and
Claim 2.1(a), we have that X ∩ Y is tight and Su′ ⊆ SpanM(SX∩Y ). Since the good arc u′v′

enters the tight set X∩Y that dominates u′ and X∩Y is a proper subset of X (since u′ ∈ X\Y ),
this contradicts the minimality of X.

3 Polyhedral aspects

In this section we study a polyhedron describing the matroid-based packings of rooted-arborescences.

We need the following general result of Frank [3].

Theorem 3.1 (Frank [3]). Let D = (V,A) be a digraph, p : 2V → Z+ a non-negative intersecting
supermodular set-function such that ρD(Z) ≥ p(Z) for every Z ⊆ V . Then the polyhedron
defined by the following linear system is integer:

1 ≥ x(a) ≥ 0 for all a ∈ A,

x(R−
D(X)) ≥ p(X) for all non-empty X ⊆ V.

The following theorem is a corollary of Theorem 1.6 and Theorem 3.1.

Theorem 3.2. Let (D = (V,A),M,S, π) be a matroid-based rooted-digraph where M is of
rank k with rank function rM. There exists a matroid-based packing of rooted-arborescences in
(D,M,S, π) if and only if the polyhedron PM,D defined by the linear system

1 ≥ x(a) ≥ 0 for all a ∈ A, (5)

x(R−
D(X)) ≥ k − rM(SX) for all non-empty X ⊆ V, (6)

x(A) = k|V | − |S| (7)

is not empty. In this case, PM,D is integer and its vertices are the characteristic vectors of the
arc sets of the matroid-based packings of rooted-arborescences in (D,M,S, π).

6



Proof. Suppose there exists a matroid-based packing of rooted-arborescences in (D,M,S, π)
and call A′ ⊆ A its arc set. Let x be the characteristic vector of A′. We have x(A) = |A′| =∑

v∈V ρA′(v) =
∑

v∈V (k − |Sv|) = k|V | − |S| and x(R−
D(X)) = ρA′(X) ≥ k − rM(SX) for all

non-empty X ⊆ V by (3). So x ∈ PM,D.
Now suppose that PM,D is not empty. Since the function k − rM(SX) is non-negative

intersecting supermodular and, by (5) and (6), ρD(X) ≥ k− rM(SX) for all non-empty X ⊆ V ,
Theorem 3.1 implies that the polyhedron P described by (5) and (6) is integer. By (6), for all
x ∈ P ,

x(A) =
∑

v∈V

x(R−
D(v)) ≥

∑

v∈V

(k − rM(Sv)) ≥
∑

v∈V

(k − |Sv|) = k|V | − |S|, (8)

that is, x(A) ≥ k|V |− |S| is a valid inequality for P . Then, by (7), PM,D is a face of the integer
polyhedron P and hence PM,D is also integer. Furthermore, for x ∈ PM,D, equality holds
everywhere in (8), thus, |Sv| = rM(Sv) for all v ∈ V and hence π is M-independent. A vertex
x of PM,D defines an arc set A′ = {a ∈ A, x(a) = 1}. By (6), the matroid-based rooted-digraph
((V,A′),M,S, π) is rooted-connected. Therefore, by Theorem 1.6, there exists a matroid-based
packing of rooted-arborescences in ((V,A′),M,S, π) whose arc set is, by (7), equal to A′, and
the theorem follows.

4 Algorithmic aspects

We use the following theorem proved by Iwata, Fleischer and Fujishige [7] and independently
by Schrijver [11].

Theorem 4.1 (Iwata, Fleischer and Fujishige [7], Schrijver [11]). A submodular function can
be minimized in polynomial time.

In this section we assume that a matroid is given by an oracle for the rank function. The
following theorem is a corollary of Theorem 4.1 and Theorem 1.6.

Theorem 4.2. Let (D,M,S, π) be a matroid-based rooted-digraph. A matroid-based packing
of rooted-arborescences in (D,M,S, π) or a vertex v certifying that π is not M-independent or
a vertex set X certifying that (D,M,S, π) is not rooted-connected can be found in polynomial
time.

Proof. By the submodularity of ρD(X) + rM(SX), Theorem 4.1, using the oracle on M and
Theorem 1.6, we can either find a set violating (3) or a vertex certifying that π is not M-
independent or certify that there exists a matroid-based packing of rooted-arborescences.

In the latter case, a matroid-based packing of rooted-arborescences can be found in polyno-
mial time following the proof of Theorem 1.6. Using the oracle, test whether each arc is bad
or good. When an arc uv is good, for each s ∈ Su \ Span(Sv), determine in polynomial time
whether (D′,M′,S′, π′) is rooted-connected using the submodularity of ρD′(X) + rM′(S′X), the
oracle for the rank function rM′ (that is easily computed from rM) and Theorem 4.1. Either
all arcs are bad or we find a good arc uv and s ∈ Su \ Span(Sv) satisfying Claim 2.2. In the
first case, {(v, s) : v ∈ V, s ∈ Sv} is the required packing. In the second case, it leads to the
computation of a matroid-based packing of rooted-arborescences in (D′,M′, S′, π′) where D′

contains less arcs than D.

By the submodularity of x(R−
D(X)) + rM(SX) and by Theorem 4.1, PM,D can be separated

in polynomial time. Thus, using the ellipsoid method, by Grötschel, Lovász and Schrijver [6],
and by Theorem 4.2, we have the following result.

Theorem 4.3. Let (D,M,S, π) be a matroid-based rooted-digraph and c a cost function on the
set of arcs of D. If there exists a matroid-based packing of rooted-arborescences in (D,M,S, π)
then one of minimum cost can be found in polynomial time.
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5 Final remarks

We finish the paper with a related problem. Given a matroid-based rooted-digraph (D,M,S, π)
where M has rank function rM and a bound b : V → Z, an (M, b)-packing of rooted-
arborescences is a set {(T1, s1), . . . , (T|S|, s|S|)} of pairwise arc-disjoint rooted-arborescences such
that rM({si ∈ S : v ∈ V (Ti)}) ≥ b(v) for all v ∈ V . When the function b is constant, using
Theorem 1.6 and matroid truncation, one can derive a characterization of matroid-based rooted-
digraphs admitting an (M, b)-packing of rooted-arborescences. On the other hand, for general
b, the problem turns out to be NP-complete since it contains the disjoint Steiner arborescences
problem that is to find 2 arc-disjoint r-arborescences both covering a specified subset of vertices.
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