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Abstract

We provide the directed counterpart of a slight extension of Katoh and Tanigawa’s result
[8] on rooted-tree decompositions with matroid constraints. Our result characterizes digraphs
having a packing of arborescences with matroid constraints. It is a proper extension of Edmonds’
result [1] on packing of spanning arborescences and implies — using a general orientation result
of Frank [4] — the above result of Katoh and Tanigawa.

We also give a complete description of the convex hull of the incidence vectors of the matroid-
based packings of arborescences and prove that the minimum cost version of the problem can
be solved in polynomial time.

1 Introduction

Let G = (V, E) be a graph. For a vertex set X of G, E(X) denotes the set of edges of G with
both extremities in X. A tree is a connected cycle free graph. A subgraph H of G is called
spanning if its vertex set V(H) coincides with V.

Our starting point is the following result of Tutte [10] and Nash-Williams [9] on packing of
spanning trees. For a partition P of V, eq(P) denotes the number of edges of G between the
different members of P. We always suppose that the members of P are not empty. Following
Frank [5], G is called k-partition-connected if

eq(P) > k(|P| - 1) for every partition P of V. (1)

Theorem 1.1 (Tutte [10], Nash-Williams [9]). There exist k edge-disjoint spanning trees in a
graph G = (V, E) if and only if G is k-partition-connected.

Let D = (V,A) be a digraph. For a vertex set X of D, we denote by D[X] the induced
subgraph of D on X, by R, (X) the set of arcs entering X and we define the in-degree of X as
pp(X) = |R,(X)|. For the sake of convenience, we will not distinguish the vertex v from the
set {v}. We say that a vertex v is reachable from a vertex w in D if there exists a directed path
from u to v in D. We say that D is an r-arborescence if D is a directed tree, r is a vertex of D
of in-degree 0 and all the other vertices of D are of in-degree 1. We note that an r-arborescence
may consist of only the vertex r and no arcs. Note also that an r-arborescence has a unique
vertex of in-degree 0, namely r. A subgraph H of D is called spanning if its vertex set V(H)
coincides with V. It is well-known that a spanning r-arborescence of D exists if and only if every
non-empty vertex set not containing r has in-degree at least 1.
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The directed counterpart of Theorem 1.1 is the following result of Edmonds [1] on packing
of spanning r-arborescences. Following Frank [5], D is called k-rooted-connected if

pp(X) >k for all non-empty X C V' \ r. (2)

Theorem 1.2 (Edmonds [1]). There exist k arc-disjoint spanning r-arborescences of a digraph
D = (V, A) if and only if D is k-rooted-connected.

Frank [2] showed how to deduce Theorem 1.1 from Theorem 1.2. He proved that (1) is the
necessary and sufficient condition for the undirected graph G to have an orientation D that
satisfies (2). Then, by Theorem 1.2, D contains k arc-disjoint spanning r-arborescences that
provide the k edge-disjoint spanning trees in G.

A function b : 2% — 7Z is called submodular (respectively intersecting submodular) if for all
X,Y C Q (resp. for all X,Y C Q that are intersecting),

b(X)+bY) > b(XNY)+bXUY).

A function p : 2% — Z is called supermodular if —p is submodular. Note that the in-degree
function pp of a digraph D is submodular.

Let M be a matroid on S with rank function rx. It is well-known that r,4 is monotone
non-decreasing and submodular. A set Q C S is independent if rp(Q) = |Q|. Recall that every
subset of an independent set is independent. A maximal independent set is a base of M. Each
base has the same size, namely 7 (S). Two elements s and s’ of S are called parallel if s and s are
independent but {s, s’} is not. A matroid M is called free if each subset of S is independent, that
is the only base is S. For a set Q C S, we define Span ,(Q) = {s € S: rm(QU {s}) =rm(Q)}.
The set Q is called a spanning set of M if Span,,(Q) = S.

A matroid-based rooted-graph is a quadruple (G, M,S, ) where G = (V, E) is a graph, M

is a matroid on the set S = {sy,...,s;} and 7 is a map from S to V. We may think of 7 as a
placement of the elements of S at vertices of V' and different elements of S may be placed at the
same vertex. The elements {sq,...,s;} placed at the vertices of V' are called the roots. In this

paper t will always denote the size of S. For X C V, we denote by Sx the set 7—!(X) that is
the set of roots placed in X. A matroid-based rooted-digraph is defined similarly in which case
the graph is directed.

A rooted-tree is a pair (T,s) where T is a tree and s is an element of S placed at a vertex of
the tree. We say that s is the root of the rooted-tree (T',s). We note that the tree may consist
of only one vertex and no edges.

The following definition was introduced by Katoh and Tanigawa [8]. A matroid-based packing
of rooted-trees of (G, M,S,m) is a set {(T1,s1),...,(Ts,s¢)} (where S = {sy,...,s;:}) of pairwise
edge-disjoint rooted-trees such that for each v € V, the set {s; € S: v € V(T;)} forms a base of
M. Note that the trees are not necessarily spanning and each vertex of G belongs to exactly
rm(S) trees.

Figure 1: A matroid-based packing of rooted-trees where the set
of the independent sets of the matroid on S = {s;,sy,s3} is 2%\ S.

The following result characterizes matroid-based rooted-graphs that have a matroid-based
packing of rooted-trees. It will be derived from its directed counterpart (Theorem 1.6) at the



end of this section. We say that the map 7 is M-independent if S, is independent in M for all
v € V. The quadruple (G, M, S, ) is called partition-connected if

eq(P) > rm(S)|P| — Z rm(Sx) for every partition P of V.
XeP

Theorem 1.3. Let (G, M,S, ) be a matroid-based rooted-graph. There exists a matroid-based
packing of rooted-trees in (G, M,S,m) if and only if ™ is M-independent and (G, M,S, ) is
partition-connected.

If M is the free matroid then S is the only base of M so a matroid-based packing of rooted-
trees consists of spanning trees and thus the problem of matroid-based packing of rooted-trees
and that of packing of spanning trees coincide. Hence Theorem 1.3 is a proper extension of
Theorem 1.1. In [8], Theorem 1.3 is implicitly obtained in the proof of the following result.
A rooted-component of (G, M,S,7) is a pair (C,s) where C is a connected subgraph of G and

s & SV(C)-

Theorem 1.4 (Katoh and Tanigawa [8]). Let (G, M,S,m) be a matroid-based rooted-graph.
Then (G, M, S, ) can be decomposed into rooted-components (C1,s1), ..., (Cy,s¢) such that the
set {s; € S :v € V(C})} is a spanning set of M for every v € V if and only if (G, M,S,x) is
partition-connected.

Katoh and Tanigawa deduced Theorem 1.4 (and, implicitly, Theorem 1.3) from its dual form
given below. We show that Theorem 1.3 also implies Theorem 1.5.

Theorem 1.5 (Katoh and Tanigawa [8]). Let (G, M,S,w) be a matroid-based rooted-graph.
Let M be of rank k with rank function ryq. Then (G, M,S, ) admits a matroid-based rooted-
tree decomposition if and only if ™ is M-independent, |E| + |S| = k|V| and |E(X)| + |Sx| <
E|X| —k+rm(Sx) for all non-empty X C V.

Proof. The necessity of the conditions is pretty straightforward as one can see in [8].

Now suppose that the conditions hold. For every partition P of V', by the inequality applied
for X € P and by |E|+[S| = k|V|, we have eq(P) = |E|=>_ xcp |E(X)| > |E|=)_ xcp (k| X|—k+
rm(Sx)—[Sx|) = k|P| =3 xep "m(Sx). Hence (G, M, S, 7) is partition-connected. Then, since
7 is M-independent, Theorem 1.3 implies that (G, M, S, ) admits a matroid-based packing of
rooted-trees which, by |E| + |S| = k|V|, must be a matroid-based rooted-tree decomposition of

(G, M,S, ). [ ]

The main contribution of the present paper is to mimic Frank’s approach (mentioned above
on packing of spanning trees) for matroid-based packing of rooted-trees. We provide the directed
counterpart Theorem 1.6 of Theorem 1.3, a short proof of Theorem 1.6 and we show that it
implies Theorem 1.3 (and hence Theorem 1.4 and Theorem 1.5) via an orientation theorem of
Frank [4].

A rooted-arborescence is a pair (T,s) where T is an r-arborescence for some vertex r and s
is an element of S placed at r. We say that s is the root of the rooted-arborescence (T,s). We
note that a rooted-arborescence may consist of only one vertex and no arcs.

Inspired by the definition of Katoh and Tanigawa, we define an matroid-based packing of
rooted-arborescences of (D, M,S,n) as a set {(11,s1),...,(Tt,st)} (where S = {s1,...,s:}) of
pairwise arc-disjoint rooted-arborescences such that for each v € V', the set {s; € S: v € V(T;)}
forms a base of M. For a better understanding, let us mention that the rooted-arborescences are
not necessarily spanning and each vertex of D belongs to exactly 7((S) rooted-arborescences.

Our main result is the following theorem. The quadruple (D, M,S, ) is called rooted-
connected if

pp(X) > rm(S) — rMm(Sx) for all non-empty X C V. (3)
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Figure 2: A matroid-based packing of rooted-arborescences where the set
of the independent sets of the matroid on S = {s;,sy,s3} is 2%\ S.

Theorem 1.6. Let (D, M,S,7) be a matroid-based rooted-digraph. There exists a matroid-
based packing of rooted-arborescences in (D, M,S,7) if and only if m is M-independent and
(D, M,S, ) is rooted-connected.

If M is the free matroid and 7 places every element of S at a single vertex r of D then
the problem of matroid-based packing of rooted-arborescences and that of packing of spanning
r-arborescences coincide. Hence Theorem 1.6 is a proper extension of Theorem 1.2.

Let us recall the following general orientation result of Frank [4].

Theorem 1.7 (Frank [4]). Let G = (V,E) be a graph and h : 2V — Z, an intersecting
supermodular non-negative non-increasing set-function. There exists an orientation D of G
such that pp(X) > h(X) for all non-empty X C V if and only if for every partition P of V,

ea(P) > > h(X).

XeP

Theorem 1.7 immediately implies the following corollary by taking h(X) = 7, (S) —rm(Sx).

Corollary 1.1. Let (G, M,S, ) be a matroid-based rooted-graph. There exists an orientation D
of G such that (D, M,S, ) is rooted-connected if and only if (G, M,S, ) is partition-connected.

Let us show that Corollary 1.1 and Theorem 1.6 imply Theorem 1.3.

Proof. (of Theorem 1.3) First suppose that there exists a matroid-based packing {(T4,s1), ..., (Tt,st)}
of rooted-trees in (G, M,S, ). Let D be an orientation of G where each rooted-tree (7;,s;) be-
comes a rooted-arborescence (17,s;). Then {(17,s1),...,(T{,s:)} is a matroid-based packing of
rooted-arborescences in (D, M, S, 7). By Theorem 1.6, 7 is M-independent and (D, M, S, ) is
rooted-connected and hence, by Corollary 1.1, (G, M, S, ) is partition-connected.
Now suppose that 7 is M-independent and (G, M, S, ) is partition-connected. By Corol-
lary 1.1, there exists an orientation D of G such that (D, M, S, 7) is rooted-connected. Then, by
Theorem 1.6, there exists a matroid-based packing of rooted-arborescences in (D, M, S, ) which
provides, by forgetting the orientation, a matroid-based packing of rooted-trees in (G, M, S, ).
|

2 Proof of the main theorem

First we prove the necessity of the conditions.

Proof. (of necessity in Theorem 1.6) Suppose that there exists a matroid-based packing

{(Th,s1),...,(Tt,st)} of rooted-arborescences in (D, M,S,m). Let v be an arbitrary vertex of
V and X a vertex set containing v. Then B := {s; € S : v € V(T;)} forms a base of M. Let
By = BNSx and By = B\ Sx. Then, since B; is independent in M and S, C By, 7 is M-
independent. Moreover, since r 4 is monotone, |B1| = ry(B1) < ra(Sx). For each root s; € Bs,
there exists an arc of T; that enters X. Since the rooted-arborescences are arc-disjoint, we have
pp(X) > |Ba| = |B| — |B1]| > rm(S) — rm(Sx) that is (D, M, S, 7) is rooted-connected. |



Before proving the sufficiency of the conditions we establish a technical claim.

Let us introduce the following definitions. A vertex set X is called tight if pp(X) = rm(S) —
rm(Sx). For vertex sets X and Y, we say that Y dominates X if Sx C Span ,(Sy). Note that
since, for Q C S, Span(Span,,(Q)) = Span,,(Q), domination is a transitive relation. We say
that an arc uv is bad if v dominates u, otherwise it is good. We note that in a matroid-based
packing of rooted-arborescences only good arcs uv can be used in a rooted-arborescence whose
root is placed at u, since there must exist s € S,, such that S, Us is independent in M.

Claim 2.1. Suppose that (D, M,S, ) is rooted-connected. Let X be a tight set and v a vertex
of X.

(a) If Y is a tight set that contains v, then X NY and X UY are tight. Moreover, if s €
Span (Sx) N Span ,(Sy), then s € Span (Sxny)-

(b) If no good arc exists in D[X], then v dominates X.

Proof. (a) If we have s, then let o = s, otherwise let ¢ = (). By the monotonicity and the
submodularity of rxq, s € Span 4(Sx)NSpan (Sy), the tightness of X and Y, the submodularity
of pp, X NY # 0 and (3), we have r\((Sxny) + "m(Sxuy) = rm(Sx NSy) + rpm(Sx USy) <
rm((SxNSy )Uo)+ram ((SxUSy )Uo) < rag(SxUo)+ra(SyUo) = ra(Sx)+rm(Sy) = rm(S)—
pp(X)+7Mm(S) = pp(Y) < 1pa(S) = pp(XNY) +7rpm(S) = pp (X UY) < v (Sxry) +7ra(Sxuy)-
Hence equality holds everywhere and (a) follows.

(b) Let us denote by Y the set of vertices from which v is reachable in D[X]. We show that
v dominates Y and Y dominates X and then, since domination is transitive, (b) follows.

For all y € Y, there exists a directed path y = v;,...,v; = v from y to v in D[X]. Since no
good arc exists in D[X], Sy =Sy, € -+ C Span(Sy,) = Spany(Sy). Hence Sy =,y Sy C
Span ,(S,) and v dominates Y.

By the definition of Y, every arc of D that enters Y enters X as well. Then, by (3), the
tightness of X and the monotonicity of ryq, we have rp((S) — ram(Sy) < pp(Y) < pp(X) =
Tm(S) —Tm(Sx) < 7rm(S) — rm(Sy). Thus equality holds everywhere and Y dominates X. m

Now we can prove the main result.

Proof. (of sufficiency in Theorem 1.6) We prove it by induction on |A|. We have two cases.

Case 1 : No good arc exists. (This contains the case |A| =0.)

Then {(v,s) : v € V,s € S,} forms a matroid-based packing of rooted-arborescences in
(D, M, S, 7). Indeed, since V is tight, Claim 2.1(b) implies that S, is a spanning set of M and
hence, since 7 is M-independent, S, is a base of M for all v € V.

Case 2 : At least one good arc exists.

For a good arc uv € A and s € S, \ Span(S,), let D' = D —uwv, S’ the set obtained by adding
a new element s’ to S, M’ the matroid on S’ obtained from M by considering s’ as an element
parallel to s and 7’ the placement of S’ in V obtained from 7 by placing the new element s’ at
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Figure 3: Changing rooted-arborescences.



By the choice of s and since 7 is M-independent, it follows that 7’ is M’-independent. If
the matroid-based rooted-digraph (D', M’,S’, 7’} is rooted-connected, then, by induction, there
exists a matroid-based packing P’ of rooted-arborescences in (D', M’/ S’ 7). Since s and s’
are parallel in M’, the rooted-arborescences (T, s) and (T",s’) of P’ are vertex disjoint, so
(T",s) = (T'UT'Uuv,s) is a rooted-arborescence. Then (P U{(T",s)}) \ {(T,s),(T",s')} is a
matroid-based packing of rooted-arborescences in (D, M, S, 7). Hence the proof of the theorem
is reduced to the proof of the following claim.

Claim 2.2. There exist a good arc uv and s € Sy, \ Span(S,) such that (D', M’,S' ') is rooted-
connected.

Proof. Assume that the claim is false. Let uv € A be a good arc and s € S, \ Span(S,). By
assumption, there exists () # X5 C V such that pp(Xs) < rm(S) —rar(S,)- Hence, by (3) and
the monotonicity of rav. ppr(Xs) - 1 > ppr(Xe) + pu(Xe) = pp(Xe) > 7a1(S) — ran(Sx,) >
TMm(S) =7 (S,) = ppr(Xs)+1, so equality holds everywhere and thus uv enters X, X is tight
in (D, M,S,n) and s € Span,(Sx,). Hence, by Claim 2.1(a), X = Uses,\Span(s,)Xs is tight
and, by v € X, S, = (Sy \ Span(S,)) U (S, N Span(S,)) € Span(Sx) U Span(Sx) = Span(Sx).
So we proved that

every good arc uv enters a tight set X that dominates . (4)

Among all pairs (uv, X) satisfying (4) choose one with X minimal.

Since X dominates u but v does not dominate u, v does not dominate X. Then, by
Claim 2.1(b), there exists a good arc v'v' in D[X]. Then, by (4), v'v' enters a tight set Y
that dominates u/. By v € X NY, the tightness of X and Y, v/ € X, S,y C Span ,(Sy) and
Claim 2.1(a), we have that X N'Y is tight and S,/ C Span,,(Sxny). Since the good arc u'v/
enters the tight set X NY that dominates v’ and X NY is a proper subset of X (since v’ € X\Y),
this contradicts the minimality of X. [ |

3 Polyhedral aspects

In this section we study a polyhedron describing the matroid-based packings of rooted-arborescences.

We need the following general result of Frank [3].

Theorem 3.1 (Frank [3]). Let D = (V, A) be a digraph, p : 2V — 7, a non-negative intersecting
supermodular set-function such that pp(Z) > p(Z) for every Z C V. Then the polyhedron
defined by the following linear system is integer:

1>x(a) >0 for all a € A,
z(Rp(X)) = p(X) for all non-empty X C V.
The following theorem is a corollary of Theorem 1.6 and Theorem 3.1.

Theorem 3.2. Let (D = (V,A),M,S,m) be a matroid-based rooted-digraph where M is of
rank k with rank function rrq. There exists a matroid-based packing of rooted-arborescences in
(D, M,S, ) if and only if the polyhedron Paqp defined by the linear system

1>xz(a) >0 foralla e A, (5)
r(Rp(X)) >k —rm(Sx) for all non-empty X C 'V, (6)
z(A) = kV| -5 (7)

is not empty. In this case, Py p is integer and its vertices are the characteristic vectors of the
arc sets of the matroid-based packings of rooted-arborescences in (D, M,S, ).
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Proof. Suppose there exists a matroid-based packing of rooted-arborescences in (D, M,S, )
and call A’ C A its arc set. Let = be the characteristic vector of A’. We have x(A4) = |A'| =
Yyev parlt) = Yoy (b [S,) = KIV| - |8] and a(Rp(X)) = par(X) > k - raq(Sx) for all
non-empty X C V by (3). So z € Ppm,p.

Now suppose that Pyp is not empty. Since the function k — ra¢(Sx) is non-negative
intersecting supermodular and, by (5) and (6), pp(X) > k —ra(Sx) for all non-empty X C V,
Theorem 3.1 implies that the polyhedron P described by (5) and (6) is integer. By (6), for all
x € P,

r(4) = Y a(Rp() = Yk —ra(S)) = Sk =[Sy = VI - ISl ®

veV veV veV

that is, (A) > k|V| —1S| is a valid inequality for P. Then, by (7), Papm,p is a face of the integer
polyhedron P and hence Py p is also integer. Furthermore, for x € Py p, equality holds
everywhere in (8), thus, |S,| = ra(Sy) for all v € V' and hence 7 is M-independent. A vertex
x of Py, p defines an arc set A’ = {a € A, z(a) = 1}. By (6), the matroid-based rooted-digraph
(V, A", M, S, ) is rooted-connected. Therefore, by Theorem 1.6, there exists a matroid-based
packing of rooted-arborescences in ((V, A"), M, S, ) whose arc set is, by (7), equal to A’, and
the theorem follows. n

4 Algorithmic aspects

We use the following theorem proved by Iwata, Fleischer and Fujishige [7] and independently
by Schrijver [11].

Theorem 4.1 (Iwata, Fleischer and Fujishige [7], Schrijver [11]). A submodular function can
be minimized in polynomial time.

In this section we assume that a matroid is given by an oracle for the rank function. The
following theorem is a corollary of Theorem 4.1 and Theorem 1.6.

Theorem 4.2. Let (D, M,S,n) be a matroid-based rooted-digraph. A matroid-based packing
of rooted-arborescences in (D, M,S, ) or a vertex v certifying that 7 is not M-independent or
a vertex set X certifying that (D, M,S, ) is not rooted-connected can be found in polynomial
time.

Proof. By the submodularity of pp(X) + ra(Sx), Theorem 4.1, using the oracle on M and
Theorem 1.6, we can either find a set violating (3) or a vertex certifying that 7 is not M-
independent or certify that there exists a matroid-based packing of rooted-arborescences.

In the latter case, a matroid-based packing of rooted-arborescences can be found in polyno-
mial time following the proof of Theorem 1.6. Using the oracle, test whether each arc is bad
or good. When an arc uv is good, for each s € S, \ Span(S,), determine in polynomial time
whether (D', M’,S’, ') is rooted-connected using the submodularity of pp/(X) + rap (S%), the
oracle for the rank function rp¢ (that is easily computed from rpq) and Theorem 4.1. Either
all arcs are bad or we find a good arc uv and s € S, \ Span(S,) satisfying Claim 2.2. In the
first case, {(v,s) : v € V,s € S,} is the required packing. In the second case, it leads to the
computation of a matroid-based packing of rooted-arborescences in (D', M’, S’ ') where D’
contains less arcs than D. [

By the submodularity of x(R, (X)) +ram(Sx) and by Theorem 4.1, Py p can be separated
in polynomial time. Thus, using the ellipsoid method, by Grotschel, Lovasz and Schrijver [6],
and by Theorem 4.2, we have the following result.

Theorem 4.3. Let (D, M,S, ) be a matroid-based rooted-digraph and ¢ a cost function on the
set of arcs of D. If there exists a matroid-based packing of rooted-arborescences in (D, M,S, )
then one of minimum cost can be found in polynomial time.



5 Final remarks

We finish the paper with a related problem. Given a matroid-based rooted-digraph (D, M, S, )
where M has rank function ryy and a bound b : V. — Z, an (M,b)-packing of rooted-
arborescences is a set {(11,s1), ..., (Tjs|,s|s|)} of pairwise arc-disjoint rooted-arborescences such
that rp({s; € St v € V(T;)}) > b(v) for all v € V. When the function b is constant, using
Theorem 1.6 and matroid truncation, one can derive a characterization of matroid-based rooted-
digraphs admitting an (M, b)-packing of rooted-arborescences. On the other hand, for general
b, the problem turns out to be NP-complete since it contains the disjoint Steiner arborescences
problem that is to find 2 arc-disjoint r-arborescences both covering a specified subset of vertices.
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