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a b s t r a c t

We prove that in a minimally 2-T -connected directed graph, that contains no parallel arcs
entering or leaving a vertex in T , there exists a vertex of in-degree and out-degree 2. This
is a common generalization of two earlier results of Mader (1978), (2002).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let D = (V , A) be a directed graph, or more briefly, a digraph. As usual, ρD and δD denote the in- and out-degree functions
of D. For U,W ⊂ V , U = V \ U, D[U ] denotes the subgraph of D induced by U and dD(U ,W ) denotes the number of arcs
with tail in U \W and head in W \ U .

We say that D is k-arc-connected if |V | ≥ 2 and for every ordered pair (u, v) of vertices, there exist k arc disjoint paths
from u to v. We call D minimally k-arc-connected if D is k-arc-connected and the deletion of any arc destroys this property.
Instead of 1-arc-connected we will use strongly-connected.

Mader [1] provided a constructive characterization of k-arc-connected digraphs. To prove that result he showed the
following theorem. The special case of Theorem 1 when k = 2 will be generalized in this paper.

Theorem 1 (Mader [1]). Every minimally k-arc-connected digraph D contains a vertex v with ρD(v) = δD(v) = k.

The digraph D is said to be k-vertex-connected if |V | ≥ k + 1 and for every ordered pair (u, v) of vertices, there exist k
internally vertex disjoint paths from u to v. We say that D isminimally k-vertex-connected if D is k-vertex-connected and the
deletion of any arc destroys this property.

Mader [2] conjectured that a result similar to Theorem 1 also holds for vertex-connectivity.

Conjecture 1 (Mader [2]). Every minimally k-vertex-connected digraph D contains a vertex v with ρD(v) = δD(v) = k.

Mader [3] settled Conjecture 1 for k = 2.

Theorem 2 (Mader [3]). Every minimally 2-vertex-connected digraph D contains a vertex v with ρD(v) = δD(v) = 2.

For T ⊆ V , the digraph D is called 2-T-connected if |V | ≥ 3 and for every ordered pair (u, v) of vertices, there exist two
paths from u to v that are arc disjoint and internally vertex disjoint in T . This notion generalizes both 2-arc-connectivity
(T = ∅) and 2-vertex-connectivity (T = V ). It is easy to see that D is 2-T -connected if and only if upon deleting any arc or
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any vertex in T , the remaining digraph is strongly-connected. We call D minimally 2-T -connected if D is 2-T -connected and
the deletion of any arc destroys this property.

We provide a common generalization of Theorem 1 for k = 2 and Theorem 2. The proof will follow the ideas of Mader [3].

Theorem 3. Every minimally 2-T -connected digraph D, that contains no parallel arcs entering or leaving a vertex in T contains a
vertex v with ρD(v) = δD(v) = 2.

Note that Theorem 3 implies Theorem 1 for k = 2 (when T = ∅) and Theorem 2 (when T = V , since no parallel arc exists
in a minimally 2-vertex-connected digraph).

We present a short proof of Theorem 3, which is due to an application of the language of bi-sets. For XI ⊆ XO ⊆ V , X
= (XO, XI ) is called a bi-set. The set XI is called the inner-set, XO is the outer-set and w(X)= XO \ XI is the wall of X. If XI = ∅

or XO = V , the bi-set X is called trivial. The complement of X is defined by X= (XI , XO). The intersection and the union of two
bi-sets X = (XO, XI ) and Y = (YO, YI ) are defined as follows:

X ⊓ Y = (XO ∩ YO, XI ∩ YI ),
X ⊔ Y = (XO ∪ YO, XI ∪ YI ).

An arc xy enters X if x ∈ V \ XO and y ∈ XI . The in-degree ρ̂D(X) of X is the number of arcs entering X.
Let T ⊆ V and gT be the modular function defined on subsets of V by gT (∅) = 0, gT (v) = 1 for v ∈ T and gT (v) = 2 for

v ∈ V \ T . Let us introduce the following function:

f TD (X) = ρ̂D(X)+ gT (w(X)).

The following Menger-type result can be readily proved.

Claim 1. D is 2-T -connected if and only if for all nontrivial bi-sets X of V (D),

f TD (X) ≥ 2. (1)

A bi-set X is called tight if f TD (X) = 2. It is easy to verify the following characterization of minimally 2-T -connected
digraphs.

Claim 2. D is minimally 2-T -connected if and only if (1) and the following condition are satisfied:

Every arc of D enters a tight bi-set of D. (2)

The main contribution of the present note is to provide a compact proof simultaneously for Theorem 1 when k = 2 and
for Theorem 2.

2. Proof of Theorem 3

Proof. Suppose that the theorem is false and let D = (V , A) be a counterexample. Let us define the following set: A0
= {xy ∈ A : ρD(y) > 2 and δD(x) > 2}.

Lemma 1. A0 ̸= ∅.

Proof. Suppose that A0 = ∅. If an arc a enters a vertex u of in-degree 2 or leaves a vertex u of out-degree 2, then we say that
u covers a. By A0 = ∅, every arc is covered by at least one of its end-vertices. Since D is a counterexample of the theorem,
a vertex can cover at most 2 arcs and, for all v ∈ V , ρD(v) + δD(v) ≥ 5. Hence, since |V | ≥ 3, we have the following
contradiction: 2|V | ≥ |A| = 1

2

∑
v∈V (ρD(v)+ δD(v)) ≥ 5

2 |V |. □

Let T be the set of bi-sets T so that either T or T is a tight bi-set entered by an arc of A0. By Lemma 1 and (2), T ̸= ∅. Let X
= (XO, XI ) be an element of T such that |XO| + |XI | is minimum. Without loss of generality we may assume that X is a tight
bi-set entered by the arc ab of A0. Indeed, if X is a tight bi-set entered by an arc ab of A0, then let us consider the reversed
digraph

←−
D = (V ,

←−
A ). Then

←−
D is a counterexample to Theorem 3, A′0 = {yx ∈

←−
A : ρ←−D (x) > 2 and δ←−D (y) > 2} =

←−
A 0 and

X is a tight bi-set entered by the arc ba of A′0.
Note that either w(X) = ∅ and ρ̂D(X) = 2, or w(X) ∈ T and ρ̂D(X) = 1.

Lemma 2. There exists no arc xy in A0 such that y ∈ XI and x ∈ XO.

Proof. Suppose there exists an arc xy in A0 such that y ∈ XI and x ∈ XO. By (2), there exists a tight bi-set Y = (YO, YI ) entered
by xy, so Y ∈ T .

Claim 3. XO ∪ YO = V .
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Proof. If the claim is false, then X⊔Y is a nontrivial bi-set. Since y ∈ XI ∩YI , X⊓Y is a nontrivial bi-set. Then, by the tightness
of X and Y, (1) applied for X ⊔ Y and X ⊓ Y and the submodularity of f TD (since ρ̂D is submodular and gT is modular), we have

2+ 2− 2 ≥ f TD (X)+ f TD (Y )− f TD (X ⊔ Y) ≥ f TD (X ⊓ Y) ≥ 2.

Hence equality holds everywhere, so X ⊓ Y is tight. Moreover, X ⊓ Y is entered by xy, that is X ⊓ Y ∈ T and, by x ∈ XO \ YO,
we have |(X ⊓ Y)O| + |(X ⊓ Y)I | < |XO| + |XI |, a contradiction. □

Claim 4. XI ∩ YI = y, w(X ⊓ Y) = ∅ and |w(X)| = |w(Y)| = 1.

Proof. By Y = (YI , YO) ∈ T and the minimality of X , we have

|YI | + |YO| ≥ |XO| + |XI |. (3)

Since X,Y ∈ T , 1 ≥ |w(X)| and 1 ≥ |w(Y)|. Then, by (3), Claim 3 and y ∈ XI ∩ YI , we have

2 ≥ |YO ∩ w(X)| + |w(Y) ∩ XO| ≥ |XI ∩ w(Y)| + 2|XI ∩ YI | + |w(X) ∩ YI | ≥ 2.

Thus we have equality everywhere and the claim follows. □

By xy ∈ A0, Claim 4 and the tightness of X and Y, we have

2 < ρD(y) = ρD(XI ∩ YI ) = ρ̂D(X ⊓ Y) ≤ ρ̂D(X)+ ρ̂D(Y)
= (f TD (X)− gT (w(X)))+ (f TD (Y)− gT (w(Y))) ≤ (2− 1)+ (2− 1) = 2,

a contradiction that completes the proof of Lemma 2. □

Lemma 3. D[XI ] is strongly-connected.

Proof. Suppose there exists ∅ ̸= U ⊂ XI with ρD[XI ](U) = 0. Then, by (1) applied for Z = (ZO, ZI ) = (U ∪ w(X),U), w(Z) =
w(X) and the tightness of X, we have

2 ≤ ρ̂D(Z)+ gT (w(Z)) ≤ ρ̂D(X)+ gT (w(X)) = 2.

Hence, equality holds everywhere, so Z is a tight bi-set with ρ̂D(Z) = ρ̂D(X) thus entered by ab, that is Z ∈ T . By ZI ⊂ XI and
w(X) = w(Z), we have |ZO| + |ZI | < |XO| + |XI |, a contradiction. □

Lemma 4. The following statements hold for V+ = {v ∈ V : ρD(v) > 2 = δD(v)}:

(a) If ρD(v) > 2 and uv ∈ A \ A0, then u ∈ V+.
(b) If XI ̸= b, then XI ⊆ V+.
(c) If XI ̸= b and w(X) ̸= ∅, then w(X) ⊆ V+.

Proof. (a) By ρD(v) > 2 and uv ∈ A \ A0, we have δ(u) = 2, and then, since D is a counterexample, ρD(u) > 2 and hence
u ∈ V+.

(b) By ρD(b) > 2 and (a), all vertices fromwhich b is reachable in D−A0 by a nontrivial path are in V+. Thus, by Lemmas 2
and 3, XI − b ⊆ V+. By XI ̸= b and Lemma 3, there exists an arc bc in D[XI ]. By Lemma 2, c ∈ V+ and (a), we get b ∈ V+.

(c) If w(X) ̸= ∅, then, by ρ̂D(X) = 1 and (1) applied for (XI , XI ), we have dD(w(X), XI ) ≥ 1, so, by Lemma 2, (b) and (a), we
obtain w(X) ⊆ V+. □

We finish the proof by considering the in-degree of XI . We distinguish two cases.

Case 1. If XI = b, then, by ab ∈ A0, the assumption of the theorem and the fact that X is tight, we have the following
contradiction:

2 < ρD(b) = ρ̂D(X)+ dD(w(X), b) ≤ ρ̂D(X)+ gT (w(X)) = 2.

Case 2. If XI ̸= b, then, by the fact that X is a tight bi-set entered by ab, Lemma 4(c), (1) applied for (XI , XI ) and Lemma 4(b),
we have the following contradiction.

3− 2 ≥ ρ̂D(X)+ 2|w(X)| − 2 ≥ ρ̂D(X)+ dD(w(X), XI )− δD(XI )

= ρD(XI )− δD(XI ) =
∑
v∈XI

(ρD(v)− δD(v)) ≥ |XI | ≥ 2.

These contradictions complete the proof of the theorem. □
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