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1. Introduction

Let D = (V, A) be a directed graph, or more briefly, a digraph. As usual, pp, and ép denote the in- and out-degree functions
of D.ForU,W C V,U = V \ U, D[U] denotes the subgraph of D induced by U and dp(U, W) denotes the number of arcs
with tail in U \ W and head in W \ U.

We say that D is k-arc-connected if |V| > 2 and for every ordered pair (u, v) of vertices, there exist k arc disjoint paths
from u to v. We call D minimally k-arc-connected if D is k-arc-connected and the deletion of any arc destroys this property.
Instead of 1-arc-connected we will use strongly-connected.

Mader [1] provided a constructive characterization of k-arc-connected digraphs. To prove that result he showed the
following theorem. The special case of Theorem 1 when k = 2 will be generalized in this paper.

Theorem 1 (Mader [1]). Every minimally k-arc-connected digraph D contains a vertex v with pp(v) = dp(v) = k.

The digraph D is said to be k-vertex-connected if |V| > k + 1 and for every ordered pair (u, v) of vertices, there exist k
internally vertex disjoint paths from u to v. We say that D is minimally k-vertex-connected if D is k-vertex-connected and the
deletion of any arc destroys this property.

Mader [2] conjectured that a result similar to Theorem 1 also holds for vertex-connectivity.

Conjecture 1 (Mader [2]). Every minimally k-vertex-connected digraph D contains a vertex v with pp(v) = ép(v) = k.
Mader [3] settled Conjecture 1 for k = 2.

Theorem 2 (Mader [3]). Every minimally 2-vertex-connected digraph D contains a vertex v with pp(v) = dp(v) = 2.

For T C V, the digraph D is called 2-T-connected if |V| > 3 and for every ordered pair (u, v) of vertices, there exist two
paths from u to v that are arc disjoint and internally vertex disjoint in T. This notion generalizes both 2-arc-connectivity
(T = @) and 2-vertex-connectivity (T = V). It is easy to see that D is 2-T-connected if and only if upon deleting any arc or
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any vertex in T, the remaining digraph is strongly-connected. We call D minimally 2-T-connected if D is 2-T-connected and
the deletion of any arc destroys this property.
We provide a common generalization of Theorem 1 for k = 2 and Theorem 2. The proof will follow the ideas of Mader [3].

Theorem 3. Every minimally 2-T-connected digraph D, that contains no parallel arcs entering or leaving a vertex in T contains a
vertex v with pp(v) = ép(v) = 2.

Note that Theorem 3 implies Theorem 1 for k = 2 (when T = ) and Theorem 2 (when T = V, since no parallel arc exists
in a minimally 2-vertex-connected digraph).

We present a short proof of Theorem 3, which is due to an application of the language of bi-sets. For X; € Xo C V, X
= (Xo, X;) is called a bi-set. The set X; is called the inner-set, X, is the outer-set and w(X) = Xo \ X; is the wall of X. If X; = ¢
or Xo = V, the bi-set X is called trivial. The complement of X is defined by X = (X;, Xp). The intersection and the union of two
bi-sets X = (Xp, X;) and Y = (Yo, Y;) are defined as follows:

XnY = (XoNYo, X NY),
Xuy = (Xo UYo, X UY])

An arc xy enters X ifx € V \ Xp and y € X;. The in-degree pp(X) of X is the number of arcs entering X.

Let T € V and gT be the modular function defined on subsets of V by g7 (%) = 0, g'(v) = 1forv € T and g’ (v) = 2 for
v € V \ T. Let us introduce the following function:

f5 (0X) = po(X) + g (w(X)).

The following Menger-type result can be readily proved.
Claim 1. D is 2-T-connected if and only if for all nontrivial bi-sets X of V(D),

fr(X) = 2. (1)
A bi-set X is called tight if fJ(X) = 2. It is easy to verify the following characterization of minimally 2-T-connected
digraphs.

Claim 2. D is minimally 2-T-connected if and only if (1) and the following condition are satisfied:

Every arc of D enters a tight bi-set of D. (2)

The main contribution of the present note is to provide a compact proof simultaneously for Theorem 1 when k = 2 and
for Theorem 2.

2. Proof of Theorem 3

Proof. Suppose that the theorem is false and let D = (V, A) be a counterexample. Let us define the following set: A
={xy € A: pp(y) > 2 and §p(x) > 2}.

Lemma 1. Ay # 0.

Proof. Suppose that Ay = . If an arc a enters a vertex u of in-degree 2 or leaves a vertex u of out-degree 2, then we say that
u covers a. By Ag = @, every arc is covered by at least one of its end-vertices. Since D is a counterexample of the theorem,
a vertex can cover at most 2 arcs and, for all v € V, pp(v) 4+ §p(v) > 5. Hence, since |[V| > 3, we have the following
contradiction: 2|V| > |A| = 33", ., (pp(v) + 8p(v)) > 2|V|. O

Let 7" be the set of bi-sets T so that either T or T is a tight bi-set entered by an arc of Ay. By Lemma 1 and (2), 7 # @. Let X
= (Xo, X;) be an element of 7 such that |Xp| + |X;| is minimum. Without loss of generality we may assume that X is a tight
bi-set en(tgred by t(h_e arc ab gi Ao. Indeed, if X is a tight bi-set entered by an arc ﬁb of Ap, then let us consider the r(e_versed
digraph D = (V, A).Then D is a counterexample to Theorem 3,A; = {yx € A : p45(x) > 2and 54 (y) > 2} = Apand
X is a tight bi-set entered by the arc ba of Aj.

Note that either w(X) = @ and pp(X) = 2, or w(X) € T and pp(X) = 1.

Lemma 2. There exists no arc Xy in Ag such that y € X; and x € Xo.

Proof. Suppose there exists an arc xy in Ag such thaty € X; and x € Xp. By (2), there exists a tight bi-set Y = (Y, Y;) entered
by xy,soY e T.

Claim 3. XoUYo =V.
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Proof. If the claim is false, then XY is a nontrivial bi-set. Since y € X; NY;, XMY is a nontrivial bi-set. Then, by the tightness
of Xand Y, (1) applied for X 'Y and X 1Y and the submodularity of f] (since pp is submodular and g" is modular), we have

2+2-22 {0+ (V)= frXuY) = fr(XnY) = 2.
Hence equality holds everywhere, so X MY is tight. Moreover, X MY is entered by xy, thatis XY € 7 and, by x € Xo \ Yo,
we have |(X M Y)o| + |[(X11Y)| < |Xo| + |X;|, a contradiction. O
Claim4. X, NY; =y, w(XNY) =@ and |lw(X)| = |w(Y)| = 1.
Proof. By Y = (Y}, Yp) € T and the minimality of X , we have

Y1l + [Yol = [Xo| + 1X[. 3)
Since X,Y € 7, 1 > |w(X)| and 1 > |w(Y)|. Then, by (3), Claim 3 and y € X; N Y}, we have

2 = [Yo Nw(X)| + [w(¥) N Xo| = IXi N w(Y)| +2X; N Y| + [w(X) N Y| > 2.
Thus we have equality everywhere and the claim follows. O

By xy € Ao, Claim 4 and the tightness of X and Y, we have
2 < pp(y) = pp(X; N Y;) = pp(XMY) < pp(X) + pp(Y)
=R X)—g" XM+ B —gwM)<2-1+2-1)=2,

a contradiction that completes the proof of Lemma 2. O

Lemma 3. D[X;] is strongly-connected.

Proof. Suppose there exists ¥ # U C X; with ppx,(U) = 0. Then, by (1) applied for Z = (Zp, Z;) = (U U w(X), U), w(Z) =
w(X) and the tightness of X, we have
2 < pp(2) + &' (w(2)) < pp(X) + " (w(X)) = 2.

Hence, equality holds everywhere, so Z is a tight bi-set with pp(Z) = pp(X) thus entered by ab, thatisZ € 7.By Z; C X; and
w(X) = w(Z), we have |Zp| + |Z;| < |Xo| + |X;|, a contradiction. O

Lemma 4. The following statements hold for V. = {v € V : pp(v) > 2 = p(v)}:
(@) If pp(v) > 2anduv € A\ Ay, thenu € V,.

(b) Ile # b, then XI - VJr.
(c) If X; # band w(X) # @, then w(X) C V,.

Proof. (a) By pp(v) > 2 and uv € A\ Ag, we have §(u) = 2, and then, since D is a counterexample, pp(u) > 2 and hence
ueV,.

(b) By pp(b) > 2 and (a), all vertices from which b is reachable in D — Ay by a nontrivial path are in V. Thus, by Lemmas 2
and 3,X; — b C V,.By X; # b and Lemma 3, there exists an arc bc in D[X;]. By Lemma 2, ¢ € V, and (a), we getb € V.

(o) If w(X) # @, then, by pp(X) = 1and (1) applied for (X, X;), we have dp(w(X), X;) > 1, so, by Lemma 2, (b) and (a), we
obtainw(X)C V.. O

We finish the proof by considering the in-degree of X;. We distinguish two cases.

Case 1. If X; = b, then, by ab € Ao, the assumption of the theorem and the fact that X is tight, we have the following
contradiction:

2 < pp(b) = pp(X) + dp(w(X), b) < pp(X) + &' (w(X)) = 2.
Case 2.If X; # b, then, by the fact that X is a tight bi-set entered by ab, Lemma 4(c), (1) applied for (X;, X;) and Lemma 4(b),
we have the following contradiction.

3 -2 > pp(X)+ 2[w(X)] — 2 = pp(X) + dp(w(X), X;) — 8p(X;)
Pp(X1) — dp(X1) = Z(PD(U) —p(v)) = 1X1] = 2.

veX;

These contradictions complete the proof of the theorem. 0O
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