Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On minimally 2-T-connected directed graphs

Olivier Durand de Gevigney^a, Zoltán Szigeti^{b,*}

^a Routific, Vancouver, British Columbia, Canada

^b University Grenoble Alpes, Grenoble INP, CNRS, G-SCOP, 48 Avenue Félix Viallet, Grenoble, 38000, France

ARTICLE INFO

ABSTRACT

Article history: Received 14 December 2017 Accepted 2 April 2018 Available online 26 April 2018

Keywords: Arc-connectivity Vertex-connectivity

1. Introduction

Let D = (V, A) be a directed graph, or more briefly, a digraph. As usual, ρ_D and δ_D denote the *in*- and *out-degree* functions of D. For $U, W \subset V, \overline{U} = V \setminus U$, D[U] denotes the subgraph of D induced by U and $d_D(U, W)$ denotes the number of arcs with tail in $U \setminus W$ and head in $W \setminus U$.

We prove that in a minimally 2-T-connected directed graph, that contains no parallel arcs

entering or leaving a vertex in T, there exists a vertex of in-degree and out-degree 2. This

is a common generalization of two earlier results of Mader (1978), (2002).

We say that *D* is *k*-arc-connected if $|V| \ge 2$ and for every ordered pair (u, v) of vertices, there exist *k* arc disjoint paths from *u* to *v*. We call *D* minimally *k*-arc-connected if *D* is *k*-arc-connected and the deletion of any arc destroys this property. Instead of 1-arc-connected we will use strongly-connected.

Mader [1] provided a constructive characterization of *k*-arc-connected digraphs. To prove that result he showed the following theorem. The special case of Theorem 1 when k = 2 will be generalized in this paper.

Theorem 1 (Mader [1]). Every minimally k-arc-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = k$.

The digraph *D* is said to be *k*-vertex-connected if $|V| \ge k + 1$ and for every ordered pair (u, v) of vertices, there exist *k* internally vertex disjoint paths from *u* to *v*. We say that *D* is minimally *k*-vertex-connected if *D* is *k*-vertex-connected and the deletion of any arc destroys this property.

Mader [2] conjectured that a result similar to Theorem 1 also holds for vertex-connectivity.

Conjecture 1 (Mader [2]). Every minimally k-vertex-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = k$.

Mader [3] settled Conjecture 1 for k = 2.

Theorem 2 (Mader [3]). Every minimally 2-vertex-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = 2$.

For $T \subseteq V$, the digraph *D* is called 2-*T*-connected if $|V| \ge 3$ and for every ordered pair (u, v) of vertices, there exist two paths from *u* to *v* that are arc disjoint and internally vertex disjoint in *T*. This notion generalizes both 2-arc-connectivity $(T = \emptyset)$ and 2-vertex-connectivity (T = V). It is easy to see that *D* is 2-*T*-connected if and only if upon deleting any arc or

* Corresponding author.

https://doi.org/10.1016/j.dam.2018.04.003 0166-218X/© 2018 Elsevier B.V. All rights reserved.

© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: odegevigney@gmail.com (O. Durand de Gevigney), zoltan.szigeti@grenoble-inp.fr (Z. Szigeti).

any vertex in *T*, the remaining digraph is strongly-connected. We call *D* minimally 2-*T*-connected if *D* is 2-*T*-connected and the deletion of any arc destroys this property.

We provide a common generalization of Theorem 1 for k = 2 and Theorem 2. The proof will follow the ideas of Mader [3].

Theorem 3. Every minimally 2-*T*-connected digraph *D*, that contains no parallel arcs entering or leaving a vertex in *T* contains a vertex *v* with $\rho_D(v) = \delta_D(v) = 2$.

Note that Theorem 3 implies Theorem 1 for k = 2 (when $T = \emptyset$) and Theorem 2 (when T = V, since no parallel arc exists in a minimally 2-vertex-connected digraph).

We present a short proof of Theorem 3, which is due to an application of the language of bi-sets. For $X_I \subseteq X_0 \subseteq V$, $X = (X_0, X_I)$ is called a *bi-set*. The set X_I is called the *inner-set*, X_0 is the *outer-set* and $\mathbf{w}(X) = X_0 \setminus X_I$ is the *wall* of X. If $X_I = \emptyset$ or $X_0 = V$, the bi-set X is called *trivial*. The *complement* of X is defined by $\overline{X} = (\overline{X_I}, \overline{X_0})$. The *intersection* and the *union* of two bi-sets $X = (X_0, X_I)$ and $Y = (Y_0, Y_I)$ are defined as follows:

 $X \sqcap Y = (X_0 \cap Y_0, X_I \cap Y_I),$ $X \sqcup Y = (X_0 \cup Y_0, X_I \cup Y_I).$

An arc *xy* enters X if $x \in V \setminus X_0$ and $y \in X_1$. The *in-degree* $\hat{\rho}_D(X)$ of X is the number of arcs entering X. Let $T \subseteq V$ and g^T be the modular function defined on subsets of V by $g^T(\emptyset) = 0$, $g^T(v) = 1$ for $v \in T$ and $g^T(v) = 2$ for $v \in V \setminus T$. Let us introduce the following function:

 $\boldsymbol{f}_{\boldsymbol{D}}^{T}(\mathsf{X}) = \hat{\rho}_{\boldsymbol{D}}(\mathsf{X}) + \boldsymbol{g}^{T}(\boldsymbol{w}(\mathsf{X})).$

The following Menger-type result can be readily proved.

Claim 1. D is 2-T-connected if and only if for all nontrivial bi-sets X of V(D),

 $f_{\mathrm{D}}^{\mathrm{T}}(\mathsf{X}) > 2.$

A bi-set X is called *tight* if $f_D^T(X) = 2$. It is easy to verify the following characterization of minimally 2-*T*-connected digraphs.

Claim 2. D is minimally 2-T-connected if and only if (1) and the following condition are satisfied:

Every arc of D enters a tight bi-set of D.

The main contribution of the present note is to provide a compact proof simultaneously for Theorem 1 when k = 2 and for Theorem 2.

2. Proof of Theorem 3

Proof. Suppose that the theorem is false and let D = (V, A) be a counterexample. Let us define the following set: $A_0 = \{xy \in A : \rho_D(y) > 2 \text{ and } \delta_D(x) > 2\}.$

Lemma 1. $A_0 \neq \emptyset$.

Proof. Suppose that $A_0 = \emptyset$. If an arc *a* enters a vertex *u* of in-degree 2 or leaves a vertex *u* of out-degree 2, then we say that *u* covers *a*. By $A_0 = \emptyset$, every arc is covered by at least one of its end-vertices. Since *D* is a counterexample of the theorem, a vertex can cover at most 2 arcs and, for all $v \in V$, $\rho_D(v) + \delta_D(v) \ge 5$. Hence, since $|V| \ge 3$, we have the following contradiction: $2|V| \ge |A| = \frac{1}{2} \sum_{v \in V} (\rho_D(v) + \delta_D(v)) \ge \frac{5}{2} |V|$. \Box

Let \mathcal{T} be the set of bi-sets T so that either T or \overline{T} is a tight bi-set entered by an arc of A_0 . By Lemma 1 and (2), $\mathcal{T} \neq \emptyset$. Let X = (X_0, X_I) be an element of \mathcal{T} such that $|X_0| + |X_I|$ is minimum. Without loss of generality we may assume that X is a tight bi-set entered by the arc **ab** of A_0 . Indeed, if \overline{X} is a tight bi-set entered by an arc **ab** of A_0 , then let us consider the reversed digraph $\overline{D} = (V, \overline{A})$. Then \overline{D} is a counterexample to Theorem 3, $A'_0 = \{yx \in \overline{A} : \rho_{\overline{D}}(x) > 2 \text{ and } \delta_{\overline{D}}(y) > 2\} = \overline{A}_0$ and X is a tight bi-set entered by the arc **b** of A'_0 .

Note that either $w(X) = \emptyset$ and $\hat{\rho}_D(X) = 2$, or $w(X) \in T$ and $\hat{\rho}_D(X) = 1$.

Lemma 2. There exists no arc xy in A_0 such that $y \in X_1$ and $x \in X_0$.

Proof. Suppose there exists an arc *xy* in A_0 such that $y \in X_1$ and $x \in X_0$. By (2), there exists a tight bi-set $Y = (Y_0, Y_1)$ entered by *xy*, so $Y \in \mathcal{T}$.

Claim 3. $X_0 \cup Y_0 = V$.

(2)

(1)

Proof. If the claim is false, then $X \sqcup Y$ is a nontrivial bi-set. Since $y \in X_I \cap Y_I$, $X \sqcap Y$ is a nontrivial bi-set. Then, by the tightness of X and Y, (1) applied for $X \sqcup Y$ and $X \sqcap Y$ and the submodularity of f_D^T (since $\hat{\rho}_D$ is submodular and g^T is modular), we have

$$2+2-2 \ge f_D^T(X) + f_D^T(Y) - f_D^T(X \sqcup Y) \ge f_D^T(X \sqcap Y) \ge 2.$$

Hence equality holds everywhere, so $X \sqcap Y$ is tight. Moreover, $X \sqcap Y$ is entered by xy, that is $X \sqcap Y \in \mathcal{T}$ and, by $x \in X_0 \setminus Y_0$, we have $|(X \sqcap Y)_0| + |(X \sqcap Y)_l| < |X_0| + |X_l|$, a contradiction. \Box

Claim 4. $X_I \cap Y_I = y$, $w(X \cap Y) = \emptyset$ and |w(X)| = |w(Y)| = 1.

Proof. By $\overline{Y} = (\overline{Y_I}, \overline{Y_0}) \in \mathcal{T}$ and the minimality of X, we have

$$|Y_{I}| + |Y_{O}| \ge |X_{O}| + |X_{I}|.$$

Since X, $Y \in T$, $1 \ge |w(X)|$ and $1 \ge |w(Y)|$. Then, by (3), Claim 3 and $y \in X_I \cap Y_I$, we have

 $2 \ge |\overline{Y_0} \cap w(\mathsf{X})| + |w(\mathsf{Y}) \cap \overline{X_0}| \ge |X_I \cap w(\mathsf{Y})| + 2|X_I \cap Y_I| + |w(\mathsf{X}) \cap Y_I| \ge 2.$

Thus we have equality everywhere and the claim follows. \Box

By $xy \in A_0$, Claim 4 and the tightness of X and Y, we have

$$2 < \rho_D(\mathbf{y}) = \rho_D(X_I \cap Y_I) = \hat{\rho}_D(\mathbf{X} \cap \mathbf{Y}) \le \hat{\rho}_D(\mathbf{X}) + \hat{\rho}_D(\mathbf{Y}) = (f_D^T(\mathbf{X}) - g^T(w(\mathbf{X}))) + (f_D^T(\mathbf{Y}) - g^T(w(\mathbf{Y}))) \le (2 - 1) + (2 - 1) = 2,$$

a contradiction that completes the proof of Lemma 2. \Box

Lemma 3. $D[X_I]$ is strongly-connected.

Proof. Suppose there exists $\emptyset \neq U \subset X_I$ with $\rho_{D[X_I]}(U) = 0$. Then, by (1) applied for $Z = (Z_0, Z_I) = (U \cup w(X), U), w(Z) = w(X)$ and the tightness of X, we have

$$2 \leq \hat{\rho}_D(\mathsf{Z}) + g^T(w(\mathsf{Z})) \leq \hat{\rho}_D(\mathsf{X}) + g^T(w(\mathsf{X})) = 2.$$

Hence, equality holds everywhere, so Z is a tight bi-set with $\hat{\rho}_D(Z) = \hat{\rho}_D(X)$ thus entered by ab, that is $Z \in \mathcal{T}$. By $Z_I \subset X_I$ and w(X) = w(Z), we have $|Z_O| + |Z_I| < |X_O| + |X_I|$, a contradiction. \Box

Lemma 4. The following statements hold for $V_+ = \{v \in V : \rho_D(v) > 2 = \delta_D(v)\}$:

- (a) If $\rho_D(v) > 2$ and $uv \in A \setminus A_0$, then $u \in V_+$.
- (b) If $X_I \neq b$, then $X_I \subseteq V_+$.
- (c) If $X_I \neq b$ and $w(X) \neq \emptyset$, then $w(X) \subseteq V_+$.

Proof. (a) By $\rho_D(v) > 2$ and $uv \in A \setminus A_0$, we have $\delta(u) = 2$, and then, since *D* is a counterexample, $\rho_D(u) > 2$ and hence $u \in V_+$.

(b) By $\rho_D(b) > 2$ and (a), all vertices from which *b* is reachable in $D - A_0$ by a nontrivial path are in V_+ . Thus, by Lemmas 2 and 3, $X_l - b \subseteq V_+$. By $X_l \neq b$ and Lemma 3, there exists an arc *bc* in $D[X_l]$. By Lemma 2, $c \in V_+$ and (a), we get $b \in V_+$.

(c) If $w(X) \neq \emptyset$, then, by $\hat{\rho}_D(X) = 1$ and (1) applied for (X_I, X_I) , we have $d_D(w(X), X_I) \ge 1$, so, by Lemma 2, (b) and (a), we obtain $w(X) \subseteq V_+$. \Box

We finish the proof by considering the in-degree of X_i . We distinguish two cases.

Case 1. If $X_I = b$, then, by $ab \in A_0$, the assumption of the theorem and the fact that X is tight, we have the following contradiction:

$$2 < \rho_D(b) = \hat{\rho}_D(\mathsf{X}) + d_D(w(\mathsf{X}), b) \le \hat{\rho}_D(\mathsf{X}) + g^T(w(\mathsf{X})) = 2.$$

Case 2. If $X_I \neq b$, then, by the fact that X is a tight bi-set entered by *ab*, Lemma 4(c), (1) applied for $(\overline{X_I}, \overline{X_I})$ and Lemma 4(b), we have the following contradiction.

$$egin{aligned} 3-2 &\geq \hat{
ho}_D(\mathsf{X})+2|w(\mathsf{X})|-2 \geq \hat{
ho}_D(\mathsf{X})+d_D(w(\mathsf{X}),X_I)-\delta_D(X_I)\ &=
ho_D(X_I)-\delta_D(X_I)=\sum_{v\in X_I}(
ho_D(v)-\delta_D(v))\geq |X_I|\geq 2. \end{aligned}$$

These contradictions complete the proof of the theorem. \Box

References

(3)

^[1] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Disc. Math. (1978) 145-164.

^[2] W. Mader, Connectivity and edge-connectivity in finite graphs, in: Surveys in Combinatorics (Proc. Seventh British Combinatorial Conf. Cambridge,

^{1979),} in: London Math. Soc. Lecture Note Ser., vol. 38, Cambridge Univ. Press, Cambridge, 1979, pp. 66–95.

^[3] W. Mader, On vertices of outdegree n in minimally n-connected digraphs, J. Graph Theory 39 (2) (2002) 129–144.