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Abstract

The problem of matroid-based packing of arborescences was introduced and solved
in [3]. Frank [10] reformulated the problem in an extended framework. We proved
in [6] that the problem of matroid-based packing of spanning arborescences is NP-
complete in the extended framework. Here we show a characterization of the existence
of a matroid-based packing of spanning arborescences in the original framework. This
leads us to the introduction of a new problem on packing of arborescences with a new
matroid constraint. We solve two problems: on the one hand on mixed graphs having a
packing of mixed arborescences, on the other hand on dypergraphs having a packing of
dyperarborescences such that their roots form a basis in a given matroid, each vertex
belongs to exactly k of them and each vertex v is the root of least f(v) and at most
g(v) of them.

1 Introduction
Packing arborescences in directed graphs is a fundamental and well-studied problem in graph
theory. We introduce in this article a new problem on packing arborescences, called matroid-
rooted. It is closely related to the problem of matroid-based packing of arborescences that
was earlier introduced in [3].

The basic problem of packing of spanning arborescences with fixed roots is due to Ed-
monds [4]. Later Frank [7] solved the problem of packing of spanning arborescences with
flexible roots. In fact, Frank [7] (and independently Cai [2]) provided a result on (f, g)-
bounded packings of spanning arborescences where f(v) is a lower bound and g(v) is an
upper bound on the number of v-arborescences in the packing for every vertex v. Durand
de Gevigney, Nguyen, Szigeti [3] considered the problem of matroid-based packing of ar-
borescences. In this problem we are given a digraph D = (V,A), a multiset S of vertices in
V and a matroid M on S, and we want to have a packing B of (not necessarily spanning)
arborescences such that for every v ∈ V , the set of roots of the arborescences in B that
contain v must form a basis of M. We gave in [3] a characterization of the existence of a
matroid-based packing of arborescences.

The above problems were generalized for mixed graphs by Frank [7], Gao,Yang [12], and
Fortier et al. [5], also for directed hypergraphs by Frank, Király, Király [11], Hörsch, Szigeti
[14], and [5], and even for mixed hypergraphs in [5], [14], and [5], respectively.

Frank [10] reformulated the problem of matroid-based packing of arborescences in the
extended framework, where the extended digraph can be obtained from D by adding a new
vertex and a new arc from this vertex to each element of S and the matroid is considered not
on S but on the corresponding new arcs. We proved in [6] that the problem of matroid-based
packing of spanning arborescences is NP-complete in the extended framework.
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Here we show a characterization of the existence of a matroid-based packing of spanning
arborescences in the original framework. This leads us to the introduction of a new problem
on packing of arborescences with a new matroid constraint. Given a digraph D = (V,A), a
multiset S of vertices in V and a matroid M on S, a packing B of (not necessarily spanning)
arborescences is called M-rooted if the set of roots of the arborescences in B is a basis of
M. Note that if each arborescence in B is spanning then the condition of M-based packing
coincides with the condition of M-rooted packing. We provide a characterization of the
existence of an M-rooted k-regular packing of arborescences. Here k-regular means that each
vertex must belong to exactly k of the arborescences. Note that if k is equal to the rank of the
matroid then the problem is equivalent to an M-rooted packing of spanning arborescences.
We will consider two generalization of our problem. The first contribution of this article
solves the problem of M-rooted (f, g)-bounded k-regular packing of hyperarborescences in
dypergraphs. This result will be obtained from the theory of generalized polymatroids.
The second contribution is the solution of the problem of M-rooted (f, g)-bounded k-regular
packing of mixed arborescences in mixed graphs. This result will be derived from its directed
version, which is the graphic case of the previous result, and a new orientation theorem.
Finally, we will propose a conjecture that would give a common generalization of our two
results.

The organization of this article is as follows. In Section 2 we provide all the definitions
we need. In Section 3 we give the list of known results that are important for this article.
In Section 4 we present our new results. In Section 5 we recall the main properties of
generalized polymatroids that will be applied to obtain one of our main results. Section 6
contains the proofs of the main results. Finally, our conjecture can be found in Section 7.

2 Definitions
Let V be a finite set. The set of subsets of V is denoted by 2V . A set function on V is a
function defined on 2V . For an element v of V , the set {v} will sometimes be shortened to v.
A subset of V may contain each element of V at most once. For a subset X of V , X denotes
V −X, the complement of X. Two subsets of V are called intersecting if their intersection
is non-empty. By a partition of V we mean a set of disjoint subsets of V whose union is V.
More generally, a set of disjoint subsets of V is called a subpartition of V. For a subpartition
P of V , we denote by ∪P the vertex set which is the union of the members of P. A multiset
of V may contain multiple occurrences of elements. For a multiset S of V and a subset X
of V , SX denotes the multiset consisting of the elements of X with the same multiplicities
as in S.

The sets of reals, integers and non-negative integers are denoted by R, Z and Z+, re-
spectively. A real vector m on V will be denoted by m ∈ RV . The set function ∞0 has the
value ∞ everywhere except for the empty set where it has value 0. For k ∈ Z and g ∈ ZV ,
we define gk ∈ ZV as gk(v) = min{g(v), k} for all v ∈ V.

A set function b on V is called non-decreasing if (1) holds and subcardinal if (2) holds.

b(X) ≤ b(Y ) for all X ⊆ Y ⊆ V, (1)
b(X) ≤ |X| for all X ⊆ V. (2)

Set functions m, b and p on V are called modular, submodular and supermodular if for all
X,Y ⊆ V, (3), (4) and (5) hold, respectively. We say that p is intersecting supermodular if
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(5) holds for all intersecting subsets X and Y of V .

m(X) +m(Y ) = m(X ∩ Y ) + (X ∪ Y ), (3)
b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ), (4)
p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (5)

We use usual notions from matroid theory. Let S be a finite ground set and r a non-
negative integer valued function on S such that r(∅) = 0, r is subcardinal, non-decreasing
and submodular. Then M = (S, r) is called a matroid. The function r is called the rank
function of the matroid M. For a matroid M, its rank function will be denoted by rM. An
independent set ofM is a subsetX of S such that rM(X) = |X|. Any subset of an independent
set is also independent. The set of independent sets of M is denoted by IM. A maximal
independent set of M is called a basis of M. Every basis of a matroid has the same size,
namely rM(S).

Let D = (V,A) be a directed graph, shortly digraph, where the non-empty finite set V
is the set of vertices of D and the finite set A is the set of arcs of D. An arc e = uv is an
ordered pair of different vertices, where u is the tail and v is the head of e. For a subset X
of V, we say that an arc uv enters X if v ∈ X and u ∈ X. The set of arcs in A entering
X is denoted by ρA(X) and the in-degree of X is d−A(X) = |ρA(X)|. Similarly, uv leaves
X if u ∈ X and v ∈ X, the set of arcs in A leaving X is denoted by δA(X) = ρA(X) and
the out-degree of X is d+A(X) = |δA(X)|. A subgraph of D is a digraph obtained from D by
deleting some vertices in V and then some arcs in A. A subgraph of D that contains all the
vertices of D is called a spanning subgraph of D. We call a digraph (U,F ) an arborescence
with root s, shortly s-arborescence, if there exists a unique path from s to every v ∈ U.

A set of arc-disjoint subgraphs of D is called a packing of subgraphs. Let B be a packing
of arborescences in D. By the root set RB of B we mean the multiset of the roots of
the arborescences in B. The vector mB ∈ ZV+ such that mB(v) = |RBv | for all v ∈ V is
called the root vector of B. We say that B is k-regular if each vertex is contained in exactly k
arborescences in B. For f, g ∈ ZV+, B is called (f, g)-bounded if the number of v-arborescences
in B is at least f(v) and at most g(v), that is f(v) ≤ mB(v) ≤ g(v) for all v ∈ V . Let S be a
multiset of V and M a matroid on S. The function bM is defined as follows: bM(X) = rM(SX)
for all X ⊆ V. The packing B is called M-rooted if RB is a basis of M.We say that the packing
B is M-based if for every v ∈ V , the multiset of roots of the arborescences containing v in B
forms a basis of M. Note that if B is a packing of spanning arborescences then B is M-rooted
if and only if B is M-based.

Let G = (V,E) be an undirected graph where the non-empty finite set V is the set of
vertices of G and the finite set E is the set of edges of G. An edge e is a pair of different
vertices. For a subset X of V, we say that an edge uv enters X if v ∈ X and u ∈ X. The
number of edges in E entering X, denoted by dE(X), is called the degree of X. We say
that G is simple if no two edges have the same end-vertices. A graph G is called bipartite
if there exists a bipartition {A,B} of its vertex set such that every edge of G connects a
vertex of A to a vertex of B. A bipartite graph G is denoted by (A,B;E), where {A,B}
is the bipartition of the vertex set of G and E is the edge set of G. For bipartite graph
G = (A,B;E), X ⊆ A, and F ⊆ E, we denote by ΓF (X) the set of vertices that are
connected by an edge of F to at least one vertex in X.

Let F = (V,E ∪A) be a mixed graph, where V is the set of vertices, E is the set of edges
and A is the set of arcs. By orienting an edge uv ∈ E, we mean the operation that replaces
the edge uv by one of the arcs uv and vu. A mixed graph that has an orientation that is
an s-arborescence is called a mixed s-arborescence. We say that F has an M-rooted/(f, g)-
bounded/k-regular packing of mixed arborescences if E has an orientation ~E such that the
digraph (V, ~E ∪A) has an M-rooted/(f, g)-bounded/k-regular packing of arborescences.
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Let D = (V,A) be a directed hypergraph, shortly dypergraph, where V is the set of
vertices and A is the set of dyperedges of D. A dyperedge is an ordered pair (Z, z) such that
z is a vertex in V , called the head, and Z is a non-empty subset of V − z, called the set of
tails. For X ⊆ V, we say that a dyperedge (Z, z) ∈ A enters X if z ∈ X and Z ∩X 6= ∅. The
set of dyperedges in A entering X is denoted by ρA(X) and the in-degree of X is d−A(X)
= |ρA(X)|. For k ∈ Z+, we introduce the function pA,k as follows: pA,k(X) = k − d−A(X)
for all ∅ 6= X ⊆ V and 0 for X = ∅. The operation that replaces a dyperedge (Z, z) by an
arc yz where y ∈ Z is called trimming. We say that D is an s-hyperarborescence, if D can
be trimmed to an s-arborescence. We say that D has an M-rooted/(f, g)-bounded/k-regular
packing of hyperarborescences if D can be trimmed to a digraph that has an M-rooted/(f, g)-
bounded/k-regular packing of arborescences.

Let F = (V, E ∪A) be a mixed hypergraph, where V is the set of vertices, E is the set of
hyperedges and A is the set of dyperedges of F . A hyperedge is a subset of V of size at least
two. A hyperedge X enters a subset Y of V if X ∩Y 6= ∅ 6= X ∩Y. By orienting a hyperedge
X, we mean the operation that replaces the hyperedge X by a dyperedge (X−x, x) for some
x ∈ X. A mixed hypergraph that has an orientation that is an s-hyperarborescence is called
a mixed s-hyperarborescence. By a packing of mixed subhypergraphs in F we mean a set of
mixed subhypergraphs that are hyperedge- and dyperedge-disjoint. For a subpartition P of
subsets of V , we denote by eE∪A(P) the number of hyperedges in E and dyperedges in A
that enter some member of P.

3 Known results
We start by a fundamental result on packing spanning arborescences due to Edmonds [4].

Theorem 1 (Edmonds [4]). Let D = (V,A) be a digraph, s ∈ V , and k ∈ Z+. There exists
a packing of k spanning s-arborescences in D if and only if

d−A(X) ≥ k for every ∅ 6= X ⊆ V − s.

Edmonds [4] also presented a seemingly more general form of Theorem 1.

Theorem 2 (Edmonds [4]). Let D = (V,A) be a digraph and S a multiset of vertices in V.
There exists a packing of spanning s-arborescences (s ∈ S) in D if and only if

d−A(X) ≥ |SV−X | for every ∅ 6= X ⊆ V.

Theorem 1 implies the following extension as well.

Theorem 3 (Edmonds [4]). Let D = (V,A) be a digraph, S a multiset of vertices in V, and
k ∈ Z+. There exists a k-regular packing of s-arborescences (s ∈ S) in D if and only if

k ≥ |Sv| for every v ∈ V, (6)
|SX |+ d−A(X) ≥ k for every ∅ 6= X ⊆ V. (7)

Frank [7] considered the problem of packing arborescences whose roots are not fixed in
advance and proved the following result.

Theorem 4 (Frank [7]). Let D = (V,A) be a digraph and k ∈ Z+. There exists a packing
of k spanning arborescences in D if and only if

eA(P) ≥ k(|P| − 1) for every subpartition P of V.

It is not difficult to see that Theorems 1, 2, 3 and 4 are equivalent.

Theorem 4 was generalized for (f, g)-bounded packings as follows.
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Theorem 5 (Frank [7], Cai [2]). Let D = (V,A) be a digraph, f, g ∈ ZV+, and k ∈ Z+.
There exists an (f, g)-bounded packing of k spanning arborescences in D if and only if

g(v) ≥ f(v) for every v ∈ V, (8)
eA(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V. (9)

Theorem 2 can be generalized by adding a matroid constraint as follows.

Theorem 6 (Durand de Gevigney, Nguyen, Szigeti [3]). Let D = (V,A) be a digraph, S a
multiset of vertices in V , and M = (S, rM) a matroid. There exists an M-based packing of
arborescences in D if and only if

rM(SX) + d−A(X) ≥ rM(S) for every ∅ 6= X ⊆ V.

The following reformulation of the problem of matroid-based packing of arborescences
was proposed by Frank [10]. We define the extended digraph D′ = (V ∪ s,A′) which is
obtained from (D = (V,A), S) by adding a new vertex s and a new arc ss′ for every s′ ∈ S
and we consider the matroidM′ on δA′(s) obtained fromM by replacing every element s′ ∈ S
by the arc ss′. A packing of s-arborescences in D′ is called M′-based if for every vertex v ∈ V ,
the set of arcs in δA′(s) that belong to the unique (s, v)-paths of s-arborescences containing
v in the packing forms a basis of M′. We refer to this version of the problem as the extended
framework.

The matroid-based packing of spanning arborescences problem in the extended frame-
work can not probably be solved by the following result.

Theorem 7 (Fortier, Király, Szigeti, Tanigawa [6]). It is NP-complete to decide whether
there exists an M′-based packing of spanning s-arborescences in the extended framework
(D′,M′).

We will later see that surprisingly the same problem can be solved in the original frame-
work, see Theorem 12. In fact this was the motivation for the introduction of matroid-rooted
packings of arborescences.

We also present the following extensions of Theorems 1 and 5 to mixed graphs.

Theorem 8 (Frank [7]). Let F = (V,E ∪ A) be a mixed graph, s ∈ V, and k ∈ Z+. There
exists a packing of k spanning mixed s-arborescences in F if and only if

eE∪A(P) ≥ k|P| for every subpartition P of V − s.

Theorem 9 (Gao,Yang [12]). Let F = (V,E ∪A) be a mixed graph, f, g ∈ ZV+, and k ∈ Z+.
There exists an (f, g)-bounded packing of k spanning mixed arborescences in F if and only
if (8) holds and

eE∪A(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V.

Theorem 9 easily implies Theorems 5 and 8.

We will need the following simple extension of Theorem 3 to dypergraphs from [5].

Theorem 10 (Fortier, Király, Léonard, Szigeti, Talon [5]). Let D = (V,A) be a dyper-
graph, S a multiset of vertices in V , and k ∈ Z+. There exists a k-regular packing of
s-hyperarborescences (s ∈ S) in D if and only if (6) holds and

|SX |+ d−A(X) ≥ k for every ∅ 6= X ⊆ V. (10)

In order to prove one of our main results we need the following theorem.
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Theorem 11 (Theorem 13.1.2 in [9]). Let G = (S, V ;E) be a simple bipartite graph, M
= (S, rM) a matroid with independent sets IM, and m ∈ ZV+. There exists F ⊆ E such that

dF (s) ≤ 1 for every s ∈ S, (11)
dF (v) = m(v) for every v ∈ V , (12)

ΓF (V ) ∈ IM (13)

if and only if

rM(ΓE(X)) ≥ m(X) for every X ⊆ V. (14)

4 New results
Our simplest new result is about matroid-rooted packing of spanning arborescences. It
obviously implies Theorem 1.

Theorem 12. Let D = (V,A) be a digraph, S a multiset of vertices in V , and M = (S, rM)
a matroid. There exists an M-rooted packing of spanning arborescences in D if and only if

rM(S∪P) + eA(P) ≥ rM(S)|P| for every subpartition P of V. (15)

Note that for packings of spanning arborescences, the notion of matroid-rooted and
matroid-based coincide. Hence Theorem 12 provides a characterization for the existence of
matroid-based packings of spanning arborescences. Theorem 12 can easily be obtained from
either of Theorems 13 and 14.

Theorem 12 can be generalized in many directions: for k-regular packings, for (f, g)-
bounded packings, for mixed graphs, and for dypergraphs. The following result shows a
generalization that contains three of these directions.

Theorem 13. Let D = (V,A) be a dypergraph, k ∈ Z+, f, g ∈ ZV+, S a multiset of vertices
in V , and M = (S, rM) a matroid. There exists an M-rooted (f, g)-bounded k-regular packing
of hyperarborescences in D if and only if for all U,W ⊆ V and all subpartitions P of W,

gk(v) ≥ f(v) for every v ∈ V, (16)
rM(SU ) + gk(V − U) ≥ rM(S), (17)

eA(P) + rM(SU ) + gk(W − U) ≥ k|P|+ f(U −W ). (18)

Theorem 13 extends Theorems 5, 10, 12 and follows from Theorems 16(a) and 17.

Theorem 13 provides a characterization of the existence of matroid-rooted (f, g)-bounded
packing of spanning arborescences in a digraph. Nonetheless, the problem of matroid-rooted
packing of spanning arborescences does not have the linking property. To see this let us
consider the instance of the problem of Figure 1(a). Figure 1(b) and (c) show the existence
of an M-rooted packing of spanning arborescences satisfying f and one satisfying g. Suppose
that there exists an M-rooted packing of spanning arborescences satisfying both f and g
with root set B. Since g(s′2) = 0, we get s′2 6∈ B. Since f(s1) = 1, we get s1 ∈ B. Then,
since B is a basis of M, we get s′1 6∈ B. On the other hand, since only one arc enters {s′1, s′2},
one of the roots in B belongs to {s′1, s′2}. This contradiction shows that the linking property
does not hold.

We propose another generalization of Theorem 12 that contains three other directions
among the above mentioned four.
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Figure 1: (a) The digraph D = (V,A), with V = {s1, s′1, s2, s′2}, the matroid M with ground
set V and with bases {{s1, s2}, {s1, s′2}, {s′1, s2}, {s′1, s′2}} and the ordered pairs (f(v), g(v))
on each vertex v. (b) An M-rooted packing of spanning arborescences satisfying f , (c) An
M-rooted packing of spanning arborescences satisfying g.

Theorem 14. Let F = (V,E ∪ A) be a mixed graph, k ∈ Z+, f, g ∈ ZV+, S a multiset of
vertices in V, and M = (S, rM) a matroid. There exists an M-rooted (f, g)-bounded k-regular
packing of mixed arborescences in F if and only if (16) and (17) hold and for all W,U ⊆ V
and all subpartitions P of W ,

eE∪A(P) + rM(SU ) + gk(W − U) ≥ k|P|+ f(U −W ). (19)

Theorem 14 extends Theorems 9 and 12 and its proof can be found in Subsection 6.3.
In order to prove Theorem 14 we need a new orientation theorem that extends Theorem
15.4.13 in [9].

Theorem 15. Let F = (V,E ∪A) be a mixed graph, h an integer-valued intersecting super-
modular function on V, and b an integer-valued submodular function on V. There exists an
orientation ~E of E such that

e~E∪A(P) ≥
∑
X∈P

h(X)− b(∪P) for every subpartition P of V (20)

if and only if

eE∪A(P) ≥
∑
X∈P

h(X)− b(∪P) for every subpartition P of V. (21)

The proof of Theorem 15 can be found in Subsection 6.2.

5 Generalized polymatroids
Theorem 12 will be obtained applying the theory of generalized polymatroids. Generalized
polymatroids were introduced by Hassin [13] and independently by Frank [8]. For a pair
(p, b) of set functions on S, α ∈ R, and f, g ∈ RS , let us introduce the following polyhedra

Q(p, b) = {x ∈ RS : p(Z) ≤ x(Z) ≤ b(Z) for all Z ⊆ S},
B(b) = {x ∈ RS : x(Z) ≤ b(Z) for all Z ⊆ S, x(S) = b(S)},
C(p) = {x ∈ RS : p(Z) ≤ x(Z) for all Z ⊆ S, x ≥ 0},
K(α) = {x ∈ RS : x(S) = α},
T (f, g) = {x ∈ RS : f ≤ x ≤ g}.

If p(∅) = b(∅) = 0, p is supermodular, b is submodular and b(X) − p(Y ) ≥ b(X −
Y )− p(Y −X) for all X,Y ⊆ S, the polyhedron Q(p, b) is called a generalized polymatroid,
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shortly g-polymatroid. The polyhedron B(b) is called base-polyhedra and the polyhedron
C(p) is called a contra-polymatroid, even if p is only intersecting supermodular.

We summarize in the following theorem all the properties of generalized polymatroids
we need.

Theorem 16 ([9]). The following hold.

(a) If p and b are integral, then Q(p, b) contains an integral element.

(b) C(pA,k) = Q(p∗A,k,∞0), where

p∗A,k(X) = max{
∑
X′∈P

pA,k(X ′) : P subpartition of X},

(c) Q(p, b) = B(b) if and only if p(S) = b(S).

(d) Let M = Q(p, b) ∩K(α).

(i) M 6= ∅ if and only if p ≤ b, p(S) ≤ α ≤ b(S).

(ii) M is a g-polymatroid.

(iii) If M 6= ∅, then M = Q(pα, bα) with

pα(Z) = max{p(Z), α− b(S − Z)}, (22)
bα(Z) = min{b(Z), α− p(S − Z)}. (23)

(e) Let M = Q(p, b) ∩ T (f, g).

(i) M 6= ∅ if and only if max{p, f} ≤ min{b, g}.
(ii) M is a g-polymatroid.

(iii) If M 6= ∅, then M = Q(pgf , b
g
f ) with

pgf(Z) = max{p(X)− g(X − Z) + f(Z −X) : X ⊆ S}, (24)

bgf(Z) = min{b(X)− f(X − Z) + g(Z −X) : X ⊆ S}. (25)

(f) B(b1)∩B(b2) 6= ∅ if and only if b1(X) + b2(S −X) ≥ b1(S) = b2(S) for every X ⊆ S.

To obtain Theorem 13 we have to prove the following result.

Theorem 17. Let D = (V,A) be a dypergraph, k, ` ∈ Z+, f, g ∈ ZV+, S a multiset of vertices
in V , M = (S, rM) a matroid of rank `,

Nf,g
k,` = C(pA,k) ∩ T (f, gk) ∩K(`),

Nf,g
k,M = Nf,g

k,` ∩B(bM).

(a) The root vectors of the M-rooted (f, g)-bounded k-regular packings of hyperarbores-
cences in D are exactly the integer points of Nf,g

k,M.

(b) Nf,g
k,` 6= ∅ if and only if (16) holds and for every X ⊆ V and subpartition P of X,

gk(V ) ≥ `, (26)
eA(P) ≥ k|P| − `+ f(X), (27)
eA(P) ≥ k|P| − gk(X). (28)
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(c) If Nf,g,
k,` 6= ∅, then N

f,g
k,` = Q(pf,gk,` , b

f,g
k,`) with

pf,gk,`(Z) = max{p∗A,k(X)− gk(X − Z) + f(Z −X), `− gk(Z) : X ⊆ V }, (29)

bf,gk,`(Z) = min{gk(Z), `− p∗A,k(X) + gk(X − Z)− f(Z −X) : X ⊆ V }. (30)

(d) Nf,g
k,M 6= ∅ if and only if (16), (17) and (18) hold.

The proof of Theorem 17 can be found in Subsection 6.1. We mention that the intersec-
tion with K(`) is not really needed because, by rM(S) = `, the same condition is contained
in B(bM). Our choice is justified by the fact that the calculations became simpler.

6 Proofs
In this section we prove our results, Theorems 17, 15 and 14.

6.1 Proof of Theorem 17
Proof. (a) First, let m be the root vector of an M-rooted (f, g)-bounded k-regular packing
of hyperarborescences in D, with root set S′. Then S′ is a basis of M and

gk(v) ≥ m(v) ≥ f(v) for every v ∈ V, (31)
m(V ) = `, (32)

m(X) + d−A(X) ≥ k for every ∅ 6= X ⊆ V. (33)

Thus, by (31) and (32), m is an integer point in T (f, gk) ∩K(`). Further, m is in C(pA,k)
because m(v) ≥ 0 for every v ∈ V, m(∅) = 0 = pA,k(∅) and, by (33), we have m(X) ≥
k−d−A(X) = pA,k(X) for every ∅ 6= X ⊆ V. We get that m ∈ Nf,g

k,` . Since, by S
′
X ⊆ S′∩SX ,

S′X is an independent set in M contained in SX , we have

bM(X) = rM(SX) ≥ |S′X | = m(X) for every X ⊆ V,

with equality for V. Hence m ∈ B(bM). It follows that m is an integer point of Nf,g
k,M.

Let now m be an integer point of Nf,g
k,M = Nf,g

k,` ∩ B(bM). Since m is an integer point in
C(pA,k), we have m ∈ Z+. Let S′ be the multiset of vertices such that |S′v| = m(v) for every
v ∈ V. Since m ∈ T (f, gk), we have

|S′v| = m(v) ≤ gk(v) ≤ k for every v ∈ V,

so (6) holds for S′. Since m ∈ C(pA,k), we have

|S′X |+ d−A(X) = m(X) + k − pA,k(X) ≥ k for every ∅ 6= X ⊆ V,

so (10) holds for S′. Then, by Theorem 10, there exists a k-regular packing {Bi}`i=1 of s-
hyperarborescences (s ∈ S′) in D with root set S′ that is with root vectorm. Sincem ∈ K(`),
the packing contains ` hyperarborescences. Since m ∈ T (f, gk), we have

f(v) ≤ m(v) = |S′v| = m(v) ≤ gk(v) ≤ g(v) for every v ∈ V,

so the packing is (f, g)-bounded.

Since m ∈ B(bM), we have

m(X) ≤ bM(X) = rM(SX) for every X ⊆ V, (34)
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with equality holds for V. Let G = (S, V ;E) be the bipartite graph such that for s ∈ S and
v ∈ V , sv ∈ E if and only if s ∈ Sv. By (34), we get that (14) holds. Then, by Theorem 11,
there exists an independent set S∗ in M such that for every v ∈ V , |S∗v | = m(v) = |S′v| and
hence the m(v) v-hyperarborescences in {Bi} can be rooted at S∗v . Then, by |S∗| = m(V ) =
rM(S), we obtain that S∗ is a basis of M. It follows that the packing is M-rooted.

(b) By Theorem 16(b) and 16(e)(i), C(pA,k) ∩ T (f, gk) = Q(p∗A,k,∞0) ∩ T (f, gk) 6= ∅ if
and only if p∗A,k ≤ ∞0, f ≤ gk, p∗A,k ≤ gk and f ≤ ∞0 if and only if (16) and (28) hold. By
Theorem 16(e)(iii), if the intersection is non-empty, then C(pA,k)∩T (f, gk) = Q(pf,gA,k, b

f,g
A,k)

where

pf,gA,k(Z) = max{p∗A,k(X)− gk(X − Z) + f(Z −X) : X ⊆ V }, (35)

bf,gA,k(Z) = min{∞0(X)− f(X − Z) + gk(Z −X) : X ⊆ V } = gk(Z). (36)

By Theorem 16 (d)(i), C(pA,k) ∩ T (f, gk) ∩K(`) = Q(pf,gA,k, b
f,g
A,k) ∩K(`) 6= ∅ if and only

if (16) and (28) hold and pf,gA,k(V ) ≤ ` ≤ bf,gA,k(V ). These conditions are equivalent to (16),
(28), (27) and (26).

(c) By Theorem 16(d)(iii), if the intersection is non-empty, then Nf,g
k,` = Q(pf,gk,` , b

f,g
k,`)

with

pf,gk,`(Z) = max{pf,gA,k(Z), `− bf,gA,k(Z) : X ⊆ V }, (37)

bf,gk,`(Z) = min{bf,gA,k(Z), `− pf,gA,k(Z) : X ⊆ V }. (38)

By combining (35) and (36) with (37) and (38), we get (29) and (30).

(d) First we show that in both directions, we have Nf,g
k,` 6= ∅ and (16) holds. If Nf,g

k,M 6= ∅,
then it is evident. Suppose now that (16), (17) and (18) hold. Applying (17) for U = ∅, we
obtain (26). Applying (18) for U = V and W = X, we obtain (27). Applying (18) for U = ∅
and W = X, we obtain (28). Furthermore, (16) also holds. Then, by (b), we get Nf,g

k,` 6= ∅.
Thus, by (c), ` ≤ pf,gk,`(V ) ≤ bf,gk,`(V ) ≤ `. It follows that pf,gk,`(V ) = bf,gk,`(V ) = `. Hence,

by Theorem 16(c), Nf,g
k,` = B(bf,gk,`). By Theorem 16(f), ∅ 6= Nf,g

k,M = B(bf,gk,`) ∩ B(bM) if and
only if bf,gk,`(V ) = bM(V ) (that holds since both are equal to `) and

bf,gk,`(U) ≥ `− bM(U) for every U ⊆ V. (39)

By (30), we get that (39) is equivalent to for all U,W ⊆ V,

`− gk(U) ≤ rM(SU ), (40)
p∗A,k(W )− gk(W − U) + f(U −W ) ≤ rM(SU ), (41)

which are equivalent to (17) and (18).

6.2 Proof of Theorem 15
Proof. The proof follows the proof ideas of Theorem 9.5.1 of [9]. The necessity is obtained
from the fact that for every orientation ~E of E and every subpartition P of V , we have
eE∪A(P) ≥ e~E∪A(P).

To see the sufficiency, let (F = (V,E ∪ A), h, b) be a counterexample that minimizes
|E|. Note that E 6= ∅, otherwise (20) and (21) coincide. Let e = uv be an arbitrary edge in
E, F1 = (V,E1∪A1) and F2 = (V,E2∪A2) the mixed graphs obtained from F by orienting
e as ~a1 = uv and ~a2 = vu, respectively. If for some i = 1, 2, Fi satisfies (21), then, by the
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minimality of E, there exists an orientation ~Ei of Ei such that (V, ~Ei∪Ai) = (V, ~Ei∪{~ai}∪A)
satisfies (20) and hence (F, h, b) is not a counterexample. It follows that, for i = 1, 2, there
exists a subpartition Pi of V such that

eE(Pi) =
∑
X∈Pi

h′(X)− b(Pi) (42)

and uv is between P1 − P2 and P2 − P1, where h′(X) = h(X) − d−A(X) for every X ⊆ V
and Pi = ∪Pi. Let P = P1 ∪ P2. Note that P covers each vertex in P1 ∩ P2 twice and
each vertex in (P1 ∪ P2) − (P1 ∩ P2) once. Using the usual uncrossing technique for P, we
obtain a laminar family P ′ that covers each vertex in P1 ∩ P2 twice and each vertex in
(P1 ∪ P2)− (P1 ∩ P2) once. Then P ′ can be decomposed into a partition P ′1 of P1 ∩ P2 and
a partition P ′2 of P1 ∪ P2. Since h is intersecting supermodular and d−A is submodular, h′ is
intersecting supermodular. Thus∑

X∈P′
1∪P′

2

h′(X) ≥
∑

X∈P1∪P2

h′(X). (43)

Since dE is submodular, ∑
X∈P1∪P2

dE(X) ≥
∑

X∈P′
1∪P′

2

dE(X). (44)

Further, since uv is between P1 − P2 and P2 − P1, we have

dE(P1) + dE(P2) > dE(P1 ∩ P2) + dE(P1 ∪ P2). (45)

It follows, by (44) and (45), that we have

2(eE(P1) + eE(P2)) = (dE(P1) +
∑
X∈P1

dE(X)) + (dE(P2) +
∑
X∈P2

dE(X))

> (dE(P1 ∪ P2) +
∑
X∈P′

1

dE(X)) + (dE(P1 ∩ P2) +
∑
X∈P′

2

dE(X))

= 2(eE(P ′1) + eE(P ′2)). (46)

Hence, by (43), (42), (46), the submodularity of b and (21) applied for P ′1 and P ′2, we have∑
X∈P′

1∪P′
2

h′(X) ≥
∑

X∈P1∪P2

h′(X)

= (eE(P1) + b(P1)) + (eE(P2) + b(P2))

> (eE(P ′1) + b(P1 ∩ P2)) + (eE(P ′2) + b(P1 ∪ P2))

≥
∑

X∈P′
1∪P′

2

h′(X),

a contradiction.

6.3 Proof of Theorem 14
Proof. We show that Theorem 14 follows from Theorems 15 and 13. Let us define two
functions as follows. For all X ⊆ V,

h(X) = k if X 6= ∅ and 0 if X = ∅, (47)
b(X) = min{−f(U −W ) + gk(W − U) + rM(SU ) : X ⊆W ⊆ V,U ⊆ V }. (48)

Clearly, h is intersecting supermodular. In order to be able to apply Theorem 15 we show
that b is submodular.
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Claim 1. The function b is submodular.

Proof. For i = 1, 2, let Xi ⊆ V , and Xi ⊆ Wi ⊆ V, Ui ⊆ V such that

b(Xi) = −f(Ui −Wi) + gk(Wi − Ui) + rM(SUi
). (49)

Let us introduce the following sets:

U3 = U1 ∩ U2, U4 = U1 ∪ U2,

W3 = W1 ∩W2, W4 = W1 ∪W2,

Z = ((W1 − U1) ∩ (U2 −W2)) ∪ ((W2 − U2) ∩ (U1 −W1)).

The following can be easily checked.

X1 ∩X2 ⊆ W3, (50)
X1 ∪X2 ⊆ W4, (51)

multiset (U3 −W3) ∪ (U4 −W4) ∪ Z = multiset (U1 −W1) ∪ (U2 −W2), (52)
multiset (W3 − U3) ∪ (W4 − U4) ∪ Z = multiset (W1 − U1) ∪ (W2 − U2). (53)

Then, by the modularity of f and gk, (16) and the submodularity of rM, we have

b(X1) + b(X2) = −f(U1 −W1) + gk(W1 − U1) + rM(SU1)

−f(U2 −W2) + gk(W2 − U2) + rM(SU2)

≥ −f(U3 −W3) + gk(W3 − U3) + rM(SU3)

−f(U4 −W4) + gk(W4 − U4) + rM(SU4)− f(Z) + gk(Z)

≥ b(X1 ∩X2) + b(X1 ∪X2),

and the claim is proved.

By Claim 1, b is submodular. Then Theorem 15 can be applied for h and b. Since in
this case (21) and (19) are equivalent, (21) holds, and hence it follows that there exists an
orientation ~E of E such that D = (V, ~E ∪ A) satisfies (20) which is equivalent to (18) for
D = D. Note that (16) and (17) also hold by assumption. Then, by Theorem 13, there
exists an M-rooted (f, g)-bounded k-regular packing of arborescences in D that provides, by
replacing the arcs in ~E by the edges in E, an M-rooted (f, g)-bounded k-regular packing of
mixed arborescences in F .

7 Conclusion
In this paper we introduced a new problem on packings of arborescences, namely matroid-
rooted packings. We provided characterizations for matroid-rooted (f, g)-bounded k-regular
packings of hyperarborescences and for matroid-rooted (f, g)-bounded k-regular packings of
mixed arborescences. The problem of matroid-rooted (f, g)-bounded k-regular packings of
mixed hyperarborescences remains open. The natural conjecture about this problem is the
following.

Conjecture 1. Let F = (V, E ∪A) be a mixed hypergraph, k ∈ Z+, f, g ∈ ZV+, S a multiset
of vertices in V , and M = (S, rM) a matroid. There exists an M-rooted (f, g)-bounded k-
regular packing of mixed hyperarborescences in F if and only if (16) and (17) hold and for
all U,W ⊆ V and subpartition P of W,

eE∪A(P) + rM(SU ) + gk(W − U) ≥ k|P|+ f(U −W ). (54)

12



Theorem 13 and the following conjecture, a possible extension of Theorem 15 to mixed
hypergraphs, would imply Conjecture 1.

Conjecture 2. Let F = (V, E ∪A) be a mixed hypergraph, h an integer-valued, intersecting
supermodular function on V and b a submodular function on V. There exists an orientation
~E of E such that

e~E∪A(P) ≥
∑
X∈P

h(X)− b(∪P) for every subpartition P of V (55)

if and only if

eE∪A(P) ≥
∑
X∈P

h(X)− b(∪P) for every subpartition P of V. (56)
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