Edge-splittings preserving local edge-connectivity of graphs

Zoltán Szigeti ${ }^{1}$
Laboratoire Leibniz-IMAG
46 avenue Félis Viallet
Grenoble, France.

Abstract

Let $G=(V+s, E)$ be a 2-edge-connected graph with a designated vertex s. A pair of edges $r s, s t$ is called admissible if splitting off these edges (replacing $r s$ and $s t$ by $r t$) preserves the local edge-connectivity (the maximum number of pairwise edge disjoint paths) between each pair of vertices in V. The operation splitting off is very useful in graph theory, it is especially powerful in the solution of edge-connectivity augmentation problems as it was shown by Frank [4]. Mader [7] proved that if $d(s) \neq 3$ then there exists an admissible pair incident to s. We generalize this result by showing that if $d(s) \geq 4$ then there exists an edge incident to s that belongs to at least $\lfloor d(s) / 3\rfloor$ admissible pairs. An infinite family of graphs shows that this bound is best possible. We also refine a result of Frank [5] by describing the structure of the graph if an edge incident to s belongs to no admissible pairs. This provides a new proof for Mader's theorem.

Keywords: local edge-connectivity, splitting off, edge-connectivity augmentation

[^0]
1 Introduction

In this paper, $G=(V+s, E)$ denotes a 2-edge-connected graph, s being a vertex not in V. (It would be enough to suppose that no cut edge is incident to s but for the sake of simplicity we suppose that G contains no cut edge at all.)

For two vertices $u, v \in V$, the local edge-connectivity, $\lambda_{G}(u, v)$, between u and v is the maximum number of edge disjoint paths between u and v. If $\lambda_{G}(u, v) \geq k$ for all pairs $u, v \in V$, then G is called k-edge-connected in V.

The operation splitting off is defined as follows: two edges $r s$ and $s t$ are replaced by a new edge $r t$. The graph obtained from G by splitting off a pair of edges $r s, s t$ is denoted by $G_{r t}$. A pair of edges $r s, s t$ is called k admissible if $G_{r t}$ is k-edge-connected in V. The pair of edges $r s$, st is called admissible if $\lambda_{G_{r t}}(u, v) \geq \lambda_{G}(u, v)$ for all pairs $u, v \in V$. An edge incident to s is called admissible if it belongs to an admissible pair, otherwise it is called non-admissible.

The first splitting off result is due to Lovász [6].
Theorem 1.1 If $G=(V+s, E)$ is k-edge-connected in V for some $k \geq 2$ and $d(s)$ is even then each edge incident to s belongs to $a k$-admissible pair.

Cai and Sun [3] showed how to apply this result to solve the following global edge-connectivity augmentation problem: Given a graph H and an edge-connectivity requirement $k \in \mathbb{Z}_{+}$, find the minimum number of new edges whose addition makes the graph k-edge-connected.

Theorem 1.1 was extended in Bang-Jensen et al. [1].
Theorem 1.2 If $G=(V+s, E)$ is k-edge-connected in V for some $k \geq 2$ and $d(s)$ is even then each edge incident to s belongs to at least $d(s) / 2$ (resp. $d(s) / 2-1) k$-admissible pairs if k is even (resp. odd).

In [1], we applied Theorem 1.2 to solve the global edge-connectivity augmentation problem in bipartite graphs: Given a connected bipartite graph H and an edge-connectivity requirement $k \in \mathbb{Z}_{+}$, what is the minimum number of new edges whose addition results in a bipartite k-edge-connected graph.

It is easy to construct examples to show that the bounds of Theorem 1.2 are best-possible.

Mader [7] generalized Theorem 1.1 on local edge-connectivity.

Theorem 1.3 If $G=(V+s, E)$ is 2-edge-connected and $d(s) \neq 3$ then there exists an admissible pair incident to s.

Applying this result, Frank [5] solved the local edge-connectivity augmentation problem: Given a graph $H=(V, E)$ and a requirement function $r: V \times V \rightarrow \mathbb{Z}_{+}$, find the minimum number of new edges F such that $\lambda_{H+F}(u, v) \geq r(u, v)$ for all pairs $u, v \in V$.

The main contribution of the present paper is the following strengthening of Theorem 1.3. It can be considered as the counterpart of Theorem 1.2 for local edge-connectivity.

Theorem 1.4 If $G=(V+s, E)$ is a 2-edge-connected graph and $d(s) \geq 4$ then there is an edge sr that belongs to at least $\lfloor d(s) / 3\rfloor$ admissible pairs incident to s.

We present, in Section 3, an infinite family of graphs showing that our bound is best possible.

Theorem 1.3 implies that at most three edges incident to s are nonadmissible. Frank [5] provided a slight generalization of this result.

Theorem 1.5 If $G=(V+s, E)$ is 2-edge-connected and $d(s) \neq 3$ then at most one edge incident to s belongs to no admissible pair.

We refine this result by describing the structure of the graph if it contains a non-admissible edge incident to s. (For definitions, see Section 2.)
Theorem 1.6 Let st be an edge of a 2-edge-connected graph $G=(V+s, E)$. The following are equivalent.
(a) The edge st is non-admissible,
(b) there exist two dangerous sets M_{1} and M_{2} such that $t \in M_{1} \cap M_{2}$ and $M_{1} \cup M_{2}$ contains all the neighbours of s,
(c) the degree $d(s)$ of s is odd and there exist two disjoint tight sets C_{1} and C_{2} in $V-t$ such that $d\left(s, C_{1}\right)=d\left(s, C_{2}\right)=(d(s)-1) / 2$.

As an application of Theorem 1.6 we present the following result.
Theorem 1.7 Let $G=(V+s, E)$ be a 2-edge-connected graph with $d(s) \neq 3$. If an edge st is non-admissible then each edge sr \neq st belongs to exactly $(d(s)-1) / 2$ admissible pairs.

The proofs of Theorems 1.6 and 1.7, given in Sections 4 and 5, together provides a new proof of Theorem 1.5 and hence of Theorem 1.3.

We mention a related interesting result of Bang-Jensen and Jordán.
Theorem 1.8 [2] Let $G=(V+s, E)$ be a 2-edge-connected graph. Then, for every edge st, the number of edges rs for which the pair of edges rs, st is non-admissible is at most $2 k^{2}-2 k$, where $k=\max \left\{\lambda_{G}(u, v): u, v \in V\right\}$.

2 Notation and preliminary results

Let $G=(V+s, E)$ be a graph, with s a vertex not in V. Let $\Gamma(s)$ denote the set of neighbours of s. We use the notation \subset for proper subset. For a set $T \subset V, T \neq \emptyset$ we denote the graph obtained from G by contracting T into one vertex v_{T} by G / T.

Let $X, Y \subseteq V+s$. Let $d(X, Y)$ denote the number of edges between $X-Y$ and $Y-X$. Let $\bar{d}(X, Y)$ denote the number of edges between $X \cap Y$ and $V+s-(X \cup Y)$. We define the degree of the set X by $d(X)=d(X, V+s-X)$. The degree function satisfies the following two well-known equalities.
(1) $d(X)+d(Y)=d(X \cap Y)+d(X \cup Y)+2 d(X, Y)$,
(2) $d(X)+d(Y)=d(X-Y)+d(Y-X)+2 \bar{d}(X, Y)$.

Observe that, by Menger's theorem, $\lambda_{G}(x, y)=\lambda(x, y)=\min \{d(Z): Z \subset$ $V+s, x \in Z, y \notin Z\}$ for all $x, y \in V$. We define the function $R(X)$ as follows: $R(\emptyset)=R(V)=0$ and for a set $X \subset V, X \neq \emptyset$, let

$$
R(X)=\max \left\{\lambda_{G}(x, y): x \in X, y \in V-X\right\}
$$

Observe that the function $R(X)$ satisfies (3) and (4) for $X, Y \subset V$.

$$
\begin{equation*}
R(X)=R(V-X) \tag{3}
\end{equation*}
$$

(4) $R((X-Y) \cup(Y-X)) \leq \max \{R(X-Y), R(Y-X)\}$.

The following property of $R(X)$ can be found in [4, Proposition 5.4]: for $X, Y \subset V$, at least one of (5) and (6) hold. If $X \cup Y=V$ then (6) holds.
(5) $R(X)+R(Y) \leq R(X \cap Y)+R(X \cup Y)$,
(6) $\quad R(X)+R(Y) \leq R(X-Y)+R(Y-X)$.

Finally, we define the function

$$
h(X):=d(X)-R(X) .
$$

Note that the function $h(X)$ satisfies (7) and (8) for $X, Y \subset V$.
(7) $h(X) \geq 0$,
(8) $h(X)=h(V-X)+2 d(s, X)-d(s)$.

The properties above imply

Proposition 2.1 For $X, Y \subset V$, at least one of (9) and (10) hold. If $X \cup Y=$ V then (10) holds.
(9) $h(X)+h(Y) \geq h(X \cap Y)+h(X \cup Y)+2 d(X, Y)$,
(10) $h(X)+h(Y) \geq h(X-Y)+h(Y-X)+2 \bar{d}(X, Y)$.

A set $\emptyset \neq X \subset V$ is called tight if $h(X)=0$ and it is called dangerous if $h(X) \leq 1$. Note that tight and dangerous sets are, by definition, subsets of V.

The following claim is due to Mader.
Claim 2.2 Let T be a tight set in a graph $G=(V+s, E)$ and $G^{\prime}:=G / T$. (a) [7, Lemma 3] If a pair of edges e^{\prime}, f^{\prime} incident to s is admissible in G^{\prime} then the corresponding pair of edges e, f is admissible in G.
(b) [7, Lemma 4] If $X^{\prime} \subseteq V\left(G^{\prime}\right)-s$ then $h_{G^{\prime}}\left(X^{\prime}\right)=h_{G}(X)$, where $X=$ $X^{\prime}-v_{T} \cup T$ if $v_{T} \in X^{\prime}$ and $X=X^{\prime}$ otherwise.

The reduction method of Claim 2.2 will be applied in our proofs and hence we will be able to assume that
(11) every tight set is a singleton.

We need the following claims.
Claim 2.3 [5, Claim 3.1] A pair of edges us, sv of a graph $G=(V+s, E)$ is admissible if and only if there is no dangerous set M with $u, v \in M$.
Claim 2.4 [5, Claim 4.1] Let $G=(V+s, E)$ be a graph and $t \in \Gamma(s)$ be a vertex of minimum degree. Suppose that (11) holds. If a set $M \subseteq V$ contains t and $|\Gamma(s) \cap M| \geq 2$, then $R(M-t) \geq R(M)$.
Claim 2.5 Let $G=(V+s, E)$ be a 2-edge-connected graph. If M is a dangerous set then
(a) $d(s, M) \leq(d(s)+1) / 2$, with equality only if $V-M$ is tight, and
(b) [2, in Lemma 5.4] $d(X, M-X) \geq 1$ for every $\emptyset \neq X \subset M$.

Proof. (a) By (8), since M is dangerous and by applying (7) for $V-M$, $d(s, M)=(d(s)+h(M)-h(V-M)) / 2 \leq(d(s)+1) / 2$ and (a) follows.

We close this section with a technical lemma.
Lemma 2.6 Let $G=(V+s, E)$ be a 2-edge-connected graph, st $\in E$ and $S \subseteq V$. Let \mathcal{M} be a minimum collection of dangerous sets such that $t \in \bigcap \mathcal{M}$ and $S \subseteq \bigcup \mathcal{M}$. If $|\mathcal{M}| \geq 3$, (11) holds and $M_{i}, M_{j} \in \mathcal{M}$, then
(a) (10) does not apply for M_{i} and M_{j}, and
(b) $M_{i} \cap M_{j}=t$.

Proof. (a) Suppose that (10) applies for M_{i} and M_{j}. Then, by $1 \geq h\left(M_{i}\right)$ and $1 \geq h\left(M_{j}\right)$, we have $h\left(M_{i}-M_{j}\right)=0$ and $h\left(M_{j}-M_{i}\right)=0$ (so by (11), $M_{i}-M_{j}=r_{i}$ and $M_{j}-M_{i}=r_{j}$ for some vertices $\left.r_{i}, r_{j} \in V\right)$ and $\bar{d}\left(M_{i}, M_{j}\right)=1$. Let $M_{k} \in \mathcal{M}-\left\{M_{i}, M_{j}\right\}$ and $X=M_{i} \cap M_{j} \cap M_{k}$. Note that $t \in X$ so $X \neq \emptyset$. By the minimality of $\mathcal{M}, M_{k}-X \neq \emptyset$. Then, by Claim 2.5(b) and since st enters $M_{i} \cap M_{j}$, we have $1 \leq d\left(X, M_{k}-X\right) \leq d\left(M_{i} \cap M_{j}, M_{k}-\left(M_{i} \cap M_{j}\right)\right) \leq$ $\bar{d}\left(M_{i}, M_{j}\right)-d\left(M_{i} \cap M_{j}, s\right) \leq 1-1=0$, a contradiction.
(b) By Proposition 2.1 and (a), (9) applies for M_{i} and M_{j}. Then, since $1 \geq h\left(M_{i}\right), 1 \geq h\left(M_{j}\right)$, and by the minimality of $\mathcal{M}, h\left(M_{i} \cup M_{j}\right) \geq 2$ (otherwise we could replace M_{i} and M_{j} by $\left.M_{i} \cup M_{j}\right)$, we have $h\left(M_{i} \cap M_{j}\right)=0$ and hence, by (11) and $t \in M_{i} \cap M_{j}$, (b) is satisfied.

3 Proof of Theorem 1.4

The proof is similar to the proof of Theorem 1.3 given by Frank in [5].
Proof. We prove the theorem by induction on $|V|$. We may assume, by Claim $2.2(\mathrm{a})$, that (11) is satisfied. Let t be a neighbour of s of minimum degree. Let S be the set of neighbours r of s such that $r=t$ or the pair of edges $r s$, st is not admissible. By Claim 2.3, there is a minimum collection \mathcal{M} of dangerous sets such that $t \in \bigcap \mathcal{M}$ and $S \subseteq \bigcup \mathcal{M}$. Suppose that st belongs to less than $\lfloor d(s) / 3\rfloor$ admissible pairs (otherwise, we are done). Then
(12) $d(s, \bigcup \mathcal{M}) \geq d(s, S)>d(s)-\lfloor d(s) / 3\rfloor=\lceil 2 d(s) / 3\rceil$.

By Claim 2.5(a) and (12), for $M_{i} \in \mathcal{M}, d\left(s, M_{i}\right) \leq(d(s)+1) / 2<\lceil 2 d(s) / 3\rceil<$ $d(s, \cup \mathcal{M})$ and hence $|\mathcal{M}| \geq 2$. Let $M_{1}, M_{2} \in \mathcal{M}$. By the minimality of \mathcal{M}, each $M_{i} \in \mathcal{M}$ contains a neighbour $r_{i} \neq t$ of s that belongs to no other $M_{j} \in \mathcal{M}$. Let us choose such a vertex r_{i} for each $M_{i} \in \mathcal{M}$.
Claim 3.1 $\mathcal{M}=\left\{M_{1}, M_{2}\right\}$.
Proof. For $i=1,2, M_{i}$ contains t and r_{i}, so $\left|\Gamma(s) \cap M_{i}\right| \geq 2$. Then, by Claim 2.4, $R\left(M_{1}-t\right) \geq R\left(M_{1}\right)$ and $R\left(M_{2}-t\right) \geq R\left(M_{2}\right)$. Suppose that $|\mathcal{M}| \geq 3$. Then, by Lemma 2.6(b), $M_{1} \cap M_{2}=t$, thus M_{1} and M_{2} satisfy (6) and hence (10), a contradiction by Lemma 2.6(a).

Claim 3.2 (10) applies for M_{1} and M_{2}.
Proof. Suppose that (10) does not hold for M_{1} and M_{2}. Then, by Proposition 2.1, $M_{1} \cup M_{2} \neq V$ and (9) applies for M_{1} and M_{2}. By (8), (7), Claim 3.1, (12) and $d(s) \geq 4, h\left(M_{1} \cup M_{2}\right) \geq 2 d\left(s, M_{1} \cup M_{2}\right)-d(s)=2 d(s, \cup \mathcal{M})-d(s)>$
$2\lceil 2 d(s) / 3\rceil-d(s) \geq 2$. It follows, by $1 \geq h\left(M_{1}\right), 1 \geq h\left(M_{2}\right)$, (9) and (7), that $1+1 \geq h\left(M_{1}\right)+h\left(M_{2}\right) \geq h\left(M_{1} \cap M_{2}\right)+h\left(M_{1} \cup M_{2}\right)>0+2$, a contradiction.
Claim $3.3 d\left(s, r_{1}\right)+d\left(s, r_{2}\right) \geq\lceil 2 d(s) / 3\rceil$.
By $1 \geq h\left(M_{1}\right), 1 \geq h\left(M_{2}\right)$, Claim 3.2, (7), st $\in E$ and $t \in M_{1} \cap M_{2}$, we have $1+1 \geq h\left(M_{1}\right)+h\left(M_{2}\right) \geq h\left(M_{1}-M_{2}\right)+h\left(M_{2}-M_{1}\right)+2 \bar{d}\left(M_{1}, M_{2}\right) \geq 0+0+$ $2 d\left(s, M_{1} \cap M_{2}\right) \geq 2$, so $h\left(M_{1}-M_{2}\right)=0=h\left(M_{2}-M_{1}\right)$ and $d\left(s, M_{1} \cap M_{2}\right)=1$. It follows, by $r_{1} \in M_{1}-M_{2}, r_{2} \in M_{2}-M_{1}$ and (11), that $M_{1}-M_{2}=r_{1}$ and $M_{2}-M_{1}=r_{2}$. Then, by Claim 3.1 and (12), $d\left(s, r_{1}\right)+d\left(s, r_{2}\right)=d\left(s, M_{1} \cup\right.$ $\left.M_{2}\right)-d\left(s, M_{1} \cap M_{2}\right)=d(s, \bigcup \mathcal{M})-1 \geq\lceil 2 d(s) / 3\rceil$.

Let e_{i} be any edge connecting s and r_{i} for $1 \leq i \leq 2$.
Claim 3.4 The pair of edges e_{1}, e_{2} is admissible.
Proof. Otherwise, by Claim 2.3, there is a dangerous set X with $r_{1}, r_{2} \in X$, and then, by (8), (7), Claim 3.3 and $d(s) \geq 4$, we have $1 \geq h(X) \geq 2 d(s, X)-$ $d(s) \geq 2\lceil 2 d(s) / 3\rceil-d(s) \geq 2$, a contradiction.

By Claim 3.3, we may assume without loss of generality that $d\left(s, r_{1}\right) \geq$ $\lceil d(s) / 3\rceil \geq\lfloor d(s) / 3\rfloor$. Then, by Claim 3.4, e_{2} belongs to at least $\lfloor d(s) / 3\rfloor$ admissible pairs and the proof of Theorem 1.4 is complete.

Examples: There exists an infinite class of graphs in which each edge incident to s belongs to exactly $\lfloor d(s) / 3\rfloor$ admissible pairs. See Figure 1. We mention that it is not true in general, even if we suppose that the degree of s is even, that each edge incident to s belongs to many admissible pairs. In Figure 2, the edge $w s$ belongs to the unique admissible pair of edges $w s, s z$.

4 Proof of Theorem 1.6

Proof. We consider first the most complicated part, we prove that (a) implies (b) by induction on $|V|$.

Claim 4.1 We may assume that (11) is satisfied.
Proof. Suppose that there exists a tight set T with $|T|>1$. Let $G^{\prime}=G / T$. By Claim 2.2(a), st belongs to no admissible pair in G^{\prime}, G^{\prime} is 2-edge-connected and $\left|V\left(G^{\prime}\right)\right|<|V|$, hence, by induction, (b) is true for G^{\prime} and then, by Claim 2.2 (b), it is also true for G.

The edge st belongs to no admissible pair, thus, by Claim 2.3, there is a minimum collection \mathcal{M} of dangerous sets such that $t \in \bigcap \mathcal{M}$ and $\Gamma(s) \subseteq$ $\cup \mathcal{M}$. By the minimality of \mathcal{M}, each $M_{i} \in \mathcal{M}$ contains a neighbour $r_{i} \neq t$

$$
\begin{gathered}
d(s)=3 l+1 \\
\lambda(u, v)=2 l+1 \\
d\left(X_{i}^{u}\right)=2 l+2 \\
h\left(X_{i}^{u}\right)=1
\end{gathered}
$$

Fig. 1. Each edge incident to s belongs to exactly $\lfloor d(s) / 3\rfloor$ admissible pairs.

$$
\begin{gathered}
d(s)=2 l+2 \\
\lambda(u, v)=l+2 \\
d\left(X_{u}\right)=l+3 \\
h\left(X_{u}\right)=1
\end{gathered}
$$

Fig. 2. The degree $d(s)$ of s is even and the edge $w s$ belongs to a unique admissible pair $w s, s z$.
of s that belongs to no other $M_{j} \in \mathcal{M}$. Let us choose such a vertex r_{i} for each $M_{i} \in \mathcal{M}$. By Claim 2.5(a), $d(s) \geq 2$ and $\Gamma(s) \subseteq \bigcup \mathcal{M}$, for $M_{i} \in \mathcal{M}$, $d\left(s, M_{i}\right) \leq(d(s)+1) / 2<d(s)=d(s, \bigcup \mathcal{M})$ and hence $|\mathcal{M}| \geq 2$.

Suppose that $|\mathcal{M}| \geq 3$. We shall find a contradiction showing that this case can not happen and hence $|\mathcal{M}|=2$. By Lemma 2.6(b), for all $M_{i}, M_{j} \in \mathcal{M}$, $M_{i}-M_{j}=M_{i}-t$. Let $T=V-\bigcup \mathcal{M}$. Note that $d(s, T)=0$.
Claim 4.2 If $R\left(M_{1}\right)=\lambda(a, b)$ with $a \in M_{1}$ and $b \in T$, then for some $M_{k} \in$
$\mathcal{M}-M_{1}, \quad R\left(M_{k}-t\right)>R(t)$.
Proof. Note that $d(s) \geq|\mathcal{M}|+1$ and $d(T) \geq \lambda(a, b)=R\left(M_{1}\right) \geq d\left(M_{1}\right)-1$ because M_{1} is dangerous. By repeated applications of (1) we get

$$
\begin{aligned}
\sum_{M_{j} \in \mathcal{M}}\left(d\left(M_{j}\right)-d(t)\right) & \geq d(s \cup T)-d(t) \\
& =d(s)+d(T)-d(t) \\
& \geq(|\mathcal{M}|+1)+\left(d\left(M_{1}\right)-1\right)-d(t) \\
& >(|\mathcal{M}|-1)+\left(d\left(M_{1}\right)-d(t)\right),
\end{aligned}
$$

so there exists $M_{k} \in \mathcal{M}-M_{1}$ with $d\left(M_{k}\right)-d(t)>1$. Then, since M_{k} is dangerous, $R\left(M_{k}\right) \geq d\left(M_{k}\right)-1>d(t) \geq R(t)$ so, by (4), $R\left(M_{k}-t\right)>R(t)$.
Claim 4.3 There exists $M_{i} \in \mathcal{M}$ for which $R\left(M_{i}-t\right) \geq R(t)$.
Proof. Let $Y=\{y \in V-t: R(t)=\lambda(t, y)\}$. By definition, $Y \neq \emptyset$. If there exists a vertex $y \in M_{i} \cap Y$ for some $M_{i} \in \mathcal{M}$, then $R\left(M_{i}-t\right) \geq \lambda(t, y)=R(t)$. Thus we may suppose that $Y \subseteq T$. Let $y \in Y$. Then $R\left(M_{1}\right) \geq \lambda(t, y)=R(t)$. If $R\left(M_{1}\right)=\lambda(t, y)$ then, by Claim 4.2, $R\left(M_{1}-t\right)>R(t)$. Otherwise $R\left(M_{1}\right)>$ $R(t)$ so, by (4), $R\left(M_{1}-t\right)>R(t)$.
Claim 4.4 If $M_{j} \in \mathcal{M}-M_{i}$, then $R\left(M_{j}-t\right)<R\left(M_{j}\right) \leq R(t)$.
Proof. Suppose that $R\left(M_{j}-t\right) \geq R\left(M_{j}\right)$. By Claim 4.3 and (4), $R\left(M_{i}-t\right) \geq$ $R\left(M_{i}\right)$. So (6) and hence (10) applies for M_{i} and M_{j}, contradicting Lemma 2.6(a). By $R\left(M_{j}-t\right)<R\left(M_{j}\right)$ and (4), $R\left(M_{j}\right) \leq R(t)$.

Claim 4.5 If $R\left(M_{i}\right)=\lambda(a, b)$ with $a \in M_{i}$ and $b \in V-M_{i}$, then $b \in T$.
Proof. Suppose that $b \in M_{j} \in \mathcal{M}-M_{i}$. Then, $R\left(M_{j}-t\right) \geq \lambda(a, b)=R\left(M_{i}\right)$. By Claims 4.4 and $4.3, R\left(M_{j}\right) \leq R(t) \leq R\left(M_{i}-t\right)$. Thus (6) and hence (10) applies for M_{i} and M_{j}, a contradiction by Lemma 2.6(a).

By Claims 4.3 and 4.4 , there exists $M_{i} \in \mathcal{M}$ such that $R\left(M_{j}-t\right)<R(t)$ for all $M_{j} \in \mathcal{M}-M_{i}$. However, by Claim 4.5 and Claim 4.2, applied for $M_{1}=M_{i}$, $R\left(M_{j}-t\right)>R(t)$ for some $M_{j} \in \mathcal{M}-M_{i}$. This contradiction completes the proof of (a) implies (b).

Obviously, (b) implies (a) by Claim 2.3.
We show now that (b) implies (c). Let $C_{1}=M_{1}-M_{2}$ and $C_{2}=M_{2}-M_{1}$. Clearly, $C_{1} \cap C_{2}=\emptyset$ and, by $t \in M_{1} \cap M_{2}$, the sets C_{1} and C_{2} are in $V-t$.
Claim $4.6 d(s)$ is odd and $d\left(s, C_{1}\right)=(d(s)-1) / 2=d\left(s, C_{2}\right)$.

Proof. By (8), $\Gamma(s) \subseteq M_{1} \cup M_{2}$ and st $\in E$, we have $2(d(s)+1) / 2 \geq$ $d\left(s, M_{1}\right)+d\left(s, M_{2}\right)=d\left(s, M_{1} \cup M_{2}\right)+d\left(s, M_{1} \cap M_{2}\right) \geq d(s)+1$. It follows that $d(s)$ is odd, $d\left(s, M_{i}\right)=(d(s)+1) / 2$ and $d\left(s, M_{1} \cap M_{2}\right)=1$. Then $d\left(s, C_{i}\right)=$ $d\left(s, M_{i}\right)-d\left(s, M_{1} \cap M_{2}\right)=(d(s)+1) / 2-1=(d(s)-1) / 2$ for $i=1,2$.
Claim 4.7 (10) applies for M_{1} and M_{2}.
Proof. Suppose that (10) does not hold for M_{1} and M_{2}. Then, by Proposition 2.1, $M_{1} \cup M_{2} \neq V$ and (9) applies for M_{1} and M_{2}, so, by $1 \geq h\left(M_{1}\right), 1 \geq h\left(M_{2}\right)$ and (7), we have $2 \geq h\left(M_{1} \cup M_{2}\right)$. It follows, by (8), (7) and $\Gamma(s) \subseteq M_{1} \cup$ M_{2}, that $2 \geq h\left(M_{1} \cup M_{2}\right)=h\left(V-\left(M_{1} \cup M_{2}\right)\right)+2 d\left(s, M_{1} \cup M_{2}\right)-d(s) \geq$ $d(s)$. However, since G is 2-edge-connected and $d(s)$ is odd, $d(s) \geq 3$, a contradiction.

Then, by $1 \geq h\left(M_{1}\right), 1 \geq h\left(M_{2}\right),(10), t \in M_{1} \cap M_{2}$, and st $\in E$, we get that $h\left(C_{1}\right)=0=h\left(C_{2}\right)$, that is C_{1} and C_{2} are tight sets. This completes the proof of (b) implies (c).

Finally, we show that (c) implies (b). Suppose that $d(s)$ is odd and there exist two disjoint tight sets $C_{1}, C_{2} \subseteq V-t$ such that $d\left(s, C_{1}\right)=(d(s)-1) / 2=$ $d\left(s, C_{2}\right)$. Then, by (8), $M_{1}=V-C_{1}$ and $M_{2}=V-C_{2}$ are dangerous sets. Note that $t \in M_{1} \cap M_{2}$ and $\Gamma(s) \subseteq M_{1} \cup M_{2}$.

5 Proof of Theorem 1.7

Proof. By Theorem 1.6, there exist two dangerous sets M_{1} and M_{2} with $t \in M_{1} \cap M_{2}$ and $\Gamma(s) \subseteq M_{1} \cup M_{2}$. It also follows from the proof above that $d\left(s, M_{1} \cap M_{2}\right)=1$ and $d\left(s, M_{1}\right)=d\left(s, M_{2}\right)=(d(s)+1) / 2$. Let $s r \neq s t$ be an edge incident to s. Then, by Claim 2.3, the edge $s r$ belongs to at most $d(s)-(d(s)+1) / 2=(d(s)-1) / 2$ admissible pairs. To finish the proof we show the following lemma.

Lemma 5.1 The edge sr belongs to at least $(d(s)-1) / 2$ admissible pairs.
Proof. We prove the lemma by induction on $|V|$. We may assume, by Claim $2.2(\mathrm{a})$, that (11) is satisfied. By Theorem 1.6, $d(s)$ is odd and there exist two disjoint tight sets $C_{1}, C_{2} \subseteq V-t$ such that $d\left(s, C_{1}\right)=d\left(s, C_{2}\right)=(d(s)-1) / 2$. Then, by (11), $C_{1}=c_{1}$ and $C_{2}=c_{2}$ for some vertices $c_{1}, c_{2} \in V$. Since $s r \neq s t$, either $r=c_{1}$ or $r=c_{2}$. The lemma follows from the following claim.
Claim 5.2 Let e_{i} be any edge connecting s and c_{i} for $1 \leq i \leq 2$. Then the pair of edges e_{1}, e_{2} is admissible.

Proof. Otherwise, by Claim 2.3, there is a dangerous set X containing c_{1} and c_{2}. Then, by $d\left(s, c_{1}\right)=d\left(s, c_{2}\right)=(d(s)-1) / 2$ and Claim 2.5(a), $2(d(s)-1) / 2 \leq$ $d(s, X) \leq(d(s)+1) / 2$, that is $d(s) \leq 3$. However, since G is 2-edge-connected and $d(s)$ is odd and $\neq 3, d(s) \geq 5$, a contradiction.

6 Open problems

For a summary on edge-connectivity augmentation problems in graphs we refer to [8]. We repeat one of the open problems proposed in [8], the problem of local edge-connectivity augmentation in bipartite graphs: given a connected bipartite graph $H=(V, E)$ and a requirement function $r: V \times V \rightarrow \mathbb{Z}_{+}$, find the minimum number of new edges F such that $\lambda_{H+F}(u, v) \geq r(u, v)$ for all pairs $u, v \in V$ and $H+F$ is a bipartite graph. Theorem 1.4 could help to solve this problem.

References

[1] J. Bang-Jensen, H. Gabow, T. Jordán, Z. Szigeti, Edge-connectivity augmentation with partition constraints, SIAM J. Disc. Math., Vol. 12, No. 2 (1999), 160-207.
[2] J. Bang-Jensen, T. Jordán, Edge-connectivity augmentation preserving simplicity, SIAM J. Disc. Math., Vol. 11, No. 4 (1998), 603-623.
[3] G. R. Cai, Y. G. Sun, The minimum augmentation of any graph to k-edgeconnected graphs, Networks, 19 (1989), 151-172.
[4] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Disc. Math., Vol. 5, No. 1 (1992), 22-53.
[5] A. Frank, On a theorem of Mader, Discrete Mathematics, 101 (1992), 49-57.
[6] L. Lovász, Combinatorial problems and exercises, North-Holland, Amsterdam, (1979).
[7] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math., 3 (1978), 145-164.
[8] Z. Szigeti, Edge-connectivity augmentations of graphs and hypergraphs, Technical Report No. 04941 of the Research Institute for Discrete Mathematics, Bonn, 2004.
[9] Z. Szigeti, On admissible edges, Technical Report 2004-07 of the Egerváry Research Group, Budapest, 2004, http://www.cs.elte.hu/egres/.

[^0]: ^ This work was done while the author was visiting the Egerváry Research Group (EGRES), Department of Operations Research, Eötvös University, Budapest, Hungary.
 ${ }^{\star \star}$ An extended abstract of this paper was presented at GRACO2005 (2nd Brazilian Symposium on Graphs, Algorithms, and Combinatorics) and appeared, under a different title, in Electronic Notes in Discrete Mathematics 19 (2005) 57-61.
 ${ }^{1}$ Email: Zoltan.Szigeti@imag.fr

