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Abstract

Let G = (V + s, E) be a 2-edge-connected graph with a designated vertex s. A pair
of edges rs, st is called admissible if splitting off these edges (replacing rs and st
by rt) preserves the local edge-connectivity (the maximum number of pairwise edge
disjoint paths) between each pair of vertices in V. The operation splitting off is very
useful in graph theory, it is especially powerful in the solution of edge-connectivity
augmentation problems as it was shown by Frank [4]. Mader [7] proved that if
d(s) 6= 3 then there exists an admissible pair incident to s. We generalize this result
by showing that if d(s) ≥ 4 then there exists an edge incident to s that belongs to at
least ⌊d(s)/3⌋ admissible pairs. An infinite family of graphs shows that this bound
is best possible. We also refine a result of Frank [5] by describing the structure of
the graph if an edge incident to s belongs to no admissible pairs. This provides a
new proof for Mader’s theorem.
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1 Introduction

In this paper, G = (V + s, E) denotes a 2-edge-connected graph, s being a
vertex not in V . (It would be enough to suppose that no cut edge is incident
to s but for the sake of simplicity we suppose that G contains no cut edge at
all.)

For two vertices u, v ∈ V , the local edge-connectivity, λG(u, v), between
u and v is the maximum number of edge disjoint paths between u and v. If
λG(u, v) ≥ k for all pairs u, v ∈ V , then G is called k-edge-connected in V .

The operation splitting off is defined as follows: two edges rs and st
are replaced by a new edge rt. The graph obtained from G by splitting off
a pair of edges rs, st is denoted by Grt. A pair of edges rs, st is called k-
admissible if Grt is k-edge-connected in V . The pair of edges rs, st is called
admissible if λGrt

(u, v) ≥ λG(u, v) for all pairs u, v ∈ V . An edge incident
to s is called admissible if it belongs to an admissible pair, otherwise it is
called non-admissible.

The first splitting off result is due to Lovász [6].

Theorem 1.1 If G = (V + s, E) is k-edge-connected in V for some k ≥ 2
and d(s) is even then each edge incident to s belongs to a k-admissible pair.

Cai and Sun [3] showed how to apply this result to solve the following
global edge-connectivity augmentation problem: Given a graph H and an
edge-connectivity requirement k ∈ Z+, find the minimum number of new
edges whose addition makes the graph k-edge-connected.

Theorem 1.1 was extended in Bang-Jensen et al. [1].

Theorem 1.2 If G = (V + s, E) is k-edge-connected in V for some k ≥ 2
and d(s) is even then each edge incident to s belongs to at least d(s)/2 (resp.
d(s)/2 − 1) k-admissible pairs if k is even (resp. odd).

In [1], we applied Theorem 1.2 to solve the global edge-connectivity aug-
mentation problem in bipartite graphs: Given a connected bipartite graph H
and an edge-connectivity requirement k ∈ Z+, what is the minimum number
of new edges whose addition results in a bipartite k-edge-connected graph.

It is easy to construct examples to show that the bounds of Theorem 1.2
are best-possible.

Mader [7] generalized Theorem 1.1 on local edge-connectivity.



Theorem 1.3 If G = (V + s, E) is 2-edge-connected and d(s) 6= 3 then there
exists an admissible pair incident to s.

Applying this result, Frank [5] solved the local edge-connectivity aug-
mentation problem: Given a graph H = (V,E) and a requirement func-
tion r : V × V → Z+, find the minimum number of new edges F such that
λH+F (u, v) ≥ r(u, v) for all pairs u, v ∈ V.

The main contribution of the present paper is the following strengthening
of Theorem 1.3. It can be considered as the counterpart of Theorem 1.2 for
local edge-connectivity.

Theorem 1.4 If G = (V + s, E) is a 2-edge-connected graph and d(s) ≥ 4
then there is an edge sr that belongs to at least ⌊d(s)/3⌋ admissible pairs
incident to s.

We present, in Section 3, an infinite family of graphs showing that our
bound is best possible.

Theorem 1.3 implies that at most three edges incident to s are non-
admissible. Frank [5] provided a slight generalization of this result.

Theorem 1.5 If G = (V + s, E) is 2-edge-connected and d(s) 6= 3 then at
most one edge incident to s belongs to no admissible pair.

We refine this result by describing the structure of the graph if it contains
a non-admissible edge incident to s. (For definitions, see Section 2.)

Theorem 1.6 Let st be an edge of a 2-edge-connected graph G = (V + s, E).
The following are equivalent.

(a) The edge st is non-admissible,

(b) there exist two dangerous sets M1 and M2 such that t ∈ M1 ∩ M2 and
M1 ∪ M2 contains all the neighbours of s,

(c) the degree d(s) of s is odd and there exist two disjoint tight sets C1 and
C2 in V − t such that d(s, C1) = d(s, C2) = (d(s) − 1)/2.

As an application of Theorem 1.6 we present the following result.

Theorem 1.7 Let G = (V + s, E) be a 2-edge-connected graph with d(s) 6= 3.
If an edge st is non-admissible then each edge sr 6= st belongs to exactly
(d(s) − 1)/2 admissible pairs.

The proofs of Theorems 1.6 and 1.7, given in Sections 4 and 5, together
provides a new proof of Theorem 1.5 and hence of Theorem 1.3.



We mention a related interesting result of Bang-Jensen and Jordán.

Theorem 1.8 [2] Let G = (V + s, E) be a 2-edge-connected graph. Then,
for every edge st, the number of edges rs for which the pair of edges rs, st is
non-admissible is at most 2k2 − 2k, where k = max{λG(u, v) : u, v ∈ V }.

2 Notation and preliminary results

Let G = (V + s, E) be a graph, with s a vertex not in V . Let Γ(s) denote
the set of neighbours of s. We use the notation ⊂ for proper subset. For a set
T ⊂ V, T 6= ∅ we denote the graph obtained from G by contracting T into one
vertex vT by G/T .

Let X,Y ⊆ V +s. Let d(X,Y ) denote the number of edges between X−Y
and Y − X. Let d(X,Y ) denote the number of edges between X ∩ Y and
V +s−(X∪Y ). We define the degree of the set X by d(X)= d(X,V +s−X).
The degree function satisfies the following two well-known equalities.

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ),(1)

d(X) + d(Y ) = d(X − Y ) + d(Y − X) + 2d(X,Y ).(2)

Observe that, by Menger’s theorem, λG(x, y) = λ(x, y)= min{d(Z) : Z ⊂
V + s, x ∈ Z, y /∈ Z} for all x, y ∈ V . We define the function R(X) as follows:
R(∅) = R(V ) = 0 and for a set X ⊂ V,X 6= ∅, let

R(X) = max{λG(x, y) : x ∈ X, y ∈ V − X}.

Observe that the function R(X) satisfies (3) and (4) for X,Y ⊂ V .

R(X) = R(V − X),(3)

R((X − Y ) ∪ (Y − X))≤max{R(X − Y ), R(Y − X)}.(4)

The following property of R(X) can be found in [4, Proposition 5.4]: for
X,Y ⊂ V, at least one of (5) and (6) hold. If X ∪ Y = V then (6) holds.

R(X) + R(Y )≤R(X ∩ Y ) + R(X ∪ Y ),(5)

R(X) + R(Y )≤R(X − Y ) + R(Y − X).(6)

Finally, we define the function

h(X) := d(X) − R(X).

Note that the function h(X) satisfies (7) and (8) for X,Y ⊂ V .

h(X)≥ 0,(7)

h(X) = h(V − X) + 2d(s,X) − d(s).(8)

The properties above imply



Proposition 2.1 For X,Y ⊂ V, at least one of (9) and (10) hold. If X∪Y =
V then (10) holds.

h(X) + h(Y )≥h(X ∩ Y ) + h(X ∪ Y ) + 2d(X,Y ),(9)

h(X) + h(Y )≥h(X − Y ) + h(Y − X) + 2d(X,Y ).(10)

A set ∅ 6= X ⊂ V is called tight if h(X) = 0 and it is called dangerous if
h(X) ≤ 1. Note that tight and dangerous sets are, by definition, subsets of
V .

The following claim is due to Mader.

Claim 2.2 Let T be a tight set in a graph G = (V + s, E) and G′ := G/T.

(a) [7, Lemma 3] If a pair of edges e′, f ′ incident to s is admissible in G′ then
the corresponding pair of edges e, f is admissible in G.

(b) [7, Lemma 4] If X ′ ⊆ V (G′) − s then hG′(X ′) = hG(X), where X =
X ′ − vT ∪ T if vT ∈ X ′ and X = X ′ otherwise.

The reduction method of Claim 2.2 will be applied in our proofs and hence
we will be able to assume that

every tight set is a singleton.(11)

We need the following claims.

Claim 2.3 [5, Claim 3.1] A pair of edges us, sv of a graph G = (V + s, E) is
admissible if and only if there is no dangerous set M with u, v ∈ M.

Claim 2.4 [5, Claim 4.1] Let G = (V + s, E) be a graph and t ∈ Γ(s) be a
vertex of minimum degree. Suppose that (11) holds. If a set M ⊆ V contains
t and |Γ(s) ∩ M | ≥ 2, then R(M − t) ≥ R(M).

Claim 2.5 Let G = (V + s, E) be a 2-edge-connected graph. If M is a dan-
gerous set then

(a) d(s,M) ≤ (d(s) + 1)/2, with equality only if V − M is tight, and

(b) [2, in Lemma 5.4] d(X,M − X) ≥ 1 for every ∅ 6= X ⊂ M .

Proof. (a) By (8), since M is dangerous and by applying (7) for V − M ,
d(s,M) = (d(s) + h(M) − h(V − M))/2 ≤ (d(s) + 1)/2 and (a) follows. 2

We close this section with a technical lemma.

Lemma 2.6 Let G = (V + s, E) be a 2-edge-connected graph, st ∈ E and
S ⊆ V . Let M be a minimum collection of dangerous sets such that t ∈

⋂
M

and S ⊆
⋃
M. If |M| ≥ 3, (11) holds and Mi,Mj ∈ M, then

(a) (10) does not apply for Mi and Mj, and



(b) Mi ∩ Mj = t.

Proof. (a) Suppose that (10) applies for Mi and Mj. Then, by 1 ≥ h(Mi)
and 1 ≥ h(Mj), we have h(Mi − Mj) = 0 and h(Mj − Mi) = 0 (so by (11),
Mi−Mj = ri and Mj−Mi = rj for some vertices ri, rj ∈ V ) and d(Mi,Mj) = 1.
Let Mk ∈ M−{Mi,Mj} and X = Mi ∩Mj ∩Mk. Note that t ∈ X so X 6= ∅.
By the minimality of M, Mk − X 6= ∅. Then, by Claim 2.5(b) and since st
enters Mi ∩Mj, we have 1 ≤ d(X,Mk −X) ≤ d(Mi ∩Mj,Mk − (Mi ∩Mj)) ≤
d(Mi,Mj) − d(Mi ∩ Mj, s) ≤ 1 − 1 = 0, a contradiction.

(b) By Proposition 2.1 and (a), (9) applies for Mi and Mj. Then, since
1 ≥ h(Mi), 1 ≥ h(Mj), and by the minimality of M, h(Mi∪Mj) ≥ 2 (otherwise
we could replace Mi and Mj by Mi∪Mj), we have h(Mi∩Mj) = 0 and hence,
by (11) and t ∈ Mi ∩ Mj, (b) is satisfied. 2

3 Proof of Theorem 1.4

The proof is similar to the proof of Theorem 1.3 given by Frank in [5].

Proof. We prove the theorem by induction on |V |. We may assume, by Claim
2.2(a), that (11) is satisfied. Let t be a neighbour of s of minimum degree. Let
S be the set of neighbours r of s such that r = t or the pair of edges rs, st is
not admissible. By Claim 2.3, there is a minimum collection M of dangerous
sets such that t ∈

⋂
M and S ⊆

⋃
M. Suppose that st belongs to less than

⌊d(s)/3⌋ admissible pairs (otherwise, we are done). Then

d(s,
⋃

M) ≥ d(s, S) > d(s) − ⌊d(s)/3⌋ = ⌈2d(s)/3⌉.(12)

By Claim 2.5(a) and (12), for Mi ∈ M, d(s,Mi) ≤ (d(s)+1)/2 < ⌈2d(s)/3⌉ <
d(s,

⋃
M) and hence |M| ≥ 2. Let M1,M2 ∈ M. By the minimality of M,

each Mi ∈ M contains a neighbour ri 6= t of s that belongs to no other
Mj ∈ M. Let us choose such a vertex ri for each Mi ∈ M.

Claim 3.1 M = {M1,M2}.

Proof. For i = 1, 2, Mi contains t and ri, so |Γ(s)∩Mi| ≥ 2. Then, by Claim
2.4, R(M1 − t) ≥ R(M1) and R(M2 − t) ≥ R(M2). Suppose that |M| ≥ 3.
Then, by Lemma 2.6(b), M1 ∩M2 = t, thus M1 and M2 satisfy (6) and hence
(10), a contradiction by Lemma 2.6(a). 2

Claim 3.2 (10) applies for M1 and M2.

Proof. Suppose that (10) does not hold for M1 and M2. Then, by Proposition
2.1, M1∪M2 6= V and (9) applies for M1 and M2. By (8), (7), Claim 3.1, (12)
and d(s) ≥ 4, h(M1 ∪ M2) ≥ 2d(s,M1 ∪ M2) − d(s) = 2d(s,

⋃
M) − d(s) >



2⌈2d(s)/3⌉ − d(s) ≥ 2. It follows, by 1 ≥ h(M1),1 ≥ h(M2), (9) and (7), that
1+1 ≥ h(M1)+h(M2) ≥ h(M1∩M2)+h(M1∪M2) > 0+2, a contradiction.2

Claim 3.3 d(s, r1) + d(s, r2) ≥ ⌈2d(s)/3⌉.

By 1 ≥ h(M1), 1 ≥ h(M2), Claim 3.2, (7), st ∈ E and t ∈ M1 ∩ M2, we have
1 + 1 ≥ h(M1) + h(M2) ≥ h(M1 −M2) + h(M2 −M1) + 2d(M1,M2) ≥ 0 + 0 +
2d(s,M1∩M2) ≥ 2, so h(M1−M2) = 0 = h(M2−M1) and d(s,M1∩M2) = 1.
It follows, by r1 ∈ M1 − M2, r2 ∈ M2 − M1 and (11), that M1 − M2 = r1 and
M2 − M1 = r2. Then, by Claim 3.1 and (12), d(s, r1) + d(s, r2) = d(s,M1 ∪
M2) − d(s,M1 ∩ M2) = d(s,

⋃
M) − 1 ≥ ⌈2d(s)/3⌉. 2

Let ei be any edge connecting s and ri for 1 ≤ i ≤ 2.

Claim 3.4 The pair of edges e1, e2 is admissible.

Proof. Otherwise, by Claim 2.3, there is a dangerous set X with r1, r2 ∈ X,
and then, by (8), (7), Claim 3.3 and d(s) ≥ 4, we have 1 ≥ h(X) ≥ 2d(s,X)−
d(s) ≥ 2⌈2d(s)/3⌉ − d(s) ≥ 2, a contradiction. 2

By Claim 3.3, we may assume without loss of generality that d(s, r1) ≥
⌈d(s)/3⌉ ≥ ⌊d(s)/3⌋. Then, by Claim 3.4, e2 belongs to at least ⌊d(s)/3⌋
admissible pairs and the proof of Theorem 1.4 is complete. 2

Examples: There exists an infinite class of graphs in which each edge incident
to s belongs to exactly ⌊d(s)/3⌋ admissible pairs. See Figure 1. We mention
that it is not true in general, even if we suppose that the degree of s is even,
that each edge incident to s belongs to many admissible pairs. In Figure 2,
the edge ws belongs to the unique admissible pair of edges ws, sz.

4 Proof of Theorem 1.6

Proof. We consider first the most complicated part, we prove that (a) implies
(b) by induction on |V |.

Claim 4.1 We may assume that (11) is satisfied.

Proof. Suppose that there exists a tight set T with |T | > 1. Let G′ = G/T.
By Claim 2.2(a), st belongs to no admissible pair in G′, G′ is 2-edge-connected
and |V (G′)| < |V |, hence, by induction, (b) is true for G′ and then, by Claim
2.2 (b), it is also true for G. 2

The edge st belongs to no admissible pair, thus, by Claim 2.3, there is
a minimum collection M of dangerous sets such that t ∈

⋂
M and Γ(s) ⊆⋃

M. By the minimality of M, each Mi ∈ M contains a neighbour ri 6= t
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Fig. 1. Each edge incident to s belongs to exactly ⌊d(s)/3⌋ admissible pairs.
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Fig. 2. The degree d(s) of s is even and the edge ws belongs to a unique admissible
pair ws, sz.

of s that belongs to no other Mj ∈ M. Let us choose such a vertex ri for
each Mi ∈ M. By Claim 2.5(a), d(s) ≥ 2 and Γ(s) ⊆

⋃
M, for Mi ∈ M,

d(s,Mi) ≤ (d(s) + 1)/2 < d(s) = d(s,
⋃

M) and hence |M| ≥ 2.

Suppose that |M| ≥ 3. We shall find a contradiction showing that this case
can not happen and hence |M| = 2. By Lemma 2.6(b), for all Mi,Mj ∈ M,
Mi − Mj = Mi − t. Let T = V −

⋃
M. Note that d(s, T ) = 0.

Claim 4.2 If R(M1) = λ(a, b) with a ∈ M1 and b ∈ T, then for some Mk ∈



M− M1, R(Mk − t) > R(t).

Proof. Note that d(s) ≥ |M| + 1 and d(T ) ≥ λ(a, b) = R(M1) ≥ d(M1) − 1
because M1 is dangerous. By repeated applications of (1) we get

∑

Mj∈M

(d(Mj) − d(t))≥ d(s ∪ T ) − d(t)

= d(s) + d(T ) − d(t)

≥ (|M| + 1) + (d(M1) − 1) − d(t)

> (|M| − 1) + (d(M1) − d(t)),

so there exists Mk ∈ M − M1 with d(Mk) − d(t) > 1. Then, since Mk is
dangerous, R(Mk) ≥ d(Mk)− 1 > d(t) ≥ R(t) so, by (4), R(Mk − t) > R(t).2

Claim 4.3 There exists Mi ∈ M for which R(Mi − t) ≥ R(t).

Proof. Let Y = {y ∈ V − t : R(t) = λ(t, y)}. By definition, Y 6= ∅. If there
exists a vertex y ∈ Mi∩Y for some Mi ∈ M, then R(Mi− t) ≥ λ(t, y) = R(t).
Thus we may suppose that Y ⊆ T. Let y ∈ Y. Then R(M1) ≥ λ(t, y) = R(t).
If R(M1) = λ(t, y) then, by Claim 4.2, R(M1− t) > R(t). Otherwise R(M1) >
R(t) so, by (4), R(M1 − t) > R(t). 2

Claim 4.4 If Mj ∈ M− Mi, then R(Mj − t) < R(Mj) ≤ R(t).

Proof. Suppose that R(Mj − t) ≥ R(Mj). By Claim 4.3 and (4), R(Mi− t) ≥
R(Mi). So (6) and hence (10) applies for Mi and Mj, contradicting Lemma
2.6(a). By R(Mj − t) < R(Mj) and (4), R(Mj) ≤ R(t). 2

Claim 4.5 If R(Mi) = λ(a, b) with a ∈ Mi and b ∈ V − Mi, then b ∈ T.

Proof. Suppose that b ∈ Mj ∈ M−Mi. Then, R(Mj − t) ≥ λ(a, b) = R(Mi).
By Claims 4.4 and 4.3, R(Mj) ≤ R(t) ≤ R(Mi − t). Thus (6) and hence (10)
applies for Mi and Mj, a contradiction by Lemma 2.6(a). 2

By Claims 4.3 and 4.4, there exists Mi ∈ M such that R(Mj−t) < R(t) for
all Mj ∈ M−Mi. However, by Claim 4.5 and Claim 4.2, applied for M1 = Mi,
R(Mj − t) > R(t) for some Mj ∈ M− Mi. This contradiction completes the
proof of (a) implies (b).

Obviously, (b) implies (a) by Claim 2.3.

We show now that (b) implies (c). Let C1 = M1 −M2 and C2 = M2 −M1.
Clearly, C1 ∩ C2 = ∅ and, by t ∈ M1 ∩ M2, the sets C1 and C2 are in V − t.

Claim 4.6 d(s) is odd and d(s, C1) = (d(s) − 1)/2 = d(s, C2).



Proof. By (8), Γ(s) ⊆ M1 ∪ M2 and st ∈ E, we have 2(d(s) + 1)/2 ≥
d(s,M1)+d(s,M2) = d(s,M1∪M2)+d(s,M1∩M2) ≥ d(s)+1. It follows that
d(s) is odd, d(s,Mi) = (d(s) + 1)/2 and d(s,M1 ∩ M2) = 1. Then d(s, Ci) =
d(s,Mi) − d(s,M1 ∩ M2) = (d(s) + 1)/2 − 1 = (d(s) − 1)/2 for i = 1, 2. 2

Claim 4.7 (10) applies for M1 and M2.

Proof. Suppose that (10) does not hold for M1 and M2. Then, by Proposition
2.1, M1∪M2 6= V and (9) applies for M1 and M2, so, by 1 ≥ h(M1), 1 ≥ h(M2)
and (7), we have 2 ≥ h(M1 ∪ M2). It follows, by (8), (7) and Γ(s) ⊆ M1 ∪
M2, that 2 ≥ h(M1 ∪ M2) = h(V − (M1 ∪ M2)) + 2d(s,M1 ∪ M2) − d(s) ≥
d(s). However, since G is 2-edge-connected and d(s) is odd, d(s) ≥ 3, a
contradiction. 2

Then, by 1 ≥ h(M1), 1 ≥ h(M2), (10), t ∈ M1 ∩ M2, and st ∈ E, we get
that h(C1) = 0 = h(C2), that is C1 and C2 are tight sets. This completes the
proof of (b) implies (c).

Finally, we show that (c) implies (b). Suppose that d(s) is odd and there
exist two disjoint tight sets C1, C2 ⊆ V − t such that d(s, C1) = (d(s)−1)/2 =
d(s, C2). Then, by (8), M1 = V − C1 and M2 = V − C2 are dangerous sets.
Note that t ∈ M1 ∩ M2 and Γ(s) ⊆ M1 ∪ M2. 2

5 Proof of Theorem 1.7

Proof. By Theorem 1.6, there exist two dangerous sets M1 and M2 with
t ∈ M1 ∩ M2 and Γ(s) ⊆ M1 ∪ M2. It also follows from the proof above that
d(s,M1 ∩ M2) = 1 and d(s,M1) = d(s,M2) = (d(s) + 1)/2. Let sr 6= st be
an edge incident to s. Then, by Claim 2.3, the edge sr belongs to at most
d(s) − (d(s) + 1)/2 = (d(s) − 1)/2 admissible pairs. To finish the proof we
show the following lemma.

Lemma 5.1 The edge sr belongs to at least (d(s) − 1)/2 admissible pairs.

Proof. We prove the lemma by induction on |V |. We may assume, by Claim
2.2(a), that (11) is satisfied. By Theorem 1.6, d(s) is odd and there exist two
disjoint tight sets C1, C2 ⊆ V − t such that d(s, C1) = d(s, C2) = (d(s)− 1)/2.
Then, by (11), C1 = c1 and C2 = c2 for some vertices c1, c2 ∈ V . Since sr 6= st,
either r = c1 or r = c2. The lemma follows from the following claim.

Claim 5.2 Let ei be any edge connecting s and ci for 1 ≤ i ≤ 2. Then the
pair of edges e1, e2 is admissible.



Proof. Otherwise, by Claim 2.3, there is a dangerous set X containing c1 and
c2. Then, by d(s, c1) = d(s, c2) = (d(s)−1)/2 and Claim 2.5(a), 2(d(s)−1)/2 ≤
d(s,X) ≤ (d(s)+1)/2, that is d(s) ≤ 3. However, since G is 2-edge-connected
and d(s) is odd and 6= 3, d(s) ≥ 5, a contradiction. 2

6 Open problems

For a summary on edge-connectivity augmentation problems in graphs we
refer to [8]. We repeat one of the open problems proposed in [8], the problem
of local edge-connectivity augmentation in bipartite graphs: given a connected
bipartite graph H = (V,E) and a requirement function r : V × V → Z+, find
the minimum number of new edges F such that λH+F (u, v) ≥ r(u, v) for all
pairs u, v ∈ V and H + F is a bipartite graph. Theorem 1.4 could help to
solve this problem.
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