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Abstract

Nash-Williams’ well-balanced orientation theorem [11] is extended for orienting sev-
eral graphs simultaneously.

We prove that if G, ..., Gy are pairwise edge-disjoint subgraphs of a graph G,
then G has a well-balanced orientation G such that the inherited orientations C_jl of
G; are well-balanced for all 1 <4 < k. We also have new results about simultaneous
well-balanced orientations of non-disjoint subgraphs of an Eulerian graph as well as
those of different contractions of a graph.
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1 Introduction

This paper concerns undirected and directed graphs, more precisely we con-
sider orientations of undirected graphs. Multiple edges are allowed, but loops
are forbidden. The starting point is Robbins’ theorem [13] which states that
an undirected graph G has a strongly connected orientation if and only if G is
2-edge-connected. The following generalization was proved by Nash-Williams
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in [11]: an undirected graph G has a k-arc-connected orientation if and only if
G is 2k-edge-connected (see Theorem 2 below). This result about global edge-
connectivity can be easily proved by applying Lovasz’ splitting off theorem
[8]. Nash-Williams [11] also provided the following extension on local edge-
connectivity (for a stronger statement see Theorem 3): any undirected graph
G has a well-balanced orientation G , that is for every ordered pair of vertices
(u,v), if the maximum number of edge disjoint (u,v)—paths was Ag(u,v) in
G, then the maximum number of arc disjoint directed (u,v)—paths is at least
| A¢(u,v)/2] in the resulting directed graph G. The well-balanced orientation
may also be required to be smooth, that is the in-degree and the out-degree
of every vertex differ by at most one. A smooth well-balanced orientation is
called best-balanced. In fact, Nash-Williams proved an even stronger result
in [11] the so-called odd vertex pairing theorem (see Theorem 5).

Nash-Williams [12] formulated an extension of his orientation theorem: for an
arbitrary subgraph H of an undirected graph G there exists a best-balanced
orientation of H that can be extended to a best-balanced orientation of G (see
Theorem 4). He mentioned that ”Given Theorem 5, the proof of Theorem 4
is not unreasonably difficult. At a certain stage in the proof of Theorem 3 ...
we had occasion to select an arbitrary di-Eulerian orientation A of the finite
Eulerian graph G + P. ... the proof of Theorem 4 depends essentially on the
idea of modifying this step ... by choosing A to be, not just any di-Fulerian
orientation of G + P, but one which satisfies certain additional restrictions.”

The main contribution of the present paper is to provide a simple proof for a
generalization of this result, namely if Gy, ..., Gy are pairwise edge-disjoint sub-
graphs of a graph GG, then G has a best-balanced orientation G such that the
inherited orientations C_jl are best-balanced orientations of G; for all 1 < i < k.
We also have a new result about simultaneous best-balanced orientations of
contractions of G.

For an Eulerian graph G we can prove more: there exists simultaneous best-
balanced orientations of G — v for all v € V. This solves a conjecture of
Frank [2], a special case of an interesting conjecture about k-vertex-connected
orientations (see Conjecture 1), and generalizes a theorem of Berg and Jordan
[1]. We also provide a couple of consequences of the theorems.

2 Notation, definitions

We denote a directed graph by G = (V,A) and an undirected graph by G =
(V,E). For a directed graph G, aset X CV and u,v € V, let 0a(X):=
{uv € Arue X, v X} 0g(X)=0g(V - X), fa(X):= 0g(X) — 05(X),
Ag(u,v):=min{éz(Y):veY, veV =Y} and G:= (V,{vu: ww € A}).



For an undirected graph G, a set X C V and u,v € V, let dg(X):= [{uv €
E:ueX, vé¢ X}, Tag={v €V :dg(v) is odd}, Ag(u,v):=min{de(Y) :
ueY, veV =Y}, Ra(X)=max{\g(z,y) :z € X, ye V- X} (let
Rg(0) = Rg(V) =0), bg(X):=dg(X)—2-|Rs(X)/2], G[X]:= G—(V-X).

Observe that for all X C V, we have 0 < bg(X) < dg(X) and

fa(X)=2_ fa(v). (1)

veX

Let G = (V,E) be an undirected graph. G is called k-edge-connected if
G — F is connected for all F' C E with |F| < k — 1. In this paper, if it is not
explicitly stated, graphs may be disconnected, and we use the notion Eulerian
graph for a possibly disconnected graph with all degrees even. Similarly, a
directed graph is called Eulerian if at every vertex the in-degree equals the
out-degree. Let D = (V, A) be a directed graph. D is strongly connected
if for every ordered pair (u,v) € V x V of vertices there is a directed (u,v)-
path in D. D is called k-arc-connected if G — F' is strongly connected for
all F C A with |F| <k —1. D is called k-vertex-connected if |V| > k and
G — X is strongly connected for all X C V with |X| < k — 1. An orientation
G of G is called well-balanced if

Ag(z,y) > V\ng’y)J for all (z,y) e V xV, (2)

and G is called smooth if

|fa(v)] <1 forall veV. (3)

A smooth well-balanced orientation is called best-balanced. Note that if G
H
is best-balanced then so is G'.

A pairing M of G is a new graph on vertex set T in ‘which each vertex has
degree one. Let M be a pairing of G. An orientation M of M is called good
if

fi(X) <bg(X) forall X CV. (4)

M is well-orientable if there exists a good orientation of M, M is strong if
every orientation of M is good and M is feasible if

dy(X) <bg(X) foral X CV. (5)



Clearly an oriented pairing M is good if and only if M is good. We say that two
arc disjoint directed graphs G and H on the same vertex set V are compatible
if

fa(v)=fgv) forallveV (6)

or equivalently if G + H is Eulerian.

3 Eulerian graphs

The following statements are well-known and/or are easy exercises.

Proposition 1 Every undirected Eulerian graph G has an FEulerian orienta-
tion and every Eulerian orientation of G is best-balanced.

Proposition 2 ]fG cmd G* are Eulerian orientations of a graph G, then G
can be obtained from G' by reversing the orientation of some directed cycles.

Proposition 3 The edge-set of an undirected graph G can be partitioned into
some cycles and |Tg|/2 paths. Hence, every graph G has a pairing M such
that dy(X) < dg(X) for all X C V.

Proposition 4 G is Bulerian if and only if Ja(X) =0 for all X C V. Hence
zf@ 15 Fulerian then the contracted graph é/X 1s also Fulerian for all X CV .

For an Eulerian graph G, an edge-pairing at vertex v is an arbitrary partition
of the edges incident to v into pairs. Suppose that we are given an edge-pairing
at each vertex. An Eulerian orientation is called admissible if at each vertex
every edge-pair becomes a directed path.

Proposition 5 We are given an Eulerian graph G and an edge-pairing at
every vertex. Then there exists an admissible Fulerian orientation of G.

A nice theorem of Ford and Fulkerson [3] about Eulerian orientations of mixed
graphs implies easily the following theorem that plays an important role in
this paper.

Theorem 1 Let M be a pairing of an undirected graph G and M be a good
orientation of M. Then G has an orientation G compatible with M.



4 Equivalent forms

Claim 1 An orientation G of an undirected graph G is well-balanced if and
only if

fa(X) <ba(X)  forall X CV. (7)

Proof. Note that bg(X) — fa(X) = (da(X) — 2[Ra(X)/2]) — (0a(X) —
06(X)) =2(005(X) — [Ra(X)/2]). If G is well-balanced then clearly 6a(X) >
|Ra(X)/2], ie. ba(X) > fa(X) for all X. If §5(X) > |Ra(X)/2] for all X,
then, by Menger’s theorem [10] and the definition of R, G is well-balanced. O

Claim 2 A pairing M of G is strong if and only if M is feasible.

Proof. If M is feasible, then for each orientation M, f(X) <du(X) <
be(X) for all X by (5), that is M is good so M is strong. If M is not feasible,
then let X C V with dy(X) > be(X). Let M be an orientation of M with
0;7(X) = 0. Then f;(X) = du(X) > bg(X), that is M is not good so M is
not strong. O

Claim 3 An undirected graph G has a best-balanced orientation if and only
if there exists a well-orientable pairing M of G. [f]\;j 1 a good orientation of
pairing M then there exists an orientation G compatible with M , and every
such orientation is best-balanced.

Proof. We start by proving the second statement, in which the first part is
the repetition of Theorem 1. As G is compatible with the oriented pairing M ,
it is clearly smooth. By (1), (6) and (4), fz(X) = f(X) < bg(X) so G is
best-balanced by Claim 1.

To prove the first statement, suppose that G is best-balanced. Let Uy, ..., u be
the vertices with 65(u;) = 05(us) + 1 and vy, ..., v, the vertices with d5(v;) =
05(v;) — 1. Then the oriented pairing consisting of arcs uv; (1 < @ < t) is
compatible with G and is good by (1) and by Claim 1. The other direction
follows from the second statement. a

5 Theorems

The following four theorems are due to Nash-Williams [11,12].



Theorem 2 (Nash-Williams) A graph G has a k-arc-connected orientation
if and only if G 1s 2k-edge-connected.

Theorem 3 (Nash-Williams) FEvery graph has a best-balanced orientation.

Theorem 4 (Nash-Williams) Fvery subgraph H of G has a best-balanced
orientation that can be extended to a best-balanced orientation of G.

Theorem 5 (Nash-Williams) FEvery graph has a feasible pairing.

We present in the following claim the global case of the above “odd vertex
pairing” theorem. A short proof of Claim 4 is given in the next section.

Claim 4 FEvery 2k-edge-connected graph G = (V, E) has a pairing M so that

dy(X) < de(X) =2k foral X CV, X # 0. (8)

By Claim 2, Theorem 5 is equivalent to Theorem 6.
Theorem 6 FEwvery graph has a strong pairing.

By Theorem 3 and Claim 3, every graph has a well-orientable pairing. In the
following theorem we generalize this result.

Theorem 7 FEvery pairing is well-orientable.

The main results of this paper are the following generalizations of Theorem 4
and Theorem 3.

Theorem 8 Let G = (V, E) be a graph, {E, ..., Ex} be an arbitrary partition
of E and let G; := (V, E;) 1 <i < k. Then G has a best-balanced orientation
G such that the inherited orientation G; of each G; is also best-balanced.

Theorem 9 For every partition {X1,..., X;} of V. =V(G), G has an orien-
tation G such that G' and its contractions ((G/X1)...)/ X, and G/(V — X;) for
all 1 <1 < are best-balanced orientations of the corresponding graphs.

For Eulerian graphs we have the following result.

Theorem 10 Every Eulerian graph G = (V, E) has a best-balanced orienta-
tion G such that G — v is a best-balanced orientation of G — v for allv € V.

The statement of Theorem 10 is not necessarily true for non-Eulerian graphs,
as the example of K, shows.



6 Proofs

In this section we apply Theorem 6 (or equivalently, Theorem 5) to prove
all the other results in the previous section. For a relatively simple proof for
Theorem 5 see [4]. A polynomial time algorithm to find a feasible pairing can
be found in [6].

First, we mention that Theorems 2, 3 and 4 are easy consequences of Theorems
3, 6 and 8, respectively. We must emphasize that we do not have a new proof
neither for Theorem 5 nor for Theorem 3. However, for Claim 4 we have the
following simple proof.

Proof of Claim 4: If £ = 0 then the claim is true by Proposition 3. From
now on we assume that & > 1. We prove the statement by induction on |E)|.

Case 1 There is s € V with d(s) even. Then, by Lovasz’ splitting off theorem
[8], there exists an edge-pairing {u;s, sv;}7)/? at s such that replacing each
non-parallel pair u;s, sv; by a new edge u;v; and then deleting the vertex s,
the new graph G’ is 2k-edge-connected. Note that Ty = T and |E(G')| < |E|
so by induction there is a pairing M of G’ that satisfies (8) for G’. Then M is
a pairing of G and, since dg(X) < dg(X) for all X C V, clearly M satisfies

(8) for G as well and we are done.

Case 2 Otherwise, T; = V. By a result of Mader [9], since there is no vertex v
with d(v) = 2k, there exists an edge uv € F such that G’ := G —uwv is 2k-edge-
connected. Note that Ty = Tg—{u, v} and |E(G’)| < |E| so by induction there
is a pairing M’ of G’ so that (8) is satisfied for G’ and M'. Let M := M'Uuwv.
Then M is a pairing of G and for all X C V either dy(X) = dp(X) and
dg(X) = dG/(X) or dM(X) = dM/(X) 4+ 1 and dg(X) = dG/(X) + 1 so (8) is
satisfied for G and M and this completes the proof. a

Proof of Theorem 7: Let M; be an arbitrary pairing and M; be a strong
pairing of G. M; exists by Theorem 6. The graph M; U M, is Eulerian so it has
an Eulerian orientation M;UM,. Then fy; (v) = fiz(v) for allv € V. Thus, by

(1) and using that M, is a good orientation of Mo, fi, (X)) = fi7,(X) < ba(X)
for all X CV, so ]\271 is a good orientation of Mj. O

By the above proof, if we know a feasible pairing, then for every pairing we can
find a good orientation in polynomial time. Note that if we apply Theorem 4
with H' = G and G’ = G + M we get another proof for Theorem 7.

Proof of Theorem 8: Let M, and M; be strong pairings of G' and of G,
for 1 < i < k provided by Theorem 6. Note that for K := U’g M;, dg(v) =
Sk dy, (v) = dg(v) + XV da, (v) = 2dg(v) is even for all v € V, so K has an



Eulerian orientation K = U’g M that is U’f M and Wo are compatible. For
1 <i <k, M, is a good orientation of M;, so, by Claim 3, G; has a best-
balanced orientation G; compatible with M;. Let G := = U G;. Then G and
U’f ]\4Z are compatible hence so are G and M . Since the orientation M o is
good, G is a best-balanced orientation of G by Claim 3. a

Proof of Theorem 9: Let Gy := (((G/X1)/X2)/...)/ X, and G; :== G/(V—X;)
for 1 < i < [. Let M; be a strong pairing of G; (0 < i < l) provided by
Theorem 6. It is easy to see that G has a unique pairing M whose restriction
in G; is M; for all 0 < ¢ < [. By Theorem 7, M has a good orientation M.
By Claim 3, GG has a best-balanced orientation G compatible with M. G and
M define the orientations le of G; and ]\7[Z of M; for 0 < i < [. Then, by
Proposition 4, G; and M; are compatible. Since M, is a good orientation of
M;, éz is a best-balanced orientation of GG; by Claim 3. O

Proof of Theorem 10: We define an edge-pairing for all v € V' as follows.
Take a maximum number of disjoint pairs of parallel edges incident to v. Since
G is Eulerian, the other edges from v go to Tz_,,. These edges can be naturally
paired, defined by a strong pairing M, of G — v, where M, exists by Theorem
6. By Proposition 5 there is an admissible Eulerian orientation G of G. Let
M, be the natural orientation of M, (for all v € V') defined by G; as M, is
strong, M, is good. Now G — v+ M, is an Eulerian orientation of G — v + M,,
so by Claim 3, G — v is a best-balanced orientation of G — v for all v € V. O

7 Corollaries

Theorem 4 implies the following result for global edge-connectivity.

Corollary 1 For a subgraph H of G, H has an l-arc-connected orientation
that can be extended to a k-arc-connected orientation of G if and only if H is
2l-edge-connected and G is 2k-edge-connected.

Note that the simple proof given for Claim 4, together with the short proof of
Theorem 8 gives a direct proof for Corollary 1.

Corollary 2 If H is an Fulerian subgraph of G, then any Fulerian orientation
of H can be extended to a best-balanced orientation of G.

Proof. By Theorem 4, H has a best-balanced orientation H that can be
extended to a best-balanced orientation of G. Since H is smooth and H is
Eulerian, H is an Eulerian orientation. By Proposition 2, any other Eulerian
orientation of H can be reached by reversing directed cycles, and this operation
cannot make the best-balanced orientation of G wrong by Claim 1. O



More generally, we may consider the following problem: Given two graphs
G = (W1, Ey) and Gy = (Va, Ey) with By N Ey # (), decide whether there exist
simultaneous best-balanced orientations of G; and G5. This problem is N P-
complete even if both G and G are restricted to be Eulerian [7]. By Corollary
2, if E1 N E5 defines an FEulerian graph then such orientations always exist.

Corollary 3 Let x,y € V(G) with A\¢(z,y) = 2k + 1. Then G has a best-
balanced orientation G such that \g(z,y) =k + 1.

Proof. Let G' = G + zy and H' = G. Note that g/ (z,y) = 2k + 2. By
applying Theorem 4 for G’ and H' the corollary follows (either G or G is
appropriate). O

By Proposition 3 the edge-set of any undirected graph GG can be decomposed
into cycles and |T¢;|/2 paths. Theorem 8 easily implies the following.

Corollary 4 Let us fix a decomposition of the edge-set of an undirected graph
G into cycles and paths. There exists a best-balanced orientation of G where
all the prescribed cycles and paths become directed cycles and paths.

As a counterpart to Theorem 9 we have the following result by Theorem 8.

Corollary 5 For every partition { X1, ..., X;} of V(G), G has an orientation
G such that G and G[X;] for all 1 < i <1 are best-balanced orientations of
the corresponding graphs.

Finally we mention a conjecture on vertex-connectivity orientation (see in [5]),
and prove a special case of it and some related statements.

Conjecture 1 Let G = (V, E) be an undirected graph with |V| > k. Then
G has a k-vertez-connected orientation if and only if for all X C V' with
| X| <k, G—X is (2k — 2| X])-edge-connected.

Corollary 1 implies at once the following.

Corollary 6 Let G = (V, E) be an undirected graph and v € V.. Then G has
a k-arc-connected orientation G such that G — v is (k — 1)-arc-connected if
and only if G is 2k-edge-connected and G — v is (2k — 2)-edge-connected.

Concerning global edge-connectivity we can replace Theorem 6 by Claim 4
in the proof of Theorem 10 and hence we have short simple proofs for the
following corollaries of Theorem 10.

Corollary 7 An Eulerian graph G = (V, E) has a k-arc-connected orientation
G such that G — v is (k — 1)-arc-connected for all v € V if and only if G is
2k-edge-connected and G — v is (2k — 2)-edge-connected for allv € V.



The statement of Corollary 7 is not necessarily true for non-Eulerian graphs,
as an example, consider the graph obtained from K, by replacing each edge
by three parallel edges.

The following result was conjectured by Frank in [2].

Corollary 8 An FEulerian graph G = (V, E) has an Eulerian orientation G
such that G — v s k-arc-connected for all v € V if and only if G — v is
2k-edge-connected for all v € V.

For the special case of Conjecture 1 when the graph is Eulerian and k = 2,
Berg and Jordén [1] provided a sophisticated proof. Their result below follows
immediately from Corollary 8.

Corollary 9 (Berg-Jordan) Let G = (V, E) be a 4-edge-connected Eulerian
graph such that |V| > 3 and G — v is 2-edge-connected for allv € V.. Then G
has a 2-vertex-connected Eulerian orientation.

The interested readers may find many counter-examples for problems related
to well-balanced orientations in [7].
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