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Abstract

Nash-Williams’ well-balanced orientation theorem [11] is extended for orienting sev-
eral graphs simultaneously.

We prove that if G1, ..., Gk are pairwise edge-disjoint subgraphs of a graph G,
then G has a well-balanced orientation ~G such that the inherited orientations ~Gi of
Gi are well-balanced for all 1 ≤ i ≤ k. We also have new results about simultaneous
well-balanced orientations of non-disjoint subgraphs of an Eulerian graph as well as
those of different contractions of a graph.
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1 Introduction

This paper concerns undirected and directed graphs, more precisely we con-
sider orientations of undirected graphs. Multiple edges are allowed, but loops
are forbidden. The starting point is Robbins’ theorem [13] which states that
an undirected graph G has a strongly connected orientation if and only if G is
2-edge-connected. The following generalization was proved by Nash-Williams
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in [11]: an undirected graph G has a k-arc-connected orientation if and only if
G is 2k-edge-connected (see Theorem 2 below). This result about global edge-
connectivity can be easily proved by applying Lovász’ splitting off theorem
[8]. Nash-Williams [11] also provided the following extension on local edge-
connectivity (for a stronger statement see Theorem 3): any undirected graph

G has a well-balanced orientation ~G, that is for every ordered pair of vertices
(u, v), if the maximum number of edge disjoint (u, v)−paths was λG(u, v) in
G, then the maximum number of arc disjoint directed (u, v)−paths is at least

bλG(u, v)/2c in the resulting directed graph ~G. The well-balanced orientation
may also be required to be smooth, that is the in-degree and the out-degree
of every vertex differ by at most one. A smooth well-balanced orientation is
called best-balanced. In fact, Nash-Williams proved an even stronger result
in [11] the so-called odd vertex pairing theorem (see Theorem 5).

Nash-Williams [12] formulated an extension of his orientation theorem: for an
arbitrary subgraph H of an undirected graph G there exists a best-balanced
orientation of H that can be extended to a best-balanced orientation of G (see
Theorem 4). He mentioned that ”Given Theorem 5, the proof of Theorem 4
is not unreasonably difficult. At a certain stage in the proof of Theorem 3 ...
we had occasion to select an arbitrary di-Eulerian orientation ∆ of the finite
Eulerian graph G + P. ... the proof of Theorem 4 depends essentially on the
idea of modifying this step ... by choosing ∆ to be, not just any di-Eulerian
orientation of G + P, but one which satisfies certain additional restrictions.”

The main contribution of the present paper is to provide a simple proof for a
generalization of this result, namely if G1, ..., Gk are pairwise edge-disjoint sub-
graphs of a graph G, then G has a best-balanced orientation ~G such that the
inherited orientations ~Gi are best-balanced orientations of Gi for all 1 ≤ i ≤ k.
We also have a new result about simultaneous best-balanced orientations of
contractions of G.

For an Eulerian graph G we can prove more: there exists simultaneous best-
balanced orientations of G − v for all v ∈ V . This solves a conjecture of
Frank [2], a special case of an interesting conjecture about k-vertex-connected
orientations (see Conjecture 1), and generalizes a theorem of Berg and Jordán
[1]. We also provide a couple of consequences of the theorems.

2 Notation, definitions

We denote a directed graph by ~G = (V, A) and an undirected graph by G =

(V, E). For a directed graph ~G, a set X ⊆ V and u, v ∈ V, let δ ~G(X):=
|{uv ∈ A : u ∈ X, v /∈ X}|, % ~G(X):= δ ~G(V −X), f ~G(X):= % ~G(X)− δ ~G(X),

λ ~G(u, v):= min{δ ~G(Y ) : u ∈ Y, v ∈ V − Y }, and
←−
G := (V, {vu : uv ∈ A}).
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For an undirected graph G, a set X ⊆ V and u, v ∈ V, let dG(X):= |{uv ∈
E : u ∈ X, v /∈ X}|, TG:= {v ∈ V : dG(v) is odd}, λG(u, v):= min{dG(Y ) :
u ∈ Y, v ∈ V − Y } , RG(X):= max{λG(x, y) : x ∈ X, y ∈ V − X} (let
RG(∅) = RG(V ) = 0), bG(X):= dG(X)−2·bRG(X)/2c, G[X]:= G−(V −X).

Observe that for all X ⊆ V, we have 0 ≤ bG(X) ≤ dG(X) and

f ~G(X) =
∑
v∈X

f ~G(v). (1)

Let G = (V, E) be an undirected graph. G is called k-edge-connected if
G− F is connected for all F ⊆ E with |F | ≤ k − 1. In this paper, if it is not
explicitly stated, graphs may be disconnected, and we use the notion Eulerian
graph for a possibly disconnected graph with all degrees even. Similarly, a
directed graph is called Eulerian if at every vertex the in-degree equals the
out-degree. Let D = (V, A) be a directed graph. D is strongly connected
if for every ordered pair (u, v) ∈ V × V of vertices there is a directed (u, v)-
path in D. D is called k-arc-connected if G − F is strongly connected for
all F ⊆ A with |F | ≤ k − 1. D is called k-vertex-connected if |V | > k and
G−X is strongly connected for all X ⊆ V with |X| ≤ k − 1. An orientation
~G of G is called well-balanced if

λ ~G(x, y) ≥
⌊λG(x, y)

2

⌋
for all (x, y) ∈ V × V, (2)

and ~G is called smooth if

|f ~G(v)| ≤ 1 for all v ∈ V. (3)

A smooth well-balanced orientation is called best-balanced. Note that if ~G
is best-balanced then so is

←−
G .

A pairing M of G is a new graph on vertex set TG in which each vertex has
degree one. Let M be a pairing of G. An orientation ~M of M is called good
if

f ~M(X) ≤ bG(X) for all X ⊆ V. (4)

M is well-orientable if there exists a good orientation of M, M is strong if
every orientation of M is good and M is feasible if

dM(X)≤ bG(X) for all X ⊆ V. (5)
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Clearly an oriented pairing ~M is good if and only if
←−
M is good. We say that two

arc disjoint directed graphs ~G and ~H on the same vertex set V are compatible
if

f ~G(v) = f ~H(v) for all v ∈ V (6)

or equivalently if ~G +
←−
H is Eulerian.

3 Eulerian graphs

The following statements are well-known and/or are easy exercises.

Proposition 1 Every undirected Eulerian graph G has an Eulerian orienta-
tion and every Eulerian orientation of G is best-balanced.

Proposition 2 If ~G
1
and ~G

2
are Eulerian orientations of a graph G, then ~G

2

can be obtained from ~G
1

by reversing the orientation of some directed cycles.

Proposition 3 The edge-set of an undirected graph G can be partitioned into
some cycles and |TG|/2 paths. Hence, every graph G has a pairing M such
that dM(X) ≤ dG(X) for all X ⊂ V .

Proposition 4 ~G is Eulerian if and only if f ~G(X) = 0 for all X ⊆ V . Hence

if ~G is Eulerian then the contracted graph ~G/X is also Eulerian for all X ⊆ V .

For an Eulerian graph G, an edge-pairing at vertex v is an arbitrary partition
of the edges incident to v into pairs. Suppose that we are given an edge-pairing
at each vertex. An Eulerian orientation is called admissible if at each vertex
every edge-pair becomes a directed path.

Proposition 5 We are given an Eulerian graph G and an edge-pairing at
every vertex. Then there exists an admissible Eulerian orientation of G.

A nice theorem of Ford and Fulkerson [3] about Eulerian orientations of mixed
graphs implies easily the following theorem that plays an important role in
this paper.

Theorem 1 Let M be a pairing of an undirected graph G and ~M be a good
orientation of M . Then G has an orientation ~G compatible with ~M .
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4 Equivalent forms

Claim 1 An orientation ~G of an undirected graph G is well-balanced if and
only if

f ~G(X) ≤ bG(X) for all X ⊆ V. (7)

Proof. Note that bG(X) − f ~G(X) = (dG(X) − 2bRG(X)/2c) − (% ~G(X) −
δ ~G(X)) = 2(δ ~G(X)−bRG(X)/2c). If ~G is well-balanced then clearly δ ~G(X) ≥
bRG(X)/2c, i.e. bG(X) ≥ f ~G(X) for all X. If δ ~G(X) ≥ bRG(X)/2c for all X,

then, by Menger’s theorem [10] and the definition of R, ~G is well-balanced. 2

Claim 2 A pairing M of G is strong if and only if M is feasible.

Proof. If M is feasible, then for each orientation ~M, f ~M(X) ≤ dM(X) ≤
bG(X) for all X by (5), that is ~M is good so M is strong. If M is not feasible,

then let X ⊆ V with dM(X) > bG(X). Let ~M be an orientation of M with

δ ~M(X) = 0. Then f ~M(X) = dM(X) > bG(X), that is ~M is not good so M is
not strong. 2

Claim 3 An undirected graph G has a best-balanced orientation if and only
if there exists a well-orientable pairing M of G. If ~M is a good orientation of
pairing M then there exists an orientation ~G compatible with ~M , and every
such orientation is best-balanced.

Proof. We start by proving the second statement, in which the first part is
the repetition of Theorem 1. As ~G is compatible with the oriented pairing ~M ,
it is clearly smooth. By (1), (6) and (4), f ~G(X) = f ~M(X) ≤ bG(X) so ~G is
best-balanced by Claim 1.

To prove the first statement, suppose that ~G is best-balanced. Let u1, . . . , ut be
the vertices with δ ~G(ui) = % ~G(ui) + 1 and v1, . . . , vt the vertices with δ ~G(vi) =
% ~G(vi) − 1. Then the oriented pairing consisting of arcs uivi (1 ≤ i ≤ t) is

compatible with ~G and is good by (1) and by Claim 1. The other direction
follows from the second statement. 2

5 Theorems

The following four theorems are due to Nash-Williams [11,12].
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Theorem 2 (Nash-Williams) A graph G has a k-arc-connected orientation
if and only if G is 2k-edge-connected.

Theorem 3 (Nash-Williams) Every graph has a best-balanced orientation.

Theorem 4 (Nash-Williams) Every subgraph H of G has a best-balanced
orientation that can be extended to a best-balanced orientation of G.

Theorem 5 (Nash-Williams) Every graph has a feasible pairing.

We present in the following claim the global case of the above “odd vertex
pairing” theorem. A short proof of Claim 4 is given in the next section.

Claim 4 Every 2k-edge-connected graph G = (V, E) has a pairing M so that

dM(X) ≤ dG(X)− 2k for all X ⊂ V, X 6= ∅. (8)

By Claim 2, Theorem 5 is equivalent to Theorem 6.

Theorem 6 Every graph has a strong pairing.

By Theorem 3 and Claim 3, every graph has a well-orientable pairing. In the
following theorem we generalize this result.

Theorem 7 Every pairing is well-orientable.

The main results of this paper are the following generalizations of Theorem 4
and Theorem 3.

Theorem 8 Let G = (V, E) be a graph, {E1, ..., Ek} be an arbitrary partition
of E and let Gi := (V, Ei) 1 ≤ i ≤ k. Then G has a best-balanced orientation
~G such that the inherited orientation ~Gi of each Gi is also best-balanced.

Theorem 9 For every partition {X1, ..., Xl} of V = V (G), G has an orien-

tation ~G such that ~G and its contractions ((~G/X1)...)/Xl and ~G/(V −Xi) for
all 1 ≤ i ≤ l are best-balanced orientations of the corresponding graphs.

For Eulerian graphs we have the following result.

Theorem 10 Every Eulerian graph G = (V, E) has a best-balanced orienta-

tion ~G such that ~G− v is a best-balanced orientation of G− v for all v ∈ V .

The statement of Theorem 10 is not necessarily true for non-Eulerian graphs,
as the example of K4 shows.
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6 Proofs

In this section we apply Theorem 6 (or equivalently, Theorem 5) to prove
all the other results in the previous section. For a relatively simple proof for
Theorem 5 see [4]. A polynomial time algorithm to find a feasible pairing can
be found in [6].

First, we mention that Theorems 2, 3 and 4 are easy consequences of Theorems
3, 6 and 8, respectively. We must emphasize that we do not have a new proof
neither for Theorem 5 nor for Theorem 3. However, for Claim 4 we have the
following simple proof.

Proof of Claim 4: If k = 0 then the claim is true by Proposition 3. From
now on we assume that k ≥ 1. We prove the statement by induction on |E|.

Case 1 There is s ∈ V with d(s) even. Then, by Lovász’ splitting off theorem

[8], there exists an edge-pairing {uis, svi}d(s)/2
i=1 at s such that replacing each

non-parallel pair uis, svi by a new edge uivi and then deleting the vertex s,
the new graph G′ is 2k-edge-connected. Note that TG′ = TG and |E(G′)| < |E|
so by induction there is a pairing M of G′ that satisfies (8) for G′. Then M is
a pairing of G and, since dG′(X) ≤ dG(X) for all X ⊂ V, clearly M satisfies
(8) for G as well and we are done.

Case 2 Otherwise, TG = V . By a result of Mader [9], since there is no vertex v
with d(v) = 2k, there exists an edge uv ∈ E such that G′ := G−uv is 2k-edge-
connected. Note that TG′ = TG−{u, v} and |E(G′)| < |E| so by induction there
is a pairing M ′ of G′ so that (8) is satisfied for G′ and M ′. Let M := M ′ ∪uv.
Then M is a pairing of G and for all X ⊆ V either dM(X) = dM ′(X) and
dG(X) = dG′(X) or dM(X) = dM ′(X) + 1 and dG(X) = dG′(X) + 1 so (8) is
satisfied for G and M and this completes the proof. 2

Proof of Theorem 7: Let M1 be an arbitrary pairing and M2 be a strong
pairing of G. M2 exists by Theorem 6. The graph M1∪M2 is Eulerian so it has
an Eulerian orientation ~M1∪ ~M2. Then f ~M1

(v) = f←−
M2

(v) for all v ∈ V . Thus, by

(1) and using that
←−
M2 is a good orientation of M2, f ~M1

(X) = f←−
M2

(X) ≤ bG(X)

for all X ⊆ V, so ~M1 is a good orientation of M1. 2

By the above proof, if we know a feasible pairing, then for every pairing we can
find a good orientation in polynomial time. Note that if we apply Theorem 4
with H ′ = G and G′ = G + M we get another proof for Theorem 7.

Proof of Theorem 8: Let M0 and Mi be strong pairings of G and of Gi

for 1 ≤ i ≤ k provided by Theorem 6. Note that for K :=
⋃k

0 Mi, dK(v) =∑k
0 dMi

(v) ≡ dG(v) +
∑k

1 dGi
(v) = 2dG(v) is even for all v ∈ V, so K has an
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Eulerian orientation ~K =
⋃k

0
~Mi that is

⋃k
1

~Mi and
←−
M0 are compatible. For

1 ≤ i ≤ k, ~Mi is a good orientation of Mi, so, by Claim 3, Gi has a best-
balanced orientation ~Gi compatible with ~Mi. Let ~G :=

⋃k
1

~Gi. Then ~G and⋃k
1

~Mi are compatible hence so are ~G and
←−
M0. Since the orientation

←−
M0 is

good, ~G is a best-balanced orientation of G by Claim 3. 2

Proof of Theorem 9: Let G0 := (((G/X1)/X2)/...)/Xl and Gi := G/(V−Xi)
for 1 ≤ i ≤ l. Let Mi be a strong pairing of Gi (0 ≤ i ≤ l) provided by
Theorem 6. It is easy to see that G has a unique pairing M whose restriction
in Gi is Mi for all 0 ≤ i ≤ l. By Theorem 7, M has a good orientation ~M .
By Claim 3, G has a best-balanced orientation ~G compatible with ~M . ~G and
~M define the orientations ~Gi of Gi and ~Mi of Mi for 0 ≤ i ≤ l. Then, by
Proposition 4, ~Gi and ~Mi are compatible. Since ~Mi is a good orientation of
Mi, ~Gi is a best-balanced orientation of Gi by Claim 3. 2

Proof of Theorem 10: We define an edge-pairing for all v ∈ V as follows.
Take a maximum number of disjoint pairs of parallel edges incident to v. Since
G is Eulerian, the other edges from v go to TG−v. These edges can be naturally
paired, defined by a strong pairing Mv of G− v, where Mv exists by Theorem
6. By Proposition 5 there is an admissible Eulerian orientation ~G of G. Let
~Mv be the natural orientation of Mv (for all v ∈ V ) defined by ~G; as Mv is

strong, ~Mv is good. Now ~G− v + ~Mv is an Eulerian orientation of G− v +Mv,
so by Claim 3, ~G− v is a best-balanced orientation of G− v for all v ∈ V . 2

7 Corollaries

Theorem 4 implies the following result for global edge-connectivity.

Corollary 1 For a subgraph H of G, H has an l-arc-connected orientation
that can be extended to a k-arc-connected orientation of G if and only if H is
2l-edge-connected and G is 2k-edge-connected.

Note that the simple proof given for Claim 4, together with the short proof of
Theorem 8 gives a direct proof for Corollary 1.

Corollary 2 If H is an Eulerian subgraph of G, then any Eulerian orientation
of H can be extended to a best-balanced orientation of G.

Proof. By Theorem 4, H has a best-balanced orientation ~H that can be
extended to a best-balanced orientation of G. Since ~H is smooth and H is
Eulerian, ~H is an Eulerian orientation. By Proposition 2, any other Eulerian
orientation of H can be reached by reversing directed cycles, and this operation
cannot make the best-balanced orientation of G wrong by Claim 1. 2
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More generally, we may consider the following problem: Given two graphs
G1 = (V1, E1) and G2 = (V2, E2) with E1 ∩E2 6= ∅, decide whether there exist
simultaneous best-balanced orientations of G1 and G2. This problem is NP -
complete even if both G1 and G2 are restricted to be Eulerian [7]. By Corollary
2, if E1 ∩ E2 defines an Eulerian graph then such orientations always exist.

Corollary 3 Let x, y ∈ V (G) with λG(x, y) = 2k + 1. Then G has a best-

balanced orientation ~G such that λ ~G(x, y) = k + 1.

Proof. Let G′ = G + xy and H ′ = G. Note that λG′(x, y) = 2k + 2. By

applying Theorem 4 for G′ and H ′ the corollary follows (either ~G or
←−
G is

appropriate). 2

By Proposition 3 the edge-set of any undirected graph G can be decomposed
into cycles and |TG|/2 paths. Theorem 8 easily implies the following.

Corollary 4 Let us fix a decomposition of the edge-set of an undirected graph
G into cycles and paths. There exists a best-balanced orientation of G where
all the prescribed cycles and paths become directed cycles and paths.

As a counterpart to Theorem 9 we have the following result by Theorem 8.

Corollary 5 For every partition {X1, ..., Xl} of V (G), G has an orientation
~G such that ~G and ~G[Xi] for all 1 ≤ i ≤ l are best-balanced orientations of
the corresponding graphs.

Finally we mention a conjecture on vertex-connectivity orientation (see in [5]),
and prove a special case of it and some related statements.

Conjecture 1 Let G = (V, E) be an undirected graph with |V | > k. Then
G has a k-vertex-connected orientation if and only if for all X ⊆ V with
|X| < k, G−X is (2k − 2|X|)-edge-connected.

Corollary 1 implies at once the following.

Corollary 6 Let G = (V, E) be an undirected graph and v ∈ V . Then G has

a k-arc-connected orientation ~G such that ~G − v is (k − 1)-arc-connected if
and only if G is 2k-edge-connected and G− v is (2k − 2)-edge-connected.

Concerning global edge-connectivity we can replace Theorem 6 by Claim 4
in the proof of Theorem 10 and hence we have short simple proofs for the
following corollaries of Theorem 10.

Corollary 7 An Eulerian graph G = (V, E) has a k-arc-connected orientation
~G such that ~G − v is (k − 1)-arc-connected for all v ∈ V if and only if ~G is
2k-edge-connected and G− v is (2k − 2)-edge-connected for all v ∈ V .
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The statement of Corollary 7 is not necessarily true for non-Eulerian graphs,
as an example, consider the graph obtained from K4 by replacing each edge
by three parallel edges.

The following result was conjectured by Frank in [2].

Corollary 8 An Eulerian graph G = (V, E) has an Eulerian orientation ~G

such that ~G − v is k-arc-connected for all v ∈ V if and only if G − v is
2k-edge-connected for all v ∈ V .

For the special case of Conjecture 1 when the graph is Eulerian and k = 2,
Berg and Jordán [1] provided a sophisticated proof. Their result below follows
immediately from Corollary 8.

Corollary 9 (Berg-Jordán) Let G = (V, E) be a 4-edge-connected Eulerian
graph such that |V | ≥ 3 and G− v is 2-edge-connected for all v ∈ V . Then G
has a 2-vertex-connected Eulerian orientation.

The interested readers may find many counter-examples for problems related
to well-balanced orientations in [7].

Acknowledgement We thank András Frank for many helpful discussions.
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