Simultaneous well-balanced orientations of graphs

Zoltán Király^{1,2}

Department of Computer Science, and CNL (Communication Networks Lab), Eötvös University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.

Zoltán Szigeti²

Equipe Combinatoire et Optimisation, Université Paris 6, 75252 Paris, Cedex 05, France.

Abstract

Nash-Williams' well-balanced orientation theorem [11] is extended for orienting several graphs simultaneously.

We prove that if $G_1, ..., G_k$ are pairwise edge-disjoint subgraphs of a graph G, then G has a well-balanced orientation \vec{G} such that the inherited orientations \vec{G}_i of G_i are well-balanced for all $1 \le i \le k$. We also have new results about simultaneous well-balanced orientations of non-disjoint subgraphs of an Eulerian graph as well as those of different contractions of a graph.

Key words: orientation, connectivity

1 Introduction

This paper concerns undirected and directed graphs, more precisely we consider orientations of undirected graphs. Multiple edges are allowed, but loops are forbidden. The starting point is Robbins' theorem [13] which states that an undirected graph G has a strongly connected orientation if and only if G is 2-edge-connected. The following generalization was proved by Nash-Williams

Email addresses: kiraly@cs.elte.hu (Zoltán Király),

szigeti@math.jussieu.fr (Zoltán Szigeti).

¹ Research supported by OTKA grants T 037547 and T046234.

² Research supported by EGRES group (MTA-ELTE).

in [11]: an undirected graph G has a k-arc-connected orientation if and only if G is 2k-edge-connected (see Theorem 2 below). This result about global edgeconnectivity can be easily proved by applying Lovász' splitting off theorem [8]. Nash-Williams [11] also provided the following extension on local edgeconnectivity (for a stronger statement see Theorem 3): any undirected graph G has a **well-balanced** orientation \vec{G} , that is for every ordered pair of vertices (u, v), if the maximum number of edge disjoint (u, v)-paths was $\lambda_G(u, v)$ in G, then the maximum number of arc disjoint directed (u, v)-paths is at least $\lfloor \lambda_G(u, v)/2 \rfloor$ in the resulting directed graph \vec{G} . The well-balanced orientation may also be required to be **smooth**, that is the in-degree and the out-degree of every vertex differ by at most one. A smooth well-balanced orientation is called **best-balanced**. In fact, Nash-Williams proved an even stronger result in [11] the so-called odd vertex pairing theorem (see Theorem 5).

Nash-Williams [12] formulated an extension of his orientation theorem: for an arbitrary subgraph H of an undirected graph G there exists a best-balanced orientation of H that can be extended to a best-balanced orientation of G (see Theorem 4). He mentioned that "Given Theorem 5, the proof of Theorem 4 is not unreasonably difficult. At a certain stage in the proof of Theorem 3 ... we had occasion to select an arbitrary di-Eulerian orientation Δ of the finite Eulerian graph G + P. ... the proof of Theorem 4 depends essentially on the idea of modifying this step ... by choosing Δ to be, not just any di-Eulerian orientation of G + P, but one which satisfies certain additional restrictions."

The main contribution of the present paper is to provide a simple proof for a generalization of this result, namely if $G_1, ..., G_k$ are pairwise edge-disjoint subgraphs of a graph G, then G has a best-balanced orientation \vec{G} such that the inherited orientations \vec{G}_i are best-balanced orientations of G_i for all $1 \le i \le k$. We also have a new result about simultaneous best-balanced orientations of G.

For an Eulerian graph G we can prove more: there exists simultaneous bestbalanced orientations of G - v for all $v \in V$. This solves a conjecture of Frank [2], a special case of an interesting conjecture about k-vertex-connected orientations (see Conjecture 1), and generalizes a theorem of Berg and Jordán [1]. We also provide a couple of consequences of the theorems.

2 Notation, definitions

We denote a directed graph by $\vec{G} = (V, A)$ and an undirected graph by G = (V, E). For a directed graph \vec{G} , a set $X \subseteq V$ and $u, v \in V$, let $\delta_{\vec{G}}(X) := |\{uv \in A : u \in X, v \notin X\}|, \rho_{\vec{G}}(X) := \delta_{\vec{G}}(V - X), f_{\vec{G}}(X) := \rho_{\vec{G}}(X) - \delta_{\vec{G}}(X), \lambda_{\vec{G}}(u, v) := \min\{\delta_{\vec{G}}(Y) : u \in Y, v \in V - Y\}, \text{ and } \overleftarrow{G} := (V, \{vu : uv \in A\}).$

For an undirected graph G, a set $X \subseteq V$ and $u, v \in V$, let $d_G(X) := |\{uv \in E : u \in X, v \notin X\}|$, $T_G := \{v \in V : d_G(v) \text{ is odd}\}$, $\lambda_G(u, v) := \min\{d_G(Y) : u \in Y, v \in V - Y\}$, $R_G(X) := \max\{\lambda_G(x, y) : x \in X, y \in V - X\}$ (let $R_G(\emptyset) = R_G(V) = 0$), $b_G(X) := d_G(X) - 2 \cdot \lfloor R_G(X)/2 \rfloor$, G[X] := G - (V - X).

Observe that for all $X \subseteq V$, we have $0 \le b_G(X) \le d_G(X)$ and

$$f_{\vec{G}}(X) = \sum_{v \in X} f_{\vec{G}}(v). \tag{1}$$

Let G = (V, E) be an undirected graph. G is called k-edge-connected if G - F is connected for all $F \subseteq E$ with $|F| \leq k - 1$. In this paper, if it is not explicitly stated, graphs may be disconnected, and we use the notion **Eulerian** graph for a possibly disconnected graph with all degrees even. Similarly, a directed graph is called Eulerian if at every vertex the in-degree equals the out-degree. Let D = (V, A) be a directed graph. D is strongly connected if for every ordered pair $(u, v) \in V \times V$ of vertices there is a directed (u, v)-path in D. D is called k-arc-connected if G - F is strongly connected for all $F \subseteq A$ with $|F| \leq k - 1$. D is called k-vertex-connected if |V| > k and G - X is strongly connected for all $X \subseteq V$ with $|X| \leq k - 1$. An orientation \vec{G} of G is called well-balanced if

$$\lambda_{\vec{G}}(x,y) \ge \left\lfloor \frac{\lambda_G(x,y)}{2} \right\rfloor \text{ for all } (x,y) \in V \times V, \tag{2}$$

and \vec{G} is called **smooth** if

$$|f_{\vec{G}}(v)| \le 1 \quad \text{for all} \quad v \in V. \tag{3}$$

A smooth well-balanced orientation is called **best-balanced**. Note that if \vec{G} is best-balanced then so is \overleftarrow{G} .

A **pairing** M of G is a new graph on vertex set T_G in which each vertex has degree one. Let M be a pairing of G. An orientation \vec{M} of M is called **good** if

$$f_{\vec{M}}(X) \le b_G(X) \quad \text{for all } X \subseteq V.$$
 (4)

M is well-orientable if there exists a good orientation of M, M is strong if every orientation of M is good and M is feasible if

$$d_M(X) \le b_G(X) \quad \text{for all } X \subseteq V. \tag{5}$$

Clearly an oriented pairing \vec{M} is good if and only if \overline{M} is good. We say that two arc disjoint directed graphs \vec{G} and \vec{H} on the same vertex set V are **compatible** if

$$f_{\vec{G}}(v) = f_{\vec{H}}(v) \quad \text{for all } v \in V \tag{6}$$

or equivalently if $\vec{G} + \overleftarrow{H}$ is Eulerian.

3 Eulerian graphs

The following statements are well-known and/or are easy exercises.

Proposition 1 Every undirected Eulerian graph G has an Eulerian orientation and every Eulerian orientation of G is best-balanced.

Proposition 2 If \vec{G}^1 and \vec{G}^2 are Eulerian orientations of a graph G, then \vec{G}^2 can be obtained from \vec{G}^1 by reversing the orientation of some directed cycles.

Proposition 3 The edge-set of an undirected graph G can be partitioned into some cycles and $|T_G|/2$ paths. Hence, every graph G has a pairing M such that $d_M(X) \leq d_G(X)$ for all $X \subset V$.

Proposition 4 \vec{G} is Eulerian if and only if $f_{\vec{G}}(X) = 0$ for all $X \subseteq V$. Hence if \vec{G} is Eulerian then the contracted graph \vec{G}/X is also Eulerian for all $X \subseteq V$.

For an Eulerian graph G, an **edge-pairing** at vertex v is an arbitrary partition of the edges incident to v into pairs. Suppose that we are given an edge-pairing at each vertex. An Eulerian orientation is called **admissible** if at each vertex every edge-pair becomes a directed path.

Proposition 5 We are given an Eulerian graph G and an edge-pairing at every vertex. Then there exists an admissible Eulerian orientation of G.

A nice theorem of Ford and Fulkerson [3] about Eulerian orientations of mixed graphs implies easily the following theorem that plays an important role in this paper.

Theorem 1 Let M be a pairing of an undirected graph G and \vec{M} be a good orientation of M. Then G has an orientation \vec{G} compatible with \vec{M} .

4 Equivalent forms

Claim 1 An orientation \vec{G} of an undirected graph G is well-balanced if and only if

$$f_{\vec{G}}(X) \le b_G(X) \quad \text{for all } X \subseteq V.$$
 (7)

Proof. Note that $b_G(X) - f_{\vec{G}}(X) = (d_G(X) - 2\lfloor R_G(X)/2 \rfloor) - (\varrho_{\vec{G}}(X) - \delta_{\vec{G}}(X)) = 2(\delta_{\vec{G}}(X) - \lfloor R_G(X)/2 \rfloor)$. If \vec{G} is well-balanced then clearly $\delta_{\vec{G}}(X) \ge \lfloor R_G(X)/2 \rfloor$, i.e. $b_G(X) \ge f_{\vec{G}}(X)$ for all X. If $\delta_{\vec{G}}(X) \ge \lfloor R_G(X)/2 \rfloor$ for all X, then, by Menger's theorem [10] and the definition of R, \vec{G} is well-balanced. \Box

Claim 2 A pairing M of G is strong if and only if M is feasible.

Proof. If M is feasible, then for each orientation \vec{M} , $f_{\vec{M}}(X) \leq d_M(X) \leq b_G(X)$ for all X by (5), that is \vec{M} is good so M is strong. If M is not feasible, then let $X \subseteq V$ with $d_M(X) > b_G(X)$. Let \vec{M} be an orientation of M with $\delta_{\vec{M}}(X) = 0$. Then $f_{\vec{M}}(X) = d_M(X) > b_G(X)$, that is \vec{M} is not good so M is not strong. \Box

Claim 3 An undirected graph G has a best-balanced orientation if and only if there exists a well-orientable pairing M of G. If \vec{M} is a good orientation of pairing M then there exists an orientation \vec{G} compatible with \vec{M} , and every such orientation is best-balanced.

Proof. We start by proving the second statement, in which the first part is the repetition of Theorem 1. As \vec{G} is compatible with the oriented pairing \vec{M} , it is clearly smooth. By (1), (6) and (4), $f_{\vec{G}}(X) = f_{\vec{M}}(X) \leq b_G(X)$ so \vec{G} is best-balanced by Claim 1.

To prove the first statement, suppose that \vec{G} is best-balanced. Let u_1, \ldots, u_t be the vertices with $\delta_{\vec{G}}(u_i) = \varrho_{\vec{G}}(u_i) + 1$ and v_1, \ldots, v_t the vertices with $\delta_{\vec{G}}(v_i) = \varrho_{\vec{G}}(v_i) - 1$. Then the oriented pairing consisting of arcs $u_i v_i$ $(1 \le i \le t)$ is compatible with \vec{G} and is good by (1) and by Claim 1. The other direction follows from the second statement. \Box

5 Theorems

The following four theorems are due to Nash-Williams [11,12].

Theorem 2 (Nash-Williams) A graph G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Theorem 3 (Nash-Williams) Every graph has a best-balanced orientation.

Theorem 4 (Nash-Williams) Every subgraph H of G has a best-balanced orientation that can be extended to a best-balanced orientation of G.

Theorem 5 (Nash-Williams) Every graph has a feasible pairing.

We present in the following claim the global case of the above "odd vertex pairing" theorem. A short proof of Claim 4 is given in the next section.

Claim 4 Every 2k-edge-connected graph G = (V, E) has a pairing M so that

$$d_M(X) \le d_G(X) - 2k \quad \text{for all } X \subset V, \ X \neq \emptyset.$$
(8)

By Claim 2, Theorem 5 is equivalent to Theorem 6.

Theorem 6 Every graph has a strong pairing.

By Theorem 3 and Claim 3, every graph has a well-orientable pairing. In the following theorem we generalize this result.

Theorem 7 Every pairing is well-orientable.

The main results of this paper are the following generalizations of Theorem 4 and Theorem 3.

Theorem 8 Let G = (V, E) be a graph, $\{E_1, ..., E_k\}$ be an arbitrary partition of E and let $G_i := (V, E_i)$ $1 \le i \le k$. Then G has a best-balanced orientation \vec{G} such that the inherited orientation \vec{G}_i of each G_i is also best-balanced.

Theorem 9 For every partition $\{X_1, ..., X_l\}$ of V = V(G), G has an orientation \vec{G} such that \vec{G} and its contractions $((\vec{G}/X_1)...)/X_l$ and $\vec{G}/(V - X_i)$ for all $1 \le i \le l$ are best-balanced orientations of the corresponding graphs.

For Eulerian graphs we have the following result.

Theorem 10 Every Eulerian graph G = (V, E) has a best-balanced orientation \vec{G} such that $\vec{G} - v$ is a best-balanced orientation of G - v for all $v \in V$.

The statement of Theorem 10 is not necessarily true for non-Eulerian graphs, as the example of K_4 shows.

6 Proofs

In this section we apply Theorem 6 (or equivalently, Theorem 5) to prove all the other results in the previous section. For a relatively simple proof for Theorem 5 see [4]. A polynomial time algorithm to find a feasible pairing can be found in [6].

First, we mention that Theorems 2, 3 and 4 are easy consequences of Theorems 3, 6 and 8, respectively. We must emphasize that we do not have a new proof neither for Theorem 5 nor for Theorem 3. However, for Claim 4 we have the following simple proof.

Proof of Claim 4: If k = 0 then the claim is true by Proposition 3. From now on we assume that $k \ge 1$. We prove the statement by induction on |E|.

Case 1 There is $s \in V$ with d(s) even. Then, by Lovász' splitting off theorem [8], there exists an edge-pairing $\{u_i s, sv_i\}_{i=1}^{d(s)/2}$ at s such that replacing each non-parallel pair $u_i s, sv_i$ by a new edge $u_i v_i$ and then deleting the vertex s, the new graph G' is 2k-edge-connected. Note that $T_{G'} = T_G$ and |E(G')| < |E| so by induction there is a pairing M of G' that satisfies (8) for G'. Then M is a pairing of G and, since $d_{G'}(X) \leq d_G(X)$ for all $X \subset V$, clearly M satisfies (8) for G as well and we are done.

Case 2 Otherwise, $T_G = V$. By a result of Mader [9], since there is no vertex v with d(v) = 2k, there exists an edge $uv \in E$ such that G' := G - uv is 2k-edgeconnected. Note that $T_{G'} = T_G - \{u, v\}$ and |E(G')| < |E| so by induction there is a pairing M' of G' so that (8) is satisfied for G' and M'. Let $M := M' \cup uv$. Then M is a pairing of G and for all $X \subseteq V$ either $d_M(X) = d_{M'}(X)$ and $d_G(X) = d_{G'}(X)$ or $d_M(X) = d_{M'}(X) + 1$ and $d_G(X) = d_{G'}(X) + 1$ so (8) is satisfied for G and M and this completes the proof. \Box

Proof of Theorem 7: Let M_1 be an arbitrary pairing and M_2 be a strong pairing of G. M_2 exists by Theorem 6. The graph $M_1 \cup M_2$ is Eulerian so it has an Eulerian orientation $\vec{M_1} \cup \vec{M_2}$. Then $f_{\vec{M_1}}(v) = f_{\overline{M_2}}(v)$ for all $v \in V$. Thus, by (1) and using that $\overline{M_2}$ is a good orientation of M_2 , $f_{\vec{M_1}}(X) = f_{\overline{M_2}}(X) \leq b_G(X)$ for all $X \subseteq V$, so $\vec{M_1}$ is a good orientation of M_1 . \Box

By the above proof, if we know a feasible pairing, then for every pairing we can find a good orientation in polynomial time. Note that if we apply Theorem 4 with H' = G and G' = G + M we get another proof for Theorem 7.

Proof of Theorem 8: Let M_0 and M_i be strong pairings of G and of G_i for $1 \leq i \leq k$ provided by Theorem 6. Note that for $K := \bigcup_0^k M_i$, $d_K(v) = \sum_0^k d_{M_i}(v) \equiv d_G(v) + \sum_1^k d_{G_i}(v) = 2d_G(v)$ is even for all $v \in V$, so K has an Eulerian orientation $\vec{K} = \bigcup_{0}^{k} \vec{M}_{i}$ that is $\bigcup_{1}^{k} \vec{M}_{i}$ and \overleftarrow{M}_{0} are compatible. For $1 \leq i \leq k$, \vec{M}_{i} is a good orientation of M_{i} , so, by Claim 3, G_{i} has a bestbalanced orientation \vec{G}_{i} compatible with \vec{M}_{i} . Let $\vec{G} := \bigcup_{1}^{k} \vec{G}_{i}$. Then \vec{G} and $\bigcup_{1}^{k} \vec{M}_{i}$ are compatible hence so are \vec{G} and \overleftarrow{M}_{0} . Since the orientation \overleftarrow{M}_{0} is good, \vec{G} is a best-balanced orientation of G by Claim 3.

Proof of Theorem 9: Let $G_0 := (((G/X_1)/X_2)/...)/X_l$ and $G_i := G/(V-X_i)$ for $1 \le i \le l$. Let M_i be a strong pairing of G_i $(0 \le i \le l)$ provided by Theorem 6. It is easy to see that G has a unique pairing M whose restriction in G_i is M_i for all $0 \le i \le l$. By Theorem 7, M has a good orientation \vec{M} . By Claim 3, G has a best-balanced orientation \vec{G} compatible with \vec{M} . \vec{G} and \vec{M} define the orientations \vec{G}_i of G_i and \vec{M}_i for $0 \le i \le l$. Then, by Proposition 4, \vec{G}_i and \vec{M}_i are compatible. Since \vec{M}_i is a good orientation of M_i , \vec{G}_i is a best-balanced orientation of G_i by Claim 3.

Proof of Theorem 10: We define an edge-pairing for all $v \in V$ as follows. Take a maximum number of disjoint pairs of parallel edges incident to v. Since G is Eulerian, the other edges from v go to T_{G-v} . These edges can be naturally paired, defined by a strong pairing M_v of G - v, where M_v exists by Theorem 6. By Proposition 5 there is an admissible Eulerian orientation \vec{G} of G. Let $\vec{M_v}$ be the natural orientation of M_v (for all $v \in V$) defined by \vec{G} ; as M_v is strong, $\vec{M_v}$ is good. Now $\vec{G} - v + \vec{M_v}$ is an Eulerian orientation of $G - v + M_v$, so by Claim 3, $\vec{G} - v$ is a best-balanced orientation of G - v for all $v \in V$. \Box

7 Corollaries

Theorem 4 implies the following result for global edge-connectivity.

Corollary 1 For a subgraph H of G, H has an l-arc-connected orientation that can be extended to a k-arc-connected orientation of G if and only if H is 2l-edge-connected and G is 2k-edge-connected.

Note that the simple proof given for Claim 4, together with the short proof of Theorem 8 gives a direct proof for Corollary 1.

Corollary 2 If H is an Eulerian subgraph of G, then any Eulerian orientation of H can be extended to a best-balanced orientation of G.

Proof. By Theorem 4, H has a best-balanced orientation \vec{H} that can be extended to a best-balanced orientation of G. Since \vec{H} is smooth and H is Eulerian, \vec{H} is an Eulerian orientation. By Proposition 2, any other Eulerian orientation of H can be reached by reversing directed cycles, and this operation cannot make the best-balanced orientation of G wrong by Claim 1.

More generally, we may consider the following problem: Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $E_1 \cap E_2 \neq \emptyset$, decide whether there exist simultaneous best-balanced orientations of G_1 and G_2 . This problem is NP-complete even if both G_1 and G_2 are restricted to be Eulerian [7]. By Corollary 2, if $E_1 \cap E_2$ defines an Eulerian graph then such orientations always exist.

Corollary 3 Let $x, y \in V(G)$ with $\lambda_G(x, y) = 2k + 1$. Then G has a bestbalanced orientation \vec{G} such that $\lambda_{\vec{G}}(x, y) = k + 1$.

Proof. Let G' = G + xy and H' = G. Note that $\lambda_{G'}(x, y) = 2k + 2$. By applying Theorem 4 for G' and H' the corollary follows (either \vec{G} or \overleftarrow{G} is appropriate).

By Proposition 3 the edge-set of any undirected graph G can be decomposed into cycles and $|T_G|/2$ paths. Theorem 8 easily implies the following.

Corollary 4 Let us fix a decomposition of the edge-set of an undirected graph G into cycles and paths. There exists a best-balanced orientation of G where all the prescribed cycles and paths become directed cycles and paths.

As a counterpart to Theorem 9 we have the following result by Theorem 8.

Corollary 5 For every partition $\{X_1, ..., X_l\}$ of V(G), G has an orientation \vec{G} such that \vec{G} and $\vec{G}[X_i]$ for all $1 \leq i \leq l$ are best-balanced orientations of the corresponding graphs.

Finally we mention a conjecture on vertex-connectivity orientation (see in [5]), and prove a special case of it and some related statements.

Conjecture 1 Let G = (V, E) be an undirected graph with |V| > k. Then G has a k-vertex-connected orientation if and only if for all $X \subseteq V$ with |X| < k, G - X is (2k - 2|X|)-edge-connected.

Corollary 1 implies at once the following.

Corollary 6 Let G = (V, E) be an undirected graph and $v \in V$. Then G has a k-arc-connected orientation \vec{G} such that $\vec{G} - v$ is (k - 1)-arc-connected if and only if G is 2k-edge-connected and G - v is (2k - 2)-edge-connected.

Concerning global edge-connectivity we can replace Theorem 6 by Claim 4 in the proof of Theorem 10 and hence we have short simple proofs for the following corollaries of Theorem 10.

Corollary 7 An Eulerian graph G = (V, E) has a k-arc-connected orientation \vec{G} such that $\vec{G} - v$ is (k - 1)-arc-connected for all $v \in V$ if and only if \vec{G} is 2k-edge-connected and G - v is (2k - 2)-edge-connected for all $v \in V$.

The statement of Corollary 7 is not necessarily true for non-Eulerian graphs, as an example, consider the graph obtained from K_4 by replacing each edge by three parallel edges.

The following result was conjectured by Frank in [2].

Corollary 8 An Eulerian graph G = (V, E) has an Eulerian orientation \vec{G} such that $\vec{G} - v$ is k-arc-connected for all $v \in V$ if and only if G - v is 2k-edge-connected for all $v \in V$.

For the special case of Conjecture 1 when the graph is Eulerian and k = 2, Berg and Jordán [1] provided a sophisticated proof. Their result below follows immediately from Corollary 8.

Corollary 9 (Berg-Jordán) Let G = (V, E) be a 4-edge-connected Eulerian graph such that $|V| \ge 3$ and G - v is 2-edge-connected for all $v \in V$. Then G has a 2-vertex-connected Eulerian orientation.

The interested readers may find many counter-examples for problems related to well-balanced orientations in [7].

Acknowledgement We thank András Frank for many helpful discussions.

References

- [1] A. R. Berg, T. Jordán, Two-connected orientations of Eulerian Graphs, to appear in J. Graph Theory.
- [2] Egres Open Problems, Problem 4, http://www.cs.elte.hu/egres/problems/prob_04
- [3] L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, (1962).
- [4] A. Frank, Applications of submodular functions. Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 187, Cambridge Univ. Press, (1993) 85-136.
- [5] A. Frank, Connectivity and network flows. Handbook of Combinatorics, Vol.1, Elsevier, Amsterdam, (1995) 111-177.
- [6] H. N. Gabow, Efficient Splitting Off Algorithms for Graphs, STOC'94: Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, ACM Press, (1994) 696-705.
- [7] S. Iwata, T. Király, Z. Király, Z. Szigeti, On well-balanced orientations, counterexamples for related problems, Egres Technical Reports, TR-2004-16, (2004) http://www.cs.elte.hu/egres/www/tr-04-16.html

- [8] L. Lovász, Combinatorial problems and exercises, North-Holland, Amsterdam, (1979).
- [9] W. Mader, Minimale n-fach kantenzusammenhängende Graphen, Math. Ann. 191, (1971) 21-28.
- [10] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10, (1927) 96-115.
- [11] C. St. J. A. Nash-Williams, On orientations, connectivity and odd-vertexpairings in finite graphs, Canad. J. Math. 12, (1960) 555-567.
- [12] C. St. J. A. Nash-Williams, Well-balanced orientations of finite graphs and unobtrusive odd-vertex-pairings, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968) Academic Press, (1969) 133-149.
- [13] H. E. Robbins, A theorem on graphs with an application to a problem of traffic control, American Math. Monthly 46, (1939) 281-283.