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Abstract

Structural results for extensions of matching-covered graphs are presented in this paper.

1 Introduction

An ear-decomposition of a graph G is a sequence (G0, G1, ..., Gk) of subgraphs so that G0 is
a vertex, Gk = G and each Gi+1 is obtained from Gi by adding an ear that is a path whose
end vertices belong to Gi but the inner vertices do not. It is well known that a graph has an
ear-decomposition if and only if it is 2-edge-connected. We remark that each circuit can be the
starting ear of an ear-decomposition. It is quite simple to see that the number of ears in each
ear-decomposition of G is m− n + 1, where n and m denotes the number of vertices and edges
of G, respectively. However, the number of even ears may differ in distinct ear-decompositions
of G. (The length of an ear is the number of edges contained in it.) We focus our attention on
ear-decompositions (called optimal) that have minimum number ϕ(G) of even ears. A. Frank
showed in [2] how an optimal ear-decomposition can be constructed in polynomial time for any
2-edge-connected graph.

Lovász [4] observed that a graph G is factor-critical if and only if ϕ(G) = 0. Lovász and
Plummer [5] proved that for matching-covered graphs ϕ(G) = 1. However, this latter one is not
a characterization. To see an example, let H be the simple graph obtained from the circuit on
four vertices by adding an edge e. Then ϕ(H) = 1 but H is not matching-covered. Let us call
an edge e of a graph G ϕ-extreme if e may lie on an even ear of an optimal ear-decomposition of
G. Notice that in the example above e is not ϕ-extreme. This observation leads to the following
characterization of matching-covered graphs. We call a graph G ϕ-covered if each edge of G is
ϕ-extreme. For more definitions see Section 2.

Claim 1 G is matching-covered if and only if ϕ(G) = 1 and G is ϕ-covered. In other words,
G is matching-covered if and only if G/e is factor-critical for each edge e of G. 2

The reader is encouraged to prove Claim 1 as warm-up. In the light of Claim 1, ϕ-covered
graphs can be considered as a natural generalization of matching-covered graphs. We propose
the investigation of ϕ-covered graphs in this paper. By Claim 1, we have another way to
generalize matching-covered graphs, namely we may consider graphs with ϕ(G) = 1. This
possibility will also be exploited in this paper.

By combining the result of Lovász and Plummer [5] and the one of Little [3], it follows that
for any two edges of a matching-covered graph G there exists an optimal ear-decomposition of
G so that the first ear P is even and P contains these two edges. This result can be extended
for 2-vertex-connected ϕ-covered graphs. We mention that to demonstrate this result we had
to use some properties of the ear matroid. The ear matroid of a graph was introduced in [7],
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[6]. It will turn out that two edges of G belong to the same block of the ear matroid if and only
if these two edges may lie on the starting even ear of an optimal ear-decomposition. To argue
the above mentioned result we shall give a simple description of the blocks of the ear matroid.
Hopefully, this result is of interest in its own right and can be considered as one of the main
results of this paper.

By the above mentioned characterization of factor-critical graphs it follows that for an
optimal ear-decomposition (G0, ..., Gk) of a factor-critical graph G, each subgraph Gi in this
sequence is also factor-critical. This useful property does not hold for matching-covered graphs.
As an example, consider the complete graph K4 on four vertices. K4 is matching-covered but,
since K4 − e is not matching-covered for an arbitrary edge of K4, K4 has no optimal ear-
decomposition such that all the subgraphs in the sequence are matching-covered. To have a
similar property for matching-covered graphs Lovász and Plummer [5] suggested the notion
of graded ear-decomposition. Briefly this means that they allowed to add more ears simulta-
neously. With this more general notion, we can achieve our aim. It is easy to see that each
matching-covered graph has a graded ear-decomposition in such a way that the first ear is even,
all the other ears are of odd length and each subgraph in the sequence is matching-covered.
What is much more interesting (and of course a little bit more complicated) is, as Lovász and
Plummer [5] demonstrated, that we can do this by adding at most two ears in each step. This
is the so called Two Ear Theorem, and for a very short and simple proof we refer to a note of
the present author [8]. We shall show, as a main result of the paper, that the Two Ear Theorem
can be extended for ϕ-covered graphs. This theorem characterizes ϕ-covered graphs by means
of ear-decomposition. Another constructive characterization will also be given for ϕ-covered
graphs.

Along the way we shall also prove some structural results on the graph defined by the ϕ-
extreme edges. The power of this approach has been utilized in [9] to provide a simple graph
theoretic proof for the Tight Cut Lemma on bricks due to Edmonds, Lovász and Pulleyblank
[1]. We shall also provide a new proof for the Cathedral Theorem on saturated graphs due to
Lovász and Plummer [5]. In fact, an analogous construction, as the Cathedral Construction for
saturated graphs, can be read out from our results for almost critical graphs.

The organization of the paper is as follows. In Section 2 we give all the definitions we need.
Section 3 contains earlier results and some new easy observations that will be used in the paper.
In Section 4 we shall apply our results on almost critical graphs to provide a new proof for the
Cathedral Theorem on saturated graphs. In Section 5 we prove our main lemma that provides
a constructive characterization for ϕ-covered graphs. We investigate in Section 6 the graph
defined by the ϕ-extreme edges and give some information about the structure of this graph.
Section 7, which is devoted to the ear matroid, yields a simple description of the blocks of this
matroid. In Section 8 we extend results on matching-covered graphs for ϕ-covered graphs.

We remark that all the results here can be found in the two IPCO papers [6], [10].

2 Definitions and Notation

A connected component K of a graph G is called odd (even) if |V (K)| is odd (even). For
X ⊆ V (G), co(G−X) denotes the number of odd components in G−X, while CX will denote
the union of the even components of G − X. We shall use the notation C(G) defined in the
Gallai-Edmonds Decomposition Theorem [5].

Let G be a graph with a perfect matching. An edge of G is allowed if it lies in some
perfect matching of G. N(G) denotes the subgraph of G induced by the allowed edges of G.
G is matching covered if it is connected and each edge of G is allowed, that is G = N(G).
G is called elementary if N(G) is connected. In particular, every matching-covered graph is
elementary. A vertex set X ⊆ V (G) is called barrier if co(G − X) = |X|. If G is elementary,
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then let P(G) be defined as the set of all maximal barriers of G. G is said to be saturated if
for each pair u, v of non adjacent vertices of G, G−u−v has a perfect matching. It is equivalent
to saying that the addition of the edge uv to G creates a new perfect matching of G + uv.

Cathedral Construction Let G0 be a saturated elementary graph and to each class S ∈ P(G)
assign an already constructed saturated graph GS or the empty set. For each S ∈ P(G) join
every vertex of S to every vertex of GS .

A subgraph H of a graph G is called nice if G− V (H) has a perfect matching. A graph G
is factor-critical if for each vertex v ∈ V (G), G − v possesses a perfect matching.

For a graph H with a perfect matching, a non-empty barrier X of H is said to be a strong
barrier if H −X has no even components, each odd component of H −X is factor-critical and
the bipartite graph obtained from H by deleting the edges spanned by X and by contracting
each factor-critical component of H −X to a single vertex is matching covered. Let G = (V,E)
be a graph and assume that the subgraph H of G induced by U ⊆ V has a strong barrier X.
Then H is said to be a strong subgraph of G with strong barrier X if X separates U − X
and V − U in G or if U = V.

An ear-decomposition of a graph G is a sequence (G0, G1, ..., Gk) of subgraphs so that
G0 is a vertex, Gk = G and each Gi+1 is obtained from Gi by adding an ear Pi+1 that is
a path whose end vertices belong to Gi but the inner vertices do not. We shall also use the
following notation for an ear-decomposition: G = P1 + P2 + ... + Pk. Note that we allow closed
ears, for example the starting ear P1 is always a circuit. The length of an ear is the number
of edges contained in it. A sequence (G0, G1, ..., Gm) of subgraphs of G is a 2-graded ear-
decomposition of G if G0 is a vertex, G1 is an even circuit, Gm = G, for 1 ≤ i ≤ m− 1, Gi+1

is matching-covered, Gi+1 is obtained from Gi by adding at most two disjoint odd paths which
are openly disjoint from Gi but their end-vertices belong to Gi.

Let G be an arbitrary graph. If X ⊆ V (G), then the subgraph of G induced by X is denoted
by G[X]. The graph obtained from G by contracting an edge set F of G will be denoted by
G/F. By the subdivision of an edge set F we mean the operation which subdivides each edge
f ∈ F by a new vertex, and it will be denoted by G × F.

We say that an edge set of a graph G is critical making if its contraction leaves a factor-
critical graph. For a 2-edge-connected graph G, ϕ(G) is defined to be the minimum number
of even ears in an ear-decomposition of G. An ear-decomposition is said to be optimal if it
has exactly ϕ(G) even ears. We call a graph almost critical if ϕ(G) = 1. A circuit C of G is
called good if G has an optimal ear-decomposition so that the first ear is C. We say that an
edge e of G is ϕ-extreme if e may lie on an even ear of an optimal ear-decomposition of G,
in other words, ϕ(G/e) = ϕ(G) − 1. More generally, an edge set F of G is called ϕ-extreme
if ϕ(G/F ) = ϕ(G) − |F |. G is called ϕ-covered if each edge of G is ϕ-extreme. We denote by
D(G) the graph on V (G) whose edges are exactly the ϕ-extreme edges of G.

The ear matroid M(G) of a graph G was introduced in [7]. Its bases are exactly the
maximum ϕ-extreme edge sets, or equivalently, the minimum critical making edge sets. The
set of bases of M(G) will be denoted by B(G).

The blocks of a matroid N are defined by an equivalence relation. For two elements e and
f of N , e ∼ f if there exists a circuit in the matroid containing them, or equivalently, if there
exists a base B containing e so that B − e + f is a base again. This is an equivalence relation
and the blocks of N are the equivalence classes of ∼ . The blocks of a graph G are defined
to be the blocks of the circuit matroid of G, in other words the maximal 2-vertex-connected
subgraphs of G.

We finish this section by giving some examples for ϕ-covered graphs: the complete bipartite
graph K2,n (n ≥ 2) is ϕ-covered and ϕ(K2,n) = n − 1, a graph G whose blocks are matching-
covered is ϕ-covered and ϕ(G) is the number of blocks of G. A procedure that generates all the
ϕ-covered graphs is presented in Section 5.

3



3 Preliminaries

In this section we list the results we will need in the paper.

Theorem 1 (Tutte [11]) A graph G has a perfect matching if and only if for every X ⊆ V (G),
c0(G − X) ≤ |X|. 2

Theorem 2 (Lovász [4]) (a) A graph G is factor-critical if and only if ϕ(G) = 0.
(b) For a factor-critical graph G, a circuit C of G is nice if and only if C is good. 2

Theorem 3 (Lovász [4]) Let H be a connected subgraph of a graph G.
(a) If H and G/H are factor-critical, then G is factor-critical.
(b) If H is nice in the factor-critical graph G, then G/H is factor-critical. 2

Theorem 4 (Lovász, Plummer [5]) Let G be an elementary graph. Then P(G) is a partition
of V (G). For every pair x, y ∈ V (G), x and y belong to different classes of P(G) if and only if
G − x − y has a perfect matching. 2

Theorem 5 (Cathedral Theorem) [5] If G is any saturated graph then it can be built up using
the Cathedral Construction starting with a saturated elementary graph G0. The graph G0 may be
uniquely described as the subgraph of G induced by those vertices of G which, for each x ∈ V (G),
do not lie in C(G − x). 2

Theorem 6 Let G be a matching-covered graph. Then
(a) (Little [3]) any two edges of G belong to a nice circuit.
(b) (Lovász, Plummer [5]) ϕ(G) = 1.
(c) (Lovász, Plummer [5]) A circuit C of G is nice if and only if C is good and even.
(d) Consequently, any two edges of G belong to a good even circuit. 2

Theorem 7 (Lovász, Plummer [5]) Let G be a matching-covered graph. Then
(a) if {e1, ..., ek} is a set of non edges of G such that G + {e1, ..., ek} is matching-covered, then
there exist i ≤ j so that G + ei + ej is matching-covered.
(b) G has a 2-graded ear-decomposition.
(c) Any two edges of G belong to the starting ear of a 2-graded ear-decomposition. 2

Theorem 8 (a) (Frank [2]) ϕ(G) equals the minimum size of a critical making edge set.
(b) (Lemma 1.1 in [7]) For any forest F of G, ϕ(G/F ) = ϕ(G × F ). 2

Theorem 9 [7] The ϕ-extreme edge sets of a graph G form the independent sets of a matroid
M(G). The bases B(G) of M(G) are exactly the minimum critical making edge sets. 2

Theorem 10 (Claim 7 in [9]) If G−X has at least |X| factor-critical components for a vertex
set X 6= ∅, then there exists a strong subgraph H of G with strong barrier Y ⊆ X such that all
the components of H − Y are among the factor-critical components of G − X. 2

Theorem 11 (Frank [2]) Let G be a 2-edge-connected graph. Then
(a) every edge e of G belongs to a good circuit of G,
(b) an edge e of G belongs to a good even circuit of G if and only if e is ϕ-extreme in G. 2

Theorem 12 (Frank [2]) Let G be a 2-edge-connected graph. Then
(a) G has a strong subgraph if and only if it is not factor-critical.
(b) Let H be a strong subgraph of G. Then ϕ(H) = 1 and ϕ(G/H) = ϕ(G) − 1.
(c) G is almost critical if and only if G has a perfect matching and G contains no two disjoint
strong subgraphs. 2
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Theorem 13 [9] (see also in [6]) Let G be an almost critical graph. Then
(a) E(D(G)) = E(B(G)), where B(G) is one of the connected components of N(G).
(b) E(D(G)) = E(D(H)) for every strong subgraph H of G.
(c) V (B(G)) =

⋂
{V (H) : H is a strong subgraph in G} . 2

In the rest of this section we give some easy observations on almost critical graphs.

Lemma 1 Suppose that H has a strong barrier X. Then
(a) (Frank [2]) each edge leaving X is ϕ-extreme in H, X contains no ϕ-extreme edge of H.
(b) If C is a good even circuit of H containing two vertices u and v from X then the two parts
D1 and D2 of C between u and v are of even length.

Proof. (b) Let H ′ := H + uv. Then, by Theorem 12(b), ϕ(H) = ϕ(H ′) = 1. C is a good even
circuit of H so there exists an optimal ear-decomposition P1 + ...+Pk of H such that the unique
even ear is P1 = C. Suppose that D1 and D2 are of odd length. Then (D1+uv)+D2+P2+...+Pk

is an optimal ear-decomposition of H ′ and the unique even ear (D1 +uv) contains uv so uv is a
ϕ-extreme edge of H ′ by Theorem 11(b). However, X is a strong barrier of H ′ containing uv,
that is uv is not a ϕ-extreme edge of H ′ by Lemma 1(a). This contradiction proves (b). 2

Lemma 2 Let G be an almost critical graph.
(a) Then B(G) is matching-covered and G/B(G) is factor-critical.
(b) Any two ϕ-extreme edges of G belong to a good even circuit.
(c) Let G0 := G[V (B(G))]. Any connected component of G − V (G0) has neighbors in exactly
one maximal barrier of G0.

Proof. (a) Since each connected component of N(G) is matching-covered, so is B(G) by
Theorem 13(a). Let e ∈ E(D(G)). Then, by Theorem 2(a), G/e is factor-critical. By Theorem
13(a), e ∈ E(B(G)) and G/e − V (B(G)/e) = G − V (B(G)) has a perfect matching. Then, by
Theorem 3(b), G/B(G) = (G/e)/(B(G)/e) is factor-critical.

(b) Let e, f ∈ E(D(G)). Then, by Theorem 13(a), e and f belong to B(G) which is matching-
covered by Lemma 2(a). By Theorems 6(b) and 6(d), B(G) has an ear-decomposition P1+...+Pk

such that the unique even ear P1 contains e and f. By Lemma 2(a), G/B(G) is factor-critical,
thus, by Theorem 2(a), ϕ(G/B(G)) = 0. By Theorem 11(a), G/B(G) has an optimal ear-
decomposition P ′

1 + ...+P ′
l such that P ′

1 contains the vertex of G/B(G) corresponding to B(G).
Then P1 + ... + Pk + P ′

1 + ... + P ′
l is an ear-decomposition of G such that the unique even ear

P1 contains e and f, and we are done.
(c) Notice that G0 is elementary by Lemma 2(a). Suppose there exists a connected compo-

nent P of G − V (G0) that has neighbors in at least two maximal barriers of G0, say S1 is one
of them. Let G′ be the graph obtained from G by contracting S1 and V (G0)− S1 into vertices
v1 and v2 and deleting the edges between v1 and v2. Then |V (G′)| is even and the existence
of P implies that G′ is connected. We show that G′ has a perfect matching. Otherwise, by
Theorem 1, there is a set X 6= ∅ so that co(G

′ − X) ≥ |X| + 2. Let us denote by G′′ the graph
obtained from G′ by identifying v1 and v2 and let X ′ be the smallest vertex set in G′′ that
contains X. Then co(G

′′ −X ′) ≥ co(G
′ −X)− 1 ≥ |X|+1 > |X ′| thus G′′ is not factor-critical.

However, G′′ = G/B(G) and it is factor-critical by Lemma 2(a). This contradiction shows that
G′ has a perfect matching M1. The edge set M1 is a matching in G that covers all the vertices
in V (G) − V (G0) and two vertices s1 ∈ S1 and s2 ∈ S2, where S2 is a maximal barrier of G0

different from S1. By Theorem 4, G0 − s1 − s2 has a perfect matching M2. Then M1 ∪ M2 is
a perfect matching of G that contains two edges leaving V (B(G)) a contradiction by Theorem
13(a). 2
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4 Saturated graphs

In this section we derive from our results on almost critical graphs the Cathedral Theorem 5
for saturated graphs, a result of Lovász and Plummer [5]. To be able to apply our results we
need the following lemma.

Lemma 3 Let G be a saturated graph. Then
(a) for a barrier X of G, CX is saturated and for all x ∈ X and y ∈ X ∪ CX , xy ∈ E(G).
(b) Every strong subgraph H of G is saturated.
(c) G is almost critical.
(d) G0 := G[V (B(G))] is (elementary and) saturated.
(e) Every maximal barrier of G0 is a barrier of G.

Proof. (a) is immediate by definition.
(b) Let H be a strong subgraph of G with strong barrier X. Let u, v ∈ V (H) so that

uv /∈ E(H). Then uv /∈ E(G). Since G is saturated, G − u − v contains a perfect matching M.
Since X is a barrier in G, M ′ := M ∩ E(H) is a matching of H − u − v that is either perfect
or covers all the vertices of H − u − v except exactly two vertices x and y in X. In the latter
case, by Lemma 3(a), M ′ + xy is a perfect matching of H − u − v. Then, by definition, H is
saturated.

(c) Let us suppose that G is not almost critical. By definition, G has a perfect matching
so, by Theorem 12(c), G contains two vertex disjoint strong subgraphs H1 and H2 with strong
barriers X1 and X2. Let x ∈ X1 and y ∈ V (H2) − X2. Then y ∈ CX1

and, by Lemma 3(a),
xy ∈ E(G). Then X2 does not separate V (H2) − X2 and V (G) − V (H2), hence, by definition,
H2 is not a strong subgraph of G, a contradiction.

(d) G0 is elementary by Lemma 2(a). We prove that G0 is saturated by induction on
|V (G)|. For |V (G)| = 2, 4 it is trivial. First suppose that for each strong subgraph H of G,
V (H) = V (G). Then, by Theorem 13(c), V (B(G)) = V (G), that is G0 is saturated. Secondly,
suppose that there exists a strong subgraph H of G so that |V (H)| < |V (G)|. By Lemma 3(b),
H is saturated, thus, by induction, H0 := H[V (B(H))] is saturated. By Lemma 3(c), G is
almost critical, so by Theorem 13(b), E(D(G)) = E(D(H)), that is G0 = H0 is saturated.

(e) Let S ∈ P(G0) and let us denote by F1, ...F|S| the odd components of G0−S. By Lemma
2(c), every connected component Hi of G−V (G0) has neighbors in exactly one maximal barrier
Si of G0. By Lemma 3(d), G0 is saturated so, by Lemma 3(a), G0[Si] is a complete graph, thus
Hi has neighbors either only in S or in one of the F ′

js. Moreover, Hi has a perfect matching by
Theorem 13(a). It follows that the components Fj of G0 − S correspond to odd components of
G − S, hence S is a barrier of G. 2

Proof. (of Theorem 5) We have to show that if G is a saturated graph then it can be built up
by the Cathedral Construction. By Lemma 3(c), G is almost critical. Let G0 := G[V (B(G))].
Then, by Lemma 3(d), G0 is elementary and saturated. Let S ∈ P(G0). Then, by Lemma 3(e),
S is a barrier of G, so by Lemma 3(a), CS is saturated and every vertex of S is adjacent to
every vertex of CS . Let Hi be an arbitrary connected component of G − V (G0). By Lemma
2(c), Hi has neighbors in one of the maximal barriers of G0 (say Si). Since CSi

is saturated,
Hi = CSi

. Finally, it easy to see that the last claim in Theorem 5 is equivalent to Theorem
13(b). 2

5 Decomposition

The main tool underlying the results to be proved in the following sections is given in the
following lemma. It generalizes Theorem 13(b).

Theorem 14 For a strong subgraph H of G, E(D(G)) = E(D(H)) ∪ E(D(G/H)).
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Proof. First, let e ∈ E(D(H)) ∪ E(D(G/H)). By Theorem 9, the set e ∩ E(D(H)) (e ∩
E(D(G/H))) can be extended to a base B1 ∈ B(H) (B2 ∈ B(G/H)). Let B := B1 ∪ B2. Then
e ∈ B and, by Theorems 3(a) and 12(b), B ∈ B(G) so, by Theorem 9, e ∈ E(D(G)).

Secondly, let e ∈ E(D(G)). Let us denote by X the strong subgraph of H that separates
V (H) − X and V (G) − V (H).

Lemma 4 There is a base Be ∈ B(G) so that e ∈ Be and |Be ∩ E(H)| = 1.

Proof. If at least one of the two end vertices of e is contained in one of the components of
H − X, then let us denote this component by K, otherwise let K be an arbitrary component
of H − X. Let f be a ϕ-extreme edge in H which connects K to X, such an edge exists
by Lemma 1(a). Let B′ ∈ B(G/H) and let Bf := B′ ∪ f. By Theorems 3(a) and 12(b),
Bf ∈ B(G) with f ∈ Bf and |Bf ∩ E(H)| = 1. The edge e is ϕ-extreme in G thus, by
Theorem 9, it can be extended to a base Be ∈ B(G) using elements in Bf . We still have to
show that |Be ∩ E(H)| = 1. By construction, |Be ∩ E(H)| ≤ 2. Let us denote by X ′ (by V ′)
the smallest vertex set in G/Be that contains X (V (H)) and let H ′ := (G/Be)[V

′]. G/Be is
factor-critical because Be ∈ B(G), whence, by Theorems 12(a) and 10, co(H

′ − X ′) < |X ′|.
Then, by construction, |X| − 1 = co(H − X) − 1 ≤ co(H

′ − X ′) ≤ |X ′| − 1 ≤ |X| − 1. Thus
co(H

′ − X ′) = co(H − X) − 1 and |X ′| = |X|. It follows that |Be ∩ E(H)| = 1. 2

Let De = Be−E(H). Let G′ := G/De. Then, by Theorems 9, 2(a) and Lemma 4, ϕ(G′) = 1.
We claim that H remains a strong subgraph in G′. Otherwise, |X| decreases and then the
corresponding set X ′ violates the Tutte’s condition in G′, a contradiction by Theorem 12(c).

First suppose that e ∈ E(H). Then, by Theorem 13(b), e ∈ E(D(H)). Now suppose that
e ∈ E(G/H). By Theorem 12(b), G′/H is factor-critical. Since (G/H)/De = G′/H and
|De| = ϕ(G) − 1 = ϕ(G/H), e ∈ De ∈ B(G/H), that is, by Theorem 9, e ∈ E(D(G/H)). 2

By Theorem 12(a), a connected graph G can be decomposed (by contracting strong sub-
graphs) into ϕ(G) almost critical graphs and a factor-critical graph, that is any connected graph
G can be constructed by starting from a factor-critical graph and by applying ϕ(G) times the
inverse operation of contraction of a strong subgraph.

By Theorem 14, a 2-edge-connected graph G is ϕ(G)-covered if and only if G can be de-
composed (by contracting strong subgraphs) into ϕ(G) matching-covered graphs and a single
vertex, in other words, a 2-edge-connected graph G is ϕ(G)-covered if and only if G can be
constructed by starting from a vertex and by applying ϕ(G) times the inverse operation of con-
traction of a matching-covered strong subgraph. This way we can construct as many examples
of ϕ(G)-covered graphs as we want.

6 ϕ-extreme edges

The following result generalizes Lemma 2(a) and gives some information about the structure
of D(G) for an arbitrary 2-edge-connected graph G.

Theorem 15 Let us denote by G1, ..., Gk the blocks of D(G). Then
(a) the graph S(G) := ((G/G1)/...)/Gk is factor-critical,

(b) ϕ(G) =
∑k

1
ϕ(Gi),

(c) ϕ(G/Gi) = ϕ(G) − ϕ(Gi) (i = 1, ..., k),
(d) Gi is ϕ-covered (i = 1, ..., k).

Proof. We prove by induction on ϕ(G). For ϕ(G) = 1, Theorem 13(a) and Lemma 2(a) imply
(a),(b), (c) and (d).
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Now suppose that ϕ(G) ≥ 2. Let H be a strong subgraph of G with strong barrier X.
Then, by Theorem 14, D(G) contains D(H) and hence, by Theorem 13(a) it contains B(H).
By Theorem 12(b), H is almost critical so, by Lemma 2(a), B(H) is matching-covered. Thus
B(H) is 2-vertex-connected, and hence, by Theorem 14, it is included in some Gi, say G1. We
remark that E(D(H)) = E(G1) ∩ E(H) by Theorem 14 and X ⊂ V (B(H)) by Lemma 1(a).
Consider the graph G′ := G/B(H). Then the vertex v of G′ that corresponds to B(H) separates
V (H/B(H))−v and V (G′)−V (H/B(H)). Moreover, H/B(H) is factor-critical by Lemma 2(a),
so ϕ(G′) = ϕ(G/H) and E(D(G/H)) = E(D(G′)). By Theorem 14, E(D(G)) − E(D(H)) =
E(D(G/H)), so E(D(G′)) = E(D(G)) − E(D(H)). Thus the blocks G′

1, ..., G
′
l of D(G′) are

exactly the blocks of G1/B(H) and G2, ..., Gk. By Theorem 12(b), ϕ(G′) = ϕ(G/H) = ϕ(G)−1,
thus, by the induction hypothesis, the theorem is true for G′.

Lemma 5 B(H) is a strong subgraph of G1.

Proof. B(H) is nice in H by Theorem 13(a) so the factor-critical components of H − X
correspond to odd components of B(H)−X. Thus X is a barrier of B(H). Let Y be a maximal
barrier of B(H) including X. Then, since B(H) is matching-covered by Lemma 2(a), Y is a
strong barrier of B(H). Since X separates H −X and G− V (H) in G, Y separates B(H)− Y
and G1 − V (B(H)). It follows that B(H) is a strong subgraph of G1 with strong barrier Y. 2

(a) Since S(G) = S(G′) (in the second case we contracted G1 in two steps, namely first B(H)
and then the blocks of G1/B(H)), the statement follows from the induction hypothesis.

(b) By Lemma 5 and Theorem 12(b), ϕ(G1/B(H)) = ϕ(G1) − 1. By induction, ϕ(G′) =
∑l

1
ϕ(G′

i). Then ϕ(G) = ϕ(G′)+1 =
∑l

1
ϕ(G′

i)+1 = (ϕ(G1)−1)+
∑k

2
ϕ(Gi)+1 =

∑k

1
ϕ(Gi).

(c) By Theorem 3(a), ϕ(G) ≤ ϕ(G/Gi)+ϕ(Gi) and ϕ(G/Gi) ≤ ϕ(((G/G1)/...)/Gk)+
∑k

2
ϕ(Gj).

By adding these two inequalities, and using that ϕ(((G/G1)/...)/Gk) = 0 by (a) and Theorem

2(a), and
∑k

1
ϕ(Gj) = ϕ(G) by (b), we have ϕ(G) ≤

∑k

1
ϕ(Gj) = ϕ(G). Thus equality holds

everywhere, hence ϕ(G) = ϕ(G/Gi) + ϕ(Gi), as we claimed.

(d) For i ≥ 2 the statement follows from the induction hypothesis. For G1 it follows from the
induction hypothesis and from Theorem 14. 2

7 The blocks of the ear matroid

In this section we present a simple description of the blocks of the ear matroid M(G) for an
arbitrary 2-edge-connected graph G. The close relation between the circuits of the ear matroid
M(G) and the good even circuits of G is presented in the following lemma.

Lemma 6 Two edges e and f of a 2-edge-connected graph G belong to a good even circuit of
G if and only if e and f are in the same block of the ear matroid M(G).

Proof. If e and f belong to the starting even ear P1 of an optimal ear-decomposition then
choosing one edge from each even ear (from P1 let e be chosen) we obtain a set F for which
|F | = ϕ(G), G/F and G/(F − e + f) are factor-critical by Theorem 2(a), thus, by Theorem 9,
F and F − e + f are in B(G), that is e and f belong to the same block of M(G).

To see the other direction, let F ∈ B(G) containing e so that F − e + f ∈ B(G). Let G′ :=
G× (F − e). Since F is a minimal critical making edge set, it is a forest and ϕ(G/(F − e)) = 1.
Then, by Theorem 8(b), ϕ(G′) = 1. Moreover, e and f are ϕ-extreme in G′. By Lemma 2(b),
there exists an optimal ear-decomposition of G′ so that the starting ear contains e and f and it is
the unique even ear. Obviously, this ear-decomposition provides the desired ear-decomposition
of G. 2
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It is naturel to investigate graphs whose ear matroid is loopless. Notice that, by definition,
these are exactly the ϕ-covered graphs. The blocks of the ear matroid M(G) of a ϕ-covered
graph can be easily described.

Theorem 16 Let G be a 2-vertex-connected ϕ-covered graph. Then the ear matroid M(G) has
one block.

Proof. We prove the theorem by induction on ϕ(G). If ϕ(G) = 1, then G is matching-covered by
Claim 1, and then, by Theorem 6(d) and Lemma 6, the theorem is true. In the rest of the proof
we suppose that ϕ(G) ≥ 2. Let H be a strong subgraph of G with strong barrier X. By Theorem
14, H and G/H are ϕ-covered, and, by Theorem 12(b), ϕ(H) = 1 and ϕ(G/H) = ϕ(G) − 1.
Let G1 be an arbitrary block of G/H.

i.) Let e1 and e2 be two arbitrary edges of H. Let B ∈ B(G/H). Then, by Theorem 9, (G/H)/B
is factor-critical. H/e1 and H/e2 are factor-critical by Claim 1. Let B′ := B + e1. Note that
|B′| = ϕ(G). Then, by Theorem 3(a), G/B′ and G/(B′ − e1 + e2) are factor-critical, thus, by
Theorem 9, B′ and B′−e1 +e2 are in B(G), hence e1 and e2 belong to the same block of M(G).

ii.) Let e1 and e2 be two arbitrary edges of G1. By induction, e1 and e2 belong to the same
block of M(G1), thus there exists a base B ∈ B(G1) so that e1 ∈ B and B−e1+e2 ∈ B(G1). For
each block Gi of G/H different from G1 let Bi ∈ B(Gi). Furthermore, let f ∈ E(H). Finally, let
D := B ∪ (∪Bi) + f. Note that |D| = ϕ(G). Then, by Theorem 3(a), G/D and G/(D− e1 + e2)
are factor-critical, thus, by Theorem 9, D and D − e1 + e2 ∈ B(G). Hence e1 and e2 belong to
the same block of M(G).

iii.) Let e1 and f1 be two edges of G1 so that the corresponding two edges in G are incident to
two different vertices u and v of X. By the 2-vertex-connectivity of G, such edges exist. Let e2

and f2 be two edges of H incident to u and v respectively. By i.) ii.) and Lemma 6, there exists
an optimal ear-decomposition P1+P2+ ...+Pk (P ′

1+P ′
2+ ...+P ′

l ) of H (of G1) so that e2 and f2

(e1 and f1) belong to the starting even ear. Furthermore, let P ′′
1 + P ′′

2 + ... + P ′′
m be an optimal

ear-decomposition of (G/H)/G1 so that the first ear contains the vertex corresponding to the
contracted vertex set. Using these ear-decompositions we provide an optimal ear-decomposition
of G so that the starting even ear will contain e1 and e2. By Lemma 1(b), u and v divide P1

into two paths D1 and D2 of even length. Suppose D1 contains e2. Consider the following
ear-decomposition of G : (D1 + P ′

1) + D2 + P2 + ... + Pk + P ′
2 + ... + P ′

l + P ′′
1 + P ′′

2 + ... + P ′′
m.

It is clear that this is an optimal ear-decomposition of G, the first ear contains e1 and e2 and
it is even. Hence, by Lemma 6, e1 and e2 belong to the same block of M(G).

i.), ii.) and iii.) imply the theorem. 2

Theorem 17 The edge sets of the blocks of D(G) and the blocks of M(G) coincide.

Proof. (a) Let e and f be two edges of G from the same block of M(G). By Lemma 6, there
exists a good even circuit C that contains e and f. Since, by Theorem 11(b), every edge of C
is ϕ-extreme, the edges of this circuit C belong to the same block of D(G).

(b) Let e and f be two edges of G from the same block G1 of D(G). By Theorem 15(d), G1 is
ϕ-covered, thus, by Theorem 16 and Lemma 6, there exists an optimal ear-decomposition of G1

so that the starting even ear contains e and f . By Theorem 15(c), ϕ(G/G1) = ϕ(G) − ϕ(G1),
so this ear-decomposition can be extended to an optimal ear-decomposition of G so that the
starting even ear contains e and f . Then, by Lemma 6, e and f belong to the same block of
M(G). 2

8 ϕ-covered graphs

The aim of this section is to extend earlier results on matching-covered graphs of Lovász and
Plummer [5] for ϕ-covered graphs. First we prove a technical lemma.
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Lemma 7 Let e be a ϕ-extreme edge of a 2-edge-connected graph G with ϕ(G) ≥ 2. Then there
exists a strong subgraph H of G so that e ∈ E(G/H).

Proof. First suppose that G has a perfect matching. Then, by Theorem 12(c), G has two
vertex disjoint strong subgraphs. Clearly, for one of them e ∈ E(G/H). Secondly, suppose that
G has no perfect matching. Then, by Theorem 1, there exists a set X with co(G − X) > |X|.
Let X be a maximal such vertex set. Then each component of G − X is factor-critical. Since
G is not factor-critical by Theorem 2(a), |X| 6= ∅.

i.) If a component F of G−X contains an end vertex of e, then by Theorem 10, G has a strong
subgraph H so that V (H) ⊆ V (G) − V (F ) so we are done.

ii.) Otherwise, by Theorem 10, G has a strong subgraph H with strong barrier Y ⊆ X so that
each component of H − Y is a component of G − X. We claim that e ∈ E(G/H). If not then
the two end vertices u and v of e belong to Y because we are in ii.). Then, by Lemma 1(a), e
is not ϕ-extreme in H. This contradicts the fact that e is ϕ-extreme in H by Theorem 14. 2

The following theorem generalizes Theorem 6(d) for ϕ-covered graphs. By Lemma 6, it is
equivalent to Theorem 16.

Theorem 18 For a 2-vertex-connected ϕ-covered graph G, any two edges belong to a good even
circuit of G. 2

By Theorem 7(b), each matching-covered graph has a 2-graded ear-decomposition. This
result can also be generalized for ϕ-covered graphs. A sequence (G0, G1, ..., Gm) of subgraphs
of G is a generalized 2-graded ear-decomposition of G if G0 is a vertex, Gm = G, for
every i = 1, ...,m : Gi is ϕ-covered; Gi is obtained from Gi−1 by adding at most two disjoint
paths (ears) which are openly disjoint from Gi−1 but their end-vertices belong to Gi−1, if
we add two ears then both are of odd length; and ϕ(Gi−1) ≤ ϕ(Gi). This is the natural
extension of the original definition of Lovász and Plummer. Indeed, if G is matching-covered
then ϕ(G) = 1, thus the first ear will be even and all the other ears will be odd; and for all i,
1 = ϕ(G1) ≤ ϕ(Gi) ≤ ϕ(G) = 1 and Gi is ϕ-covered so, by Claim 1, Gi is matching-covered.

Theorem 19 Let e be an arbitrary edge of a ϕ-covered graph G. Then G possesses a generalized
2-graded ear-decomposition so that the starting ear contains e.

Proof. If ϕ(G) = 1 then, by Claim 1, G is matching-covered so, by Theorem 7(c), we are done.
From now on we assume that ϕ(G) ≥ 2. We shall use frequently in the proof that a graph L
is ϕ-covered if and only if each block of L is ϕ-covered. We prove the theorem by induction
on |V (G)|. We may suppose that G is 2-vertex-connected because, by induction, for each block
the theorem is true. By Lemma 7, there exists a strong subgraph H of G with strong barrier
X such that e ∈ E(G/H). By Theorem 14, H and G/H are ϕ-covered. By Theorem 12(b) and
Claim 1, H is matching-covered. Let us denote by v the vertex of G/H corresponding to H.
Let us denote by Q the block of G/H which contains e. Notice that v ∈ V (Q). Since G/H is
ϕ-covered, Q is also ϕ-covered. By induction, Q has a generalized 2-graded ear-decomposition
(G0, G1, ..., Gk) so that the starting ear contains e. Let Gj be the first subgraph of Q which
contains v and let a and b be the two edges of Gj incident to v. (G/H)/Q is also ϕ-covered so,
by induction, (G/H)/Q has a generalized 2-graded ear-decomposition (G∗

0, G
∗
1, ..., G

∗
p) so that

the starting ear contains an edge incident to v.

i.) First suppose that a and b are incident to the same vertex u of X in G. Let c be an edge
of H incident to u. By Theorem 7(c), H has a 2-graded ear-decomposition (G′

0, G
′
1, ..., G

′
l) so

that the starting ear contains c. Let G′′
i = Gi if 0 ≤ i ≤ j, let G′′

i be the graph obtained from
G′

i−j by replacing the vertex u by Gj if j + 1 ≤ i ≤ j + l, let G′′
i be the graph obtained from

Gi−l by replacing the vertex v by G′′
j+l if j + l + 1 ≤ i ≤ k + l and finally let G′′

i be the graph
obtained from G∗

i−k−l by replacing the vertex v by G′′
k+l if k + l + 1 ≤ i ≤ k + l + p. We
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show that (G′′
0 , G′′

1 , ..., G′′
k+l+p) is the desired generalized 2-graded ear-decomposition of G. The

starting ear contains e, in each step we added at most two ears, when two ears were added then
they were of odd length, ϕ(G′′

i ) ≤ ϕ(G′′
i+1) and finally by Theorem 14, each subgraph G′′

i is
ϕ-covered.

ii.) Secondly, suppose that a and b are incident to different vertices u and w of X in G. Let c
and d be two edges of H incident to u and w respectively. By Theorem 7(c), H has a 2-graded
ear-decomposition (G′

0, G
′
1, ..., G

′
l) so that the starting ear P1 contains c and d. u and w divide

P1 (which is an even ear) into two paths D1 and D2. By Lemma 1(b), D1 and D2 are of even
length. Let G′′

i = Gi if 0 ≤ i ≤ j − 1, G′′
j be graph obtained from Gj by replacing the vertex

v by D1, G′′
j+1 be graph obtained from Gj by replacing the vertex v by P1, let G′′

i be graph
obtained from G′

i−j by replacing P1 by G′′
j+1 if j +2 ≤ i ≤ j + l, let G′′

i be graph obtained from
Gi−l by replacing the vertex v by G′′

j+l if j + l + 1 ≤ i ≤ k + l and finally as above let G′′
i be

the graph obtained from G∗
i−k−l by replacing the vertex v by G′′

k+l if k + l + 1 ≤ i ≤ k + l + p.
It is easy to see that (G′′

0 , G′′
1 , ..., G′′

k+l+p) is the desired generalized 2-graded ear-decomposition
of G. 2

The next theorem is the natural generalization of Theorem 7(a). However, we cannot prove
Theorem 19 using this result.

Theorem 20 Let F := {e1, ..., ek} be a set of non edges of a ϕ-covered graph G. If G + F is
ϕ-covered and ϕ(G) = ϕ(G + F ), then there exist i ≤ j so that G + ei + ej is ϕ-covered.

Proof. We prove the theorem by induction on ϕ(G). If ϕ(G) = 1, then G is matching-covered
by Claim 1 so, by Theorem 7(a), we are done. In the following we suppose that ϕ(G) ≥ 2. Let
F ′ ⊆ F be a minimal non empty set in F so that G′ := G+F ′ is ϕ-covered. Then ϕ(G) = ϕ(G′)
because ϕ(G) ≥ ϕ(G+F ′) ≥ ϕ(G+F ) = ϕ(G). We claim that |F ′| ≤ 2. Suppose that |F ′| ≥ 3
and let ei ∈ F ′. By Lemma 7, there exists a strong subgraph H of G′ so that ei ∈ E(G′/H).
By Theorem 14, H and G′/H are ϕ-covered. Let E1 := E(H) ∩ F ′ and E2 := E(G′/H) ∩ F ′.
Then E1 ∪ E2 = F ′ and E2 6= ∅.

First suppose E1 = ∅. Then H is a strong subgraph of G, so by Theorem 14, G/H is ϕ-
covered. By Theorem 12, ϕ(G/H) = ϕ(G) − 1 = ϕ(G′) − 1 = ϕ(G′/H), thus by induction for
G/H and F ′, there exists ∅ 6= F ′′ ⊆ F ′ so that |F ′′| ≤ 2 and (G/H) + F ′′ is ϕ-covered. By
Theorem 14, G + F ′′ is ϕ-covered, and we are done.

Secondly suppose E1 6= ∅. Clearly, each edge of G is ϕ-extreme in G + E1. Furthermore,
each edge of E1 is ϕ-extreme in H, so by Theorem 14, they are ϕ-extreme in G + E1. Thus
G + E1 is ϕ-covered. Since E1 ⊂ F ′, this contradicts the minimality of F ′. 2

Example. Here is an example that shows the necessity of the condition ϕ(G) = ϕ(G + F )
in Theorem 20. Let G := (V,E), where V = {a, b, c, d}, E = {ab, ab, ac, ac, ad, ad} and let
F := {bc, bd, cd}. Then G and G + F are ϕ-covered but for every ∅ 6= F ′ ⊂ F, G + F ′ is not
ϕ-covered. Note that ϕ(G) = 3 and ϕ(G + F ) = 1.
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