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Abstract

Given a connected undirected graph G on n vertices, and non-negative edge costs c,
the 2ECM problem is that of finding a 2-edge connected spanning multisubgraph of G
of minimum cost. The natural linear program (LP) for 2ECM, which coincides with the
subtour LP for the Traveling Salesman Problem on the metric closure of G, gives a lower
bound on the optimal cost. For instances where this LP is optimized by a half-integral
solution x, Carr and Ravi (1998) showed that the integrality gap is at most 4

3 : they
show that the vector 4

3x dominates a convex combination of incidence vectors of 2-edge

connected spanning multisubgraphs of G.
We present a simpler proof of the result due to Carr and Ravi by applying an exten-

sion of Lovász’s splitting-off theorem. Our proof naturally leads to a 4
3 -approximation

algorithm for half-integral instances. Given a half-integral solution x to the LP for 2ECM,
we give an O(n2)-time algorithm to obtain a 2-edge connected spanning multisubgraph
of G whose cost is at most 4

3c
Tx.

1 Introduction

The 2-edge connected multisubgraph (2ECM) problem is a fundamental problem in survivable
network design where one wants to be resilient against a single edge failure. In this problem,
we are given an undirected graph G = (V ,E) with non-negative edge costs c and we want to
find a 2-edge connected spanning multisubgraph of G of minimum cost. A multigraph may
contain multiple copies of edges but it cannot contain loops. Below we give an integer linear
program for 2ECM. The variable xe denotes the number of copies of edge e that are used in
a feasible solution. For any S ⊆ V , δG(S) := {e = uv ∈ E : u ∈ S, v /∈ S} denotes the cut
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induced by S; we use the shorthand δ(S) whenever the underlying graph is clear from the

context. For any F ⊆ E and vector x ∈ RE , we use x(F ) as a shorthand for
∑

e∈F xe. Also,
for any graph H with edge costs c, we may use c(H) as a shorthand for c(E(H)).

(2ECM-IP)

min
∑
e∈E

cexe (1)

subject to x(δ(S)) ≥ 2 ∀ ∅ ( S ( V , (2)

xe ≥ 0 ∀e ∈ E, (3)

xe integral ∀e ∈ E. (4)

It is easy to see that an optimal solution for 2ECM never has to use more than two copies
of an edge. As is discussed in [CR98], since we are allowed to use more than one copy of an
edge, without loss of generality, we may assume that G is complete by performing the metric
completion: for each u, v ∈ V we set the new cost of the edge uv to be the shortest path
distance between u and v in G. In what follows, we assume that G is a complete graph and
that the cost function c is metric, i.e., c ≥ 0 and for every u, v, w ∈ V , we have cuw ≤ cuv+cvw.

The linear relaxation (2ECM-LP) for 2ECM is obtained by dropping the integrality con-
straints given by (4). By a result due to Goemans and Bertsimas [GB93] called the par-
simonious property, adding the constraint x(δ(v)) = 2 for each v ∈ V to (2ECM-LP) does
not increase the optimal solution value; here, we require the assumption that the costs form
a metric. So, the optimal value of (2ECM-LP) is the same as the optimal value for the
well-known subtour elimination LP (Subtour-LP) for the Traveling Salesman Problem (TSP)
defined below. Due to this connection, we often refer to an optimal solution for (2ECM-LP)
as an optimal solution to (Subtour-LP), and vice versa. Another consequence of the parsimo-
nious property is that for graphs with at least 3 vertices, the constraint xe ≤ 1 is implied by
(Subtour-LP): for any e = uv, we have 2xe = x(δ(u)) + x(δ(v))− x(δ({u, v})) ≤ 2.

(Subtour-LP)

min
∑
e∈E

cexe (5)

subject to x(δ(S)) ≥ 2 ∀ ∅ ( S ( V , (6)

x(δ(v)) = 2 ∀v ∈ V , (7)

xe ≥ 0 ∀e ∈ E. (8)

A long-standing open problem called the “four-thirds conjecture” states that the inte-
grality gap of (Subtour-LP) is 4

3 . Besides the importance of 2ECM in the field of survivable
network design, the connection between (2ECM-LP) and (Subtour-LP) has spurred interest
in determining the integrality gap for (2ECM-LP) as a means to gaining useful lower bounds
on the integrality gap for (Subtour-LP). The general version of metric TSP has resisted all
attempts at proving an upper bound better than 3

2 on the integrality gap, so a great deal of
research has focused on obtaining improvements for important special cases. In [SWvZ14],
the authors conjecture that the integrality gap for (Subtour-LP) is achieved on instances
where an optimal (fractional) solution to (Subtour-LP) is half integral, i.e., 2xe ∈ Z≥0 for
all e ∈ E. We refer to such instances as half integral instances. More than two decades
ago, Carr and Ravi [CR98] proved that the integrality gap of (2ECM-LP) is at most 4

3 in the
half-integral case. They show that 4

3x dominates a convex combination of incidence vectors of
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2-edge connected spanning multisubgraphs of G. This supports the four-thirds conjecture for
TSP since the (integer) optimal value for 2ECM lower bounds the (integer) optimal value for
TSP. However, the proof of Carr and Ravi [CR98] does not give a polynomial-time algorithm
for 2ECM. Very recently, in [KKG20], Karlin, Klein, and Oveis Gharan gave a randomized
approximation algorithm for half-integral instances of TSP whose (expected) approximation
factor is 3

2 − 0.00007. This immediately implies a better than 3
2 -approximation algorithm,

albeit randomized, for 2ECM as well.
We mention that the result of Carr and Ravi [CR98] does not apply to the strict variant

of 2ECM (henceforth denoted by 2ECS) where we are allowed to pick at most one copy of
an edge in G, i.e., where we are considering subgraphs of G rather than multisubgraphs;
similarly, our main result does not apply to 2ECS.

1.1 Our Work

Our main contribution, found in Section 3, is a deterministic approximation algorithm for
2ECM on half-integral instances that matches the existence result in [CR98].

Theorem 1. Let x denote a half-integral solution to an instance (G, c) of (Subtour-LP)
(and (2ECM-LP)). There is an O(|V (G)|2)-time algorithm for computing a 2-edge connected
spanning multisubgraph of G with cost at most 4

3c
Tx.

For any F ⊆ E, let χF ∈ {0, 1}E denote the characteristic vector of F : χFe = 1 if and
only if e ∈ F . Note that distinct multiedges in E correspond to distinct coordinates in χF .

The algorithm of Theorem 1 is facilitated by a simpler proof of the existence result in
[CR98], which has insights that may be useful for generalizing their result in the future. This
simpler proof is given in Section 2. Note that, as discussed in [CV04], if one could show that
for every integer k ≥ 2 and for any 2k-regular 2k-edge connected graph G that 4

3kχ
E(G) is a

convex combination of incidence vectors of 2-edge connected spanning subgraphs of G, then
this would imply that the integrality gap of (2ECM-LP) is bounded above by 4

3 . Carr and
Ravi [CR98] show that this is true for k = 2. Thus, any simplification of their proof provides
hope for extending their results to other values of k.

Given a half-integral solution x to (Subtour-LP) for G, let G = (V,E) denote the multi-
graph induced by 2x. Formally, the vertex-set is V := V , and for each edge e ∈ E, the
edge-set E has 2xe copies of the edge e. Note that if |V | ≥ 3, then 2xe ∈ {0, 1, 2} for all
e ∈ E, and if |V | = 2, then 2xe = 4 for the unique edge e ∈ E. With a slight abuse of
notation, we use the same cost function c to denote the edge costs in G, i.e., cf := ce where
e ∈ E corresponds to the edge f ∈ E. By (7) and (6), G is a 4-regular 4-edge connected
multigraph. Theorem 1 follows from the following result applied to the graph G induced by
2x.

Theorem 2. Let G = (V,E) be a 4-regular 4-edge connected multigraph on n vertices. Let
c : E → R be an arbitrary cost function on the edges of G (negative costs on the edges are
allowed), and let e be an arbitrary edge in G. Then, in O(n2) time, we can find a 2-edge
connected spanning subgraph H of G− e satisfying:

(i) c(H) ≤ 2
3c(G− e); and

(ii) each multiedge of G appears at most once in H (multiedges may arise in H due to
multiedges in G).
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As mentioned before, Carr and Ravi [CR98] prove the existence of such a subgraph H by
showing that for any 4-regular 4-edge connected multigraph G, there exists a finite collection
H1, . . . ,Hk of 2-edge connected spanning subgraphs of G such that 2

3χ
E(G)\{e} lies in the

convex hull of {χHi}i. At a high level, their proof is inductive and splits into two cases based
on whether G has a certain kind of a tight set (a cut of size 4). In the first case they construct
two smaller instances of the problem by contracting each of the shores of the tight set, and in
the second case they perform two distinct splitting-off operations at a designated vertex to
obtain two smaller instances of the problem. In either case, the convex combinations from the
two subinstances are merged to obtain a convex combination for G. The first case requires
gluing since the subgraphs obtained from the two subinstances need to agree on a (tight) cut.
Merging the convex combinations arising from the second case is rather straightforward as
the two subinstances are more or less independent.

Our first insight in this work is that the case from Carr and Ravi’s proof that requires
the gluing step can be completely avoided, thereby unifying the analysis. This is discussed
in Section 2. Our proof relies on an extension of Lovász’s splitting-off theorem that is due to
Bang-Jensen et al., [BJGJS99]. For further discussion on splitting-off theorems, see [Fra11,
Chapter 8]. The challenge in efficiently finding a cheap subgraph H from the above convex
combination construction is that each inductive step requires solving two subinstances of the
problem, each with one fewer vertex, leading to an exponential-time algorithm. Having said
that, an (expected) polynomial-time Las Vegas randomized algorithm can be easily designed
that randomly recurses on one of the two subinstances and produces a 2-edge connected
spanning subgraph whose expected cost is at most 2

3c(G − e). Our second insight, which is
used in derandomizing the above procedure, is that it is easy to recognize which of the two
subinstances leads to a “cheaper” solution, so we recurse only on the cheaper subinstance.
Complementing this step, we lift the solution back to the original instance. This operation can
lead to two different outcomes so the cost analysis must account for the worst outcome. There
is a choice of defining the costs in the subinstance such that the cost of the lifted subgraph
is the same irrespective of the outcome. Such a choice can lead to negative costs, but this is
not a hindrance for our inductive step because Theorem 2 allows arbitrary real-valued edge
costs. This generality of cost functions is crucial to our algorithm.

To obtain their results, Carr and Ravi [CR98] show that for any 4-regular 4-edge connected
multigraph G, 2

3χ
E(G) is dominated by a convex combination of incidence vectors of 2-edge

connected spanning subgraphs of G. In Section 4 we consider a well-studied special case of
2ECS analogous to this problem. Let G = (V,E) be a 3-regular 3-edge connected graph on
n vertices. It is shown in [BL17] that 4

5χ
E(G) can be written as a convex combination of

incidence vectors of 2-edge connected spanning subgraphs of G, however, as was the case for
the Carr and Ravi [CR98] result, the constructive proof given does not run in polynomial
time. We give a randomized algorithm that produces a random 2-edge connected spanning
subgraph H of G such that E

[
χE(H)

]
= 4

5χ
E(G) and the expected running time is polynomial

in n. Lastly, in Section 5 we show that the running time of the algorithm for Theorem 2 can
be improved by using results from the area of dynamic graph algorithms.

1.2 Related Work

The 2ECM problem has been intensively studied in network design and several works have
tried to bound the integrality gap α(2ECM) of (2ECM-LP). For the general case with metric
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costs, we have 6
5 ≤ α(2ECM) ≤ 3

2 , where the lower bound is from [ABEM06] and the upper
bound follows from the polyhedral analysis of Wolsey [Wol80] and Shmoys and Williamson
[SW90] (this analysis also gives a 3

2 -approximation algorithm). It is generally conjectured that
α(2ECM) = 4

3 , however in [ABEM06], Alexander et al., study α(2ECM) and conjecture that
α(2ECM) = 6

5 based on their findings. As mentioned before, Carr and Ravi [CR98] show that
the integrality gap of (2ECM-LP) is at most 4

3 in the half-integral case. In [BL17] Boyd and
Legault consider a more restrictive collection of instances called half-triangle instances where
the optimal LP solution is half-integral and the graph induced by the half-edges is a collection
of disjoint triangles. They prove that α(2ECM) = 6

5 in this setting. Half-triangle solutions
are of interest as there is evidence that the integrality gap of (2ECM-LP) is attained at such
solutions (see [ABEM06]). When the costs come from a graphic metric (i.e., we want to find
a minimum-size 2-edge connected spanning multisubgraph of a given unweighted graph), we
have 8

7 ≤ α(2ECM) ≤ 4
3 (see [BFS16, SV14]).

For the special case of 3-regular 3-edge connected graphsG, 2ECS has also been extensively
studied. In [BL17] it was shown that βχE(G) can be expressed as a convex combination of
incidence vectors of 2-edge connected spanning subgraphs of G for β = 4

5 and this was later
improved to β = 7

9 in [Leg17a]. Neither of these constructive proofs run in polynomial time,
however in [HN18], it was shown that β = 7

8 can be achieved in polynomial time. Note that
the everywhere 2

3 vector for G is feasible for (Subtour-LP), thus for any edge costs c for which
the everywhere 2

3 vector is also optimal for (Subtour-LP) (such as for the graphic metric), such
an algorithm would provide a 3

2(78) = 21
16 -approximation for 2ECS. For the graphic metric,

there exists a 6
5 -approximation for 3-regular 3-edge connected graphs [BIT13], and for 2ECS

for general graphs, the best approximation factor known is 2 [Jai01].

2 A Simpler Proof of a Result of Carr and Ravi

In this section, we give a simplified proof of the following result from [CR98]. As mentioned
before, avoiding the case involving the gluing operation is useful for our algorithm in Section 3.
For notational convenience, for any subgraph K of some graph, we use χK to denote χE(K)

whenever the underlying graph is clear from the context.

Theorem 3 (Statement 1 from [CR98]). Let G = (V,E) be a 4-regular 4-edge connected
multigraph and e = uv be an arbitrary edge in this graph. There exists a finite collection
{H1, . . . ,Hk} of 2-edge connected spanning subgraphs of G−e such that for some nonnegative
µ1, . . . , µk with

∑
i µi = 1, we have 2

3χ
E\{e} =

∑k
i=1 µiχ

Hi. Moreover, we may assume that
none of the Hi’s use more than one copy of an edge in E; Hi may have multiedges as long
as they come from distinct edges in G.

2.1 Operations involving splitting-off at a vertex

The following tools on the splitting-off operation will be useful. In keeping with standard
terminology, we designate a vertex v (one of the endpoints of e in the theorem statement) at
which the splitting-off operation is applied. For a multigraph H = (V,E) and x, y ∈ V , let
λH(x, y) denote the size of a minimum (x, y)-cut in H, and let degH(x) denote the degree of
x in H, that is |δ({v})|. Note that each multiedge is counted separately towards the degree
of a vertex and the size of a cut.
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Definition 4. Given a multigraph G and two edges sv and vt that share an endpoint v, the
graph Gs,t obtained by splitting off the pair (sv, vt) at v is given by G+ st− sv − vt.

Definition 5. Given a multigraph G and a vertex v of G of even degree, a complete splitting
at v is a sequence of 1

2degG(v) splitting off operations that result in vertex v having degree
zero in the resulting graph.

Definition 6. Let k ≥ 2 be an integer and let G = (V,E) be a multigraph such that for all
x, y ∈ V \ {v}, λG(x, y) ≥ k. Let sv and vt be two edges incident to v. We say that the pair
(sv, vt) is admissible if for all x, y ∈ V \ {v}, λGs,t(x, y) ≥ k. For any edge e ∈ δ(v), we let
Ae denote the set of edges f ∈ δ(v) \ {e} such that (e, f) is an admissible pair.

The following result due to Bang-Jensen et al., [BJGJS99] shows that in our setting with
a 4-regular 4-edge connected multigraph at least two distinct edges incident to v form an
admissible pair with e = uv. Using this we can perform a complete splitting at v in two
distinct ways.

Lemma 7 (Theorem 2.12 from [BJGJS99]). Let k ≥ 2 be an even integer. Let G be a
multigraph and v a vertex of G such that for all x, y ∈ V (G) \ {v}, λG(x, y) ≥ k and degG(v)
is even. Then, |Auv| ≥ 1

2 degG(v) for all uv ∈ E(G).

Lemma 8. Let G be a 4-regular 4-edge connected multigraph and e = vx be an edge incident
to v. Then, (i) |Ae| ≥ 2; and (ii) if (e, f) is an admissible pair for some f = vy ∈ δ(v) \ {e},
then the remaining two edges in δ(v) \ {e, f} form an admissible pair in Gx,y.

Proof. Conclusion (i) follows from Lemma 7 since G is 4-regular and 4-edge connected. For
conclusion (ii), let f ∈ δ(v) \ {e} be such that (e, f) forms an admissible pair in G. Let
Gx,y denote the graph obtained by splitting off the pair (e = vx, f = vy), i.e., Gx,y =
G − vx − vy + xy. Observe that the hypothesis of Lemma 7 still holds for Gx,y with k = 4
because (a) we performed a splitting off operation using an admissible pair of edges; and
(b) degGx,y

(v) = 2 is even. Let g denote one of the two remaining edges in δ(v) \ {e, f}.
By Lemma 7, the other unique edge h ∈ δ(v) \ {e, f, g} forms an admissible pair with g in
Gx,y.

Equipped with the above tools, we give a proof of Theorem 3.

Proof of Theorem 3. We prove this theorem via induction on the number n of vertices. The
base case n = 2 corresponds to a pair of vertices having four parallel edges, call them e, f, g, h.
Observe that 2

3χ
E\{e} = 1

3χ
{f,g} + 1

3χ
{f,h} + 1

3χ
{g,h}, so the induction hypothesis is true for

the base case.
For the induction step, suppose that n ≥ 3 and the hypothesis holds for all 4-regular

4-edge connected multigraphs with at most n − 1 vertices and for all choices of the edge
e. Consider a 4-regular 4-edge connected multigraph G on n vertices and an arbitrary edge
e = uv ∈ E(G). Besides e, let vx, vy, vz be the other three edges incident to v. With
a relabeling of vertices, by Lemma 8, we may assume that (uv, vx) and (uv, vy) form an
admissible pair in G (see Figure 1).

By the second conclusion of Lemma 8, (vy, vz) is an admissible pair in Gu,x, and (vx, vz)
is an admissible pair in Gu,y. Consider the graph G1 obtained by splitting off the pair (vy, vz)
in Gu,x, i.e., G1 = G − v + {ux, yz}; it is customary to drop the vertex v after all its edges
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u

v

x y z

e

(a) v has four
distinct neighbors

2 ≤ |Ae| ≤ 3.

u = z

v

x y

e

(b) v has two
parallel edges with

u
Ae = {vx, vy}.

u

v

x = y z

e

(c) v has two
parallel edges with

x, x 6= u
Ae = {vx, vy}.

u = z

v

x = y

e

(d) v has two
parallel edges to
each of {u, x}
Ae = {vx, vy}.

Figure 1: Four configurations of edges in δ(v) = {uv, vx, vy, vz} that can arise in our proof.

have been split off. Similarly, let G2 be the graph obtained by splitting off the pair (vx, vz)
in Gu,y, i.e., G2 = G− v + {uy, xz}.

Since we only split off admissible pairs, both G1 and G2 are 4-regular 4-edge connected
multigraphs on n − 1 vertices. Recall that for any subgraph K of some graph, χK is a
shorthand for χE(K) whenever the underlying graph is clear from the context. Applying the
induction hypothesis to G1 with the designated edge e1 = ux gives:

2

3
· χE(G1)\{e1} =

2

3
· χ(E\δ(v))∪{yz} =

k1∑
i=1

µ1iχ
H1

i , (ConvexComb-G1)

where {µ1i }i denote the coefficients in a convex combination, and {H1
i }i are 2-edge connected

spanning subgraphs of G1 such that none of them use more than one copy of an edge in G1.
Repeating the same argument for G2 with the designated edge e2 = uy gives:

2

3
· χE(G2)\{e2} =

2

3
· χ(E\δ(v))∪{xz} =

k2∑
i=1

µ2iχ
H2

i , (ConvexComb-G2)

where {µ2i }i denote the coefficients in the other convex combination arising from {H2
i }i. It re-

mains to combine (ConvexComb-G1) and (ConvexComb-G2) to obtain such a representation
for G with the designated edge e. We mimic the strategy from [CR98].

For each i ∈ {1, . . . , k1}, we lift H1
i to a spanning subgraph Ĥ1

i of G − e. Define Ĥ1
i as

follows:

Ĥ1
i :=

{
H1
i − yz + vy + vz if yz ∈ E(H1

i ),

H1
i + vy + vx if yz /∈ E(H1

i ).
(Lift-G1)

Similarly, for each i ∈ {1, . . . , k2}, we define Ĥ2
i as the following spanning subgraph of

G− e:

Ĥ2
i :=

{
H2
i − xz + vx+ vz if xz ∈ E(H2

i ),

H2
i + vx+ vy if xz /∈ E(H2

i ).
(Lift-G2)
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We finish the proof of Theorem 3 by arguing that the following convex combination meets
all the requirements:

q :=
1

2

k1∑
i=1

µ1iχ
Ĥ1

i +
1

2

k2∑
i=1

µ2iχ
Ĥ2

i . (ConvexComb-G)

Most of our arguments are the same for G1 and G2, so we just mention them in the
context of G1. First of all, by the induction hypothesis and (Lift-G1) it is clear that e(=
uv), yz, ux /∈ E(Ĥ1

i ), where yz and ux refer to the edges that originated from the splitting
off operations applied at v. Next, we argue that Ĥ1

i is a spanning subgraph of G that uses no
more than one copy of any edge in G. By the induction hypothesis, none of the subgraphs
H1
i use more than one copy of an edge in G1, and H1

i spans V (G) \ {v}. By the way we lift
H1
i to Ĥ1

i , it is clear that Ĥ1
i uses no more than one copy of any multiedge in G, and that it

is spanning. To see that Ĥ1
i is 2-edge connected, observe that the two cases of lifting may be

viewed as either (i) subdividing the edge yz by a vertex v when yz ∈ E(H1
i ), or (ii) adding

an edge yx and subdividing it by a vertex v when yz /∈ E(H1
i ). Clearly, these operations

preserve 2-edge connectivity, hence, Ĥ1
i is 2-edge connected.

It remains to argue that the vector q in the expression (ConvexComb-G) matches the
vector 2

3χ
E(G)\{e}. Since {µ1i }i and {µ2i }i denote coefficients in a convex combination, taking

an unweighted average of these two combinations gives us another convex combination. Since
none of the edges in E(G) \ δ(v) are modified in the lifting step, qf = 2

3 for any such edge

f . Next, consider the edge vy. Observe that Ĥ1
i always contains the edge vy, whereas Ĥ2

i

contains vy only when xz /∈ E(H2
i ) (this happens with weight 1

3). Therefore, qvy = 1
2 ·1+ 1

2 ·
1
3 =

2
3 . The analysis for vx is symmetric. Lastly, consider the edge vz. It appears in Ĥ1

i (Ĥ2
i ) if

and only if yz ∈ E(H1
i ) (respectively, xz ∈ E(H2

i )). Therefore, qvz = 1
2 ·

2
3 + 1

2 ·
2
3 = 2

3 . This
completes the proof of Theorem 3.

3 Our Algorithm and the Proof of Theorem 2

In this section we give a proof of Theorem 2 and then use it to obtain a 4
3 -approximation

algorithm for 2ECM on half-integral instances (Theorem 1). We apply the same splitting-off
theorem of [BJGJS99] together with an induction scheme that is captured in Theorem 2. A
key feature of this theorem is that we allow edges of negative cost, although the edge costs
in any instance of 2ECM are non-negative.

Consider a 4-regular 4-edge connected multigraph G = (V,E) on n vertices, and let e = uv
be an edge in G. Let c : E → R be an arbitrary real-valued cost function. Our goal is to
obtain a 2-edge connected spanning subgraph H of G whose cost is at most 2

3c(G− e) while
ensuring that H uses no more than one copy of any multiedge in G.

As alluded to before, for the purposes of obtaining a cheap 2-edge connected subgraph, it
suffices to only recurse on one of the two subinstances that arise in the proof of Theorem 3.
This insight comes from working backwards from (ConvexComb-G). Since this convex com-
bination for G is a simple average of the convex combinations from the two subinstances (see
(ConvexComb-G1) and (ConvexComb-G2)), it is judicious to only recurse on the “cheaper”
subinstance. Combining (ConvexComb-G1) and (Lift-G1), we get that the first subinstance
gives rise to a convex combination for 2

3χ
E(G)\{e} + 1

3(χ{vy} − χ{vx}). On the other hand,
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the second subinstance gives rise to a convex combination for 2
3χ

E(G)\{e} + 1
3(χ{vx} − χ{vy}).

Thus, we should recurse on G1 if cvx ≥ cvy, and G2 otherwise. For the sake of argument,
suppose that we are recursing on G1. So far, we have ignored an important detail in the
recursion: the splitting-off operation creates a new edge yz that was not originally present
in G, so we need to assign it some cost to apply the algorithm recursively. Depending on
how we choose the cost of yz, it might either be included or excluded from the subgraph
obtained for the smaller instance, so to bound the cost of the lifted solution we must have
a handle on both outcomes of the lift operation. Setting cyz := cvz − cvx balances the cost
of both outcomes. Note that cyz could possibly be negative, but this is permissible since the
statement of Theorem 2 allows for arbitrary edge costs. We formalize the above ideas.

In the recursive step, we pick one end vertex v of e and apply a complete splitting off
operation at v to obtain a 4-regular 4-edge connected graph on n − 1 vertices; this can be
implemented in O(n) time. The running time of the algorithm is O(n2), since we apply the
induction step O(n) times. We remark that the running time of the algorithm in Theorem 2
can be improved to O(n1+o(1)); we defer the details to Section 5.

Let T = {u, x, y, z} be the four neighbors of v and let e = uv. Recall that Ae denotes the
set of edges f ∈ δ(v) \ {e} such that (e, f) is an admissible pair (see Definition 6).

Lemma 9. For vx ∈ δ(v) \ {e}, we can check whether vx ∈ Ae in O(n) time.

Proof. We may suppose that the elements of the set T of neighbors of v are all distinct.
Otherwise, by Lemma 8, we know exactly which pairs are admissible, see Figure 1. Consider
the graph Ĝ = (Gu,x)y,z obtained by splitting off the pairs (uv, vx) and (yv, vz) at v. Let G∗

be the graph obtained from Ĝ by contracting ux to a single vertex s and contracting yz to
a single vertex t. Then we apply a max s-t flow computation to check whether G∗ has ≥ 4
edge-disjoint s-t paths; otherwise, G∗ has an s-t cut δ(S) of size ≤ 3. In the latter case, it is
clear that our trial splitting is not admissible.

In the former case, we claim that our trial splitting is admissible. Suppose that Ĝ is
not 4-edge connected. Then there exists a non-empty, proper vertex set S in Ĝ such that
|T ∩ S| ≤ |T \ S| and |δĜ(S)| < 4. Clearly, |S ∩ T | ≤ 2, and if |S ∩ T | = 2, then we have
|S ∩ {u, x}| = 1 and |S ∩ {y, z}| = 1 (otherwise, S would give an (s, t)-cut of G∗ of size ≤ 3).
Since the size of the cut of S is the same in G and in Ĝ, we have, by 4-edge connectivity of
G, 4 > |δĜ(S)| = |δG(S)| ≥ 4, a contradiction.

To see that the running time is linear, observe that G∗ has ≤ 2n edges, an s-t flow of
value ≥ 4 can be computed by finding 4 augmenting paths, and each augmenting path can
be found in linear time.

Proof of Theorem 2. First, consider the base case in the recursion when n = 2. The only
such 4-regular 4-edge connected multigraph is given by four parallel edges between u and v,
of which e is one. Picking the two cheapest edges from the remaining three edges gives the
desired subgraph.

For the induction step, suppose that n ≥ 3 and the induction hypothesis holds for all
4-regular 4-edge connected multigraphs with at most n−1 vertices and for all choices of edge
e. Consider a 4-regular 4-edge connected multigraph G on n vertices and an edge e = uv in
G.

Our algorithm proceeds as follows. By Lemmas 8 and 9, we can find in O(n)-time two
neighbors of v, say x and y, such that vx, vy ∈ Ae and cvx ≥ cvy. Next, we construct the
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graph Ĝ := (Gu,x)y,z = G− v + {ux, yz} and extend the cost function c to the new edge yz
as cyz := cvz − cvx (note that the cost of ux is inconsequential and that cyz may be negative
or non-negative). We recursively find a 2-edge connected spanning subgraph Ĥ of Ĝ with
cost at most 2

3c(Ĝ− ux). Then, we lift Ĥ to obtain a spanning subgraph H of G:

H :=

{
Ĥ − yz + vy + vz if yz ∈ E(Ĥ),

Ĥ + vy + vx if yz /∈ E(Ĥ).

We analyze the cost of this subgraph. Regardless of the cases above, our choice of cyz
implies that c(H) = c(Ĥ) + cvy + cvx. Therefore,

c(H) ≤ 2

3
c(Ĝ− ux) + cvy + cvx

=
2

3
(c(G− e)− cvx − cvy − cvz + (cvz − cvx)) + cvy + cvx

=
2

3
c(G− e) +

1

3
(cvy − cvx) ≤ 2

3
c(G− e) ,

where the last inequality follows from our choice of vx, vy to satisfy cvx ≥ cvy.
It remains to argue that H is a 2-edge connected spanning subgraph of G−e that uses no

more than one copy of any multiedge in G. It is clear that the following hold: (a) e /∈ E(H);
(b) H is a spanning subgraph of G; and (c) each multiedge of G appears at most once in
H. Since Ĥ is 2-edge connected and adding and/or subdividing an edge preserves 2-edge
connectivity, H is 2-edge connected. Overall, in O(n2)-time we have constructed a 2-edge
connected spanning subgraph H of G − e whose cost is at most 2

3c(G − e), thereby proving
Theorem 2.

Using Theorem 2, we give a deterministic 4
3 -approximation algorithm for 2ECM on half-

integral instances.

Proof of Theorem 1. Let x be a half-integral solution to (Subtour-LP) (and (2ECM-LP)) for an
instance given by the complete n-vertex graph G = (V ,E) and a metric cost function c. Let
G = (V,E) denote the multigraph induced by 2x (see the paragraph preceding Theorem 2).
By (7) and (6), G is a 4-regular 4-edge connected multigraph. With a slight abuse of notation,
we use the same cost function for the edges of E: for any f ∈ E, cf := ce, where e denotes
the edge in E that gave rise to f . We invoke Theorem 2 on G and some edge e ∈ E. This
gives us a 2-edge connected spanning subgraph H of G−e satisfying c(H) ≤ 2

3c(G− e). Then
H := H is a 2-edge connected spanning multisubgraph of G; note that H uses at most two
copies of any edge in G. By the first conclusion of Theorem 2 and the non-negativity of c,
c(H) = c(H) ≤ 2

3c(G− e) ≤
2
3c(G) = 4

3c
Tx, where the last equality follows by recalling that

G is induced by 2x. Besides invoking Theorem 2 we only perform trivial graph operations so
the running time is O(n2).

We conclude this section by presenting the following extension of Theorem 1 by applying
the results of Carr and Vempala [CV02]: Given a half-integral solution x∗ to an instance
(G, c) of (Subtour-LP), there is a polynomial-time algorithm to find 2-edge connected span-
ning multisubgraphs H1, . . . ,Hk of G and a convex combination y of the incidence vectors of
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H1, . . . ,Hk such that y ≤ 4
3x
∗. The proof strategy of [CV02] relies on the analysis of the ellip-

soid method in the rational model by Grötschel et al., [GLS88]; also see [LS11, Lemma 3.4],
[CS16, Lemma 3.2], and the first part of [JMS03, Theorem 4.1]. The following proof outline
is due to Chaitanya Swamy.

Let Z denote the set of all incidence vectors of 2-edge connected spanning multisubgraphs
of G = (V ,E). As discussed previously, we may assume that for any z ∈ Z we have ze ∈
{0, 1, 2} for all e ∈ E, that is, Z ⊂ {0, 1, 2}E . Let n denote |V |.

Consider the following linear program (P ) that uses the variables λ ∈ RZ . Clearly, the
number of variables is exponential in n. Note that ze and x∗e are constants, for all z ∈ Z, e ∈ E.

The dual linear program (D) of (P ) uses the variables w ∈ RE and q ∈ R.

max
∑
z∈Z

λz, (P)

subject to
∑
z∈Z

λzze ≤
4

3
x∗e ∀ e ∈ E,∑

z∈Z
λz ≤ 1,

λz ≥ 0 ∀z ∈ Z.

min
4

3
x∗Tw + q (D)

subject to zTw + q ≥ 1 ∀ z ∈ Z,
we ≥ 0 ∀e ∈ E,
q ≥ 0.

Note that (P ) has a feasible solution λ = 0, and the optimal value of (P ) is ≤ 1 (by one of
the constraints). Moreover, every feasible solution w, q of (D) has objective value 4

3x
∗Tw+q ≥

1 (otherwise, by Theorem 1, there exists z ∈ Z such that zTw + q ≤ 4
3x
∗Tw + q < 1; clearly,

w, q violates one of the constraints of (D)). By linear programming duality, the optimal
value of (P ) is 1. Any feasible solution λ of (P ) with objective value 1 (together with the
associated vectors {z ∈ Z : λz > 0}) gives the required convex combination (of 2-edge
connected spanning multigraphs of G).

Let (D(t)) denote the linear program obtained from (D) by adding the constraint 4
3x
∗Tw+

q ≤ t. Our plan is to use the ellipsoid method with a so-called approximate separation
oracle to solve (D(t)) for a particular value of t. Recall from Theorem 1 that we have a

polynomial-time algorithm A that, given the inputs x∗ and w ∈ RE , w ≥ 0, finds z ∈ Z such
that zTw ≤ 4

3x
∗Tw. The approximate separation oracle is based on A. Given a candidate

solution w, q for (D(t)) (i.e., the center of the ellipsoid), we check whether w ≥ 0 and q ≥ 0
(if not, we find a violated constraint), and then we check the value of 4

3x
∗Tw+q. If this value

is > t, then the additional constraint is violated. If 4
3x
∗Tw + q < 1, then we use A to find a

violated constraint (of the form zTw + q ≥ 1 for some z ∈ Z). Otherwise, the approximate
separation oracle reports that w, q is feasible for (D(t)) (in fact, w, q may be infeasible).

We pick a small rational number ε > 0 (to be fixed below such that 1/ε has encoding length
polynomial in n, see [GLS88, Chapter 1.3]), and solve the (infeasible) linear program (D(1−ε))
by the ellipsoid method using the approximate separation oracle; note that the encoding
length of each constraint of (D(1 − ε)) is polynomial in n. The ellipsoid method runs for a
polynomial (in n) number of iterations and deduces that (D(1− ε)) is infeasible. Hence, the
violated constraints of the form zTw + q ≥ 1 found during the run of the ellipsoid method,
together with the constraints w ≥ 0, q ≥ 0, and the constraint 4

3x
∗Tw + q ≤ 1 − ε, yield an

infeasible linear program (D′).
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Let (D′′) be the linear program with objective function 4
3x
∗Tw + q and the violated

constraints of the form zTw + q ≥ 1 found during the run of the ellipsoid method, together
with the constraints w ≥ 0, q ≥ 0; note that (D′′) has an optimal solution since it is feasible
(by w = 0, q = 1) and it is not unbounded. The infeasibility of (D′) implies that the optimal
value τ ′′ of (D′′) is > 1− ε. A key point is to choose ε to be sufficiently small (while ensuring
the required bound on the encoding length of 1/ε) to ensure that τ ′′ is ≥ 1 (then, it must
be 1, since w = 0, q = 1 has objective value 1). Observe that the objective function of (D′′)
and each of its constraints has encoding length O(n2). Hence, the denominator ∆ of τ ′′

has encoding length polynomial in n. We compute an upper bound ∆̂ for ∆ (such that the
encoding length of ∆̂ is polynomial in n), and fix ε = 1/(2∆̂); then, τ ′′ > 1− ε implies that
τ ′′ ≥ 1.

Thus, (D′′) has a polynomial (in n) number of constraints, and these constraints suffice to
certify that (D′′) has the same optimal value as (D). The dual linear program (P ′′) of (D′′)
has a polynomial (in n) number of variables, and, by the duality theorem, (P ′′) has an optimal
solution λ′′ with objective value 1. Moreover, λ′′ can be computed in time polynomial in n.
Clearly, λ′′ maps to a feasible solution of (P ) with objective value 1, and gives the required
convex combination (of 2-edge connected spanning multigraphs of G).

Proposition 10. Let G = (V ,E) be a complete graph on n vertices. Let x∗ ∈ RE≥0 be
a half-integral solution to (Subtour-LP) (or equivalently, (2ECM-LP)). Using the results of
[CV02], in time polynomial in n, we can obtain 2-edge connected spanning multisubgraphs
H1, . . . ,Hk of G and nonnegative real numbers λj, j = 1, . . . , k, satisfying

∑k
j=1 λj = 1 and∑k

j=1 λjχ
Hj ≤ 4

3x
∗.

4 A randomized algorithm for 2-edge connected spanning sub-
graphs of 3-regular 3-edge connected graphs

Let G = (V,E) be a 3-regular, 3-edge connected graph on n vertices. In this section we give a
randomized algorithm (see Theorem 12) that produces a random 2-edge connected spanning
subgraph H of G such that E

[
χE(H)

]
= 4

5χ
E(G) and the expected running time is polynomial

in n. Observe that for any edge-cost function c : E → R, we can use the above algorithm to
obtain a random 2-edge connected spanning subgraph H satisfying E [c(H)] = 4

5c(G).
First, we present an existence result due to Boyd and Legault [BL17], see Proposition 11.

We include a proof for the sake of exposition and self-containedness. This particular proof
appears in [Leg17b] and is needed for the design of our randomized algorithm.

Proposition 11 ([BL17],[Leg17b]). Let G = (V,E) be a 3-regular, 3-edge connected graph.
There exists a finite collection of 2-edge connected spanning subgraphs {H1, . . . ,Hk} and
nonnegative numbers µ1, . . . , µk with

∑
i µi = 1 that satisfy:

k∑
i=1

µiχ
E(Hi) =

4

5
χE(G) .

Proof. Let n := |V | denote the number of vertices in G. Note that n is even. We prove the
theorem via induction on n. The induction hypothesis holds for the base case when n = 2:
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suppose e1, e2, e3 are the 3 parallel edges between u, v ∈ V , then

4

5
χ{e1,e2,e3} =

1

5
χ{e1,e2} +

1

5
χ{e1,e3} +

1

5
χ{e2,e3} +

2

5
χ{e1,e2,e3} .

Suppose that the induction hypothesis holds for all such graphs on fewer than n vertices
for some n ≥ 4. Consider a 3-regular, 3-edge connected graph G on n vertices. We consider
two cases depending on whether G has a nontrivial tight cut or not.

(a) There exists S ( V, |S| /∈ {1, n− 1} such that |δ(S)| = 3. Let δ(S) = {e1, e2, e3}.
Consider the following two smaller 3-regular, 3-edge connected subgraphs: the graph
G1 = (S∪{s}, E1) is obtained by contracting V \S to a single vertex s, and the graphG2 =
((V \S)∪{s}, E2) is obtained by contracting S to a single vertex s; we discard all loops that
arise due to contraction. Note that edges in δ(S) are in one-to-one correspondence with
edges in δ(s) (in G1) and δ(s) (in G2), so we overload the notation and use δ(s) and δ(s)
instead of δG1(s) and δG2(s), respectively. By induction, for each j ∈ {1, 2} there exist 2-
edge connected spanning subgraphs {Hj

1 , . . . ,H
j
kj
} and nonnegative numbers µj1, . . . , µ

j
kj

with
∑

i µ
j
i = 1 that satisfy:

kj∑
i=1

µjiχ
E(Hj

i ) =
4

5
χE(Gj) .

A simple counting argument shows that for any j ∈ {1, 2} and F ⊆ {e1, e2, e3}, we have

qF :=
∑

i=1,...,kj :

E(Hj
i )∩{e1,e2,e3}=F

µji =


1
5 if |F | = 2,
2
5 if |F | = 3,

0 if |F | = 0, 1 .

Consider the following gluing operation: if H ′1 and H ′2 denote 2-edge connected spanning
subgraphs of G1 and G2, respectively, that agree on the cut δ(S), then glue(H ′1, H

′
2) :=

(V (G), (E(H ′1) \ δ(s))∪ (E(H ′2) \ δ(s))∪F ), where F denotes the edges that are common
to H ′1 and H ′2 on the cut δ(S). Since H ′1 and H ′2 are 2-edge connected, it follows that
glue(H ′1, H

′
2) will also be 2-edge connected. By the above, the convex combinations for

G1 and G2 can be glued together consistently to obtain a convex combination for G.

(b) For all S ( V, |S| /∈ {1, n − 1}, we have |δ(S)| ≥ 4. For any e = uv ∈ E(G), let
Ge := G− u− v+ ab+ pq, where a, b (and v) are the neighbors of u, and p, q (and u) are
the neighbors of v. In other words, Ge is obtained by deleting vertices u and v from G
followed by including edges ab and pq. It is easy to see that Ge is a 3-regular graph on
n−2 vertices. Furthermore, since G does not have any nontrivial tight cuts, Ge is clearly
3-edge connected. By induction, there exist 2-edge connected subgraphs He

1 , . . . ,H
e
ke

and

nonnegative numbers µe1, . . . , µ
e
ke

with
∑

i µ
e
i = 1 that satisfy

∑ke
i=1 µ

e
iχ

E(He
i ) = 4

5χ
E(Ge).

Consider the following lifting operation that takes a 2-edge connected spanning subgraph
He of Ge and lifts it to a 2-edge connected spanning subgraph of G: for any such He,
lifte(H

e) := (V (He)∪{u, v}, E(He)\{ab, pq})∪{au, bu, pv, qv}. In other words, the lifting
operation can be seen as including the edge ab and pq, if they are not already present in
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He, and then subdividing them at u and v, respectively. With this interpretation, it is
straightforward to see that lifte(H

e) is 2-edge connected. It follows that

ke∑
i=1

µeiχ
E(lifte(He

i )) =
4

5
χE(G) +

1

5
χ{au,bu,pv,qv} − 4

5
χ{uv} .

Since every edge in G has 4 adjacent edges, the required convex combination for G can
be obtained by averaging over the convex combinations for Ge for all e ∈ E(G):

∑
e∈E(G)

ke∑
i=1

µei
|E(G)|

χE(lifte(He
i )) =

4

5
χE(G) .

Las Vegas algorithm. We now describe an algorithm A that can be seen as a Las Vegas
algorithm that efficiently implements the proof of Proposition 11. The algorithm A takes as
input a 3-regular, 3-edge connected graph G = (V,E) on n vertices and produces a random
2-edge connected spanning subgraph H of G such that E

[
χE(H)

]
= 4

5χ
E(G). At a high

level, the algorithm is recursive and follows the strategy in Proposition 11. The base of the
recursion corresponds to n = 2, where the input G consists of three parallel edges e1, e2, e3.
The edge-set of the output follows the distribution given by: {e1, e2, e3} with probability 2

5 ,
and each of {e1, e2}, {e1, e3}, and {e2, e3} with probability 1

5 . In the general case with n > 2
(note that n is even), the algorithm checks if there are any nontrivial tight cuts in G.

(
We run

O(n) max s-t flow computations with a fixed source vertex s and each of the other vertices
as the sink t; for a chosen vertex t, if there exists a nontrivial tight s-t cut δ(S), then s has
a neighbor in S and t has a neighbor in (V \ S); using this fact, we can find such an s-t cut
by running O(1) max flow computations.

)
If there exists a cut S ( V , 1 < |S| ≤ n/2 with

|δ(S)| = 3, then we construct two smaller instances of the problem by contracting each of the
two shores V \S and S, respectively; this is exactly the same construction that we used in the
proof of Proposition 11. Let G1 = (S∪{s}, E1) denote the 3-regular, 3-edge connected graph
on |S|+1 vertices obtained by contracting V \S to a vertex s, and let G2 = ((V \S)∪{s}, E2)
denote the 3-regular, 3-edge connected graph on n−|S|+1 vertices obtained by contracting S
to a vertex s. We run A on G2 to obtain a 2-edge connected spanning subgraph H2 of G2. Let
F ⊆ δ(S) denote the edges in G corresponding to the edges in E(H2) ∩ δ(s). We repeatedly
run A on G1 until it gives a 2-edge connected spanning subgraph H1 of G1 such that H1

agrees with F , i.e., F is the set of edges in G corresponding to the edges in E(H1) ∩ δ(s).
The output of A on G is glue(H1, H2) = (V (G), (E(H1) \ δ(s)) ∪ (E(H2) \ δ(s)) ∪ F ). On
the other hand, if there are no nontrivial tight cuts in G we choose an edge e = uv ∈ E
uniformly at random and construct the graph Ge := G − u − v + ab + pq, where a, b (and
v) are the neighbors of u, and p, q (and u) are the neighbors of v. Let He be the random
2-edge connected spanning subgraph of Ge obtained by running A on Ge. The output of A
on G is lifte(H

e) = (V (G), (E(He) \ {ab, pq}) ∪ {au, bu, pv, qv}). The following result shows
the correctness and efficiency of A.

Theorem 12. Let G = (V,E) be a 3-regular, 3-edge connected graph on n vertices. Let H
denote the random 2-edge connected spanning subgraph obtained by running algorithm A on
G. Then,
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1. E
[
χE(H)

]
= 4

5χ
E; and

2. The expected running time T (G) of the algorithm is polynomial in n.

Proof. We prove the theorem via induction on the number n of vertices. The base case when
n = 2 is trivial. Observe that E

[
χE(H)

]
= 4

5χ
E(G). Suppose that for some even n > 2 the

induction hypothesis (i.e., the theorem statement) holds for all instances of the problem with
fewer than n vertices. The following claim will be useful. (Recall that qF , for F ⊆ E, is
defined in the proof of Proposition 11.)

Claim 13. Let G and H be as defined in Theorem 12. Let δ(S) = {e1, e2, e3} be a tight
cut in G (possibly, |S| ∈ {1, |V | − 1}). If Theorem 12 holds for all such graphs on at most
n vertices, then for any F ⊆ {e1, e2, e3}, we have Pr [E(H) ∩ δ(S) = F ] = qF . (Recall that
q{e1,e2} = q{e1,e3} = q{e2,e3} = 1

5 and q{e1,e2,e3} = 2
5 .)

For the general case with n > 2, recall that A checks whether G has a nontrivial tight
cut or not.

(a) If there exists S, 1 < |S| ≤ n/2 with |δ(S)| = 3, we obtain two smaller instances G1 and
G2 by contracting V \ S and S, respectively. Let δ(S) = {e1, e2, e3}. Running A on G2

gives a random 2-edge connected spanning subgraph H2 satisfying E
[
χE(H2)

]
= 4

5χ
E(G2);

the expected running time of this step is T (G2). Then, the algorithm stipulates that we
repeatedly run A on G1 until we obtain a 2-edge connected spanning subgraph H1 such
that H1 and H2 agree on the cut δ(S). Since each run of A on G1 takes expected T (G1)-
time, we get T (G) ≤ T (G2) + κT (G1), where κ denotes the expected number of runs of
A (on G1) that are needed for H1 to agree with H2 (on the cut δ(S)). For notational
convenience, for each i ∈ {1, 2} let Fi denote E(Hi) ∩ δ(S). The following calculation
shows that κ = 4.

κ =
∑

F⊆{e1,e2,e3},
|F |=2,3

Pr [F2 = F ] · E [# runs to get F1 = F2|F2 = F ]

=
∑

F⊆{e1,e2,e3},
|F |=2,3

qF · E [# runs to get F1 = F ] (by independence)

=
∑

F⊆{e1,e2,e3},
|F |=2,3

qF ·
1

Pr [F1 = F ]

=
∑

F⊆{e1,e2,e3},
|F |=2,3

1 = 4 (by Claim 13, qF is independent of the graph).

Overall, the expected running time in this case is at most 4 · T (G1) + T (G2); we show
that this bound is polynomial in n shortly. Next, we argue that E

[
χE(H)

]
= 4

5χ
E holds.

Since E
[
χE(H2)

]
= 4

5χ
E(G2), it is easy to see that we get 4

5 , in expectation, on each edge
in (E(G2) \ δ(s)) ∪ δ(S). It remains to argue that the same guarantee holds for every

edge in (E(G1)\ δ(s)). For each F ⊆ {e1, e2, e3}, |F | ∈ {2, 3}, let yF ∈ RE(G1)
≥0 denote the
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vector E
[
χE(H1)|F1 = F

]
, i.e., the expected characteristic vector of E(H1) conditioned

on the event {F1 = F}. By induction, Claim 13 holds for G1 so we get:

4

5
χE(G1) =

∑
F⊆{e1,e2,e3}:
|F |∈{2,3}

qF · yF .

If the output H2 of running A on G2 produces the pattern F2 = E(H2) ∩ δ(S), then,
conditioned on this event, the expected characteristic vector of the subgraph H1 that is
glued with H2 is yF2 . Since Pr [E(H2) ∩ δ(S) = F ] = qF , we get

E
[
χE(glue(H1,H2))∩E(G1)|F1 = F2

]
=

∑
F⊆{e1,e2,e3}:
|F |∈{2,3}

Pr [F2 = F ] · E
[
χE(H1)|F1 = F

]

=
∑

F⊆{e1,e2,e3}:
|F |∈{2,3}

qF · yF =
4

5
χE(G1) .

(b) If there are no nontrivial tight cuts in G, then the algorithm A chooses an edge e ∈ E(G)
uniformly at random, runs A on the smaller instance Ge (on n − 2 vertices), and lifts
the random output He to a random 2-edge connected spanning subgraph H = lifte(H

e)
of G. Following the proof of Proposition 11, E

[
χE(H)

]
= 4

5χ
E(G). The expected running

time T (G) in this case is 1
|E(G)|

∑
e∈E(G) T (Ge).

We finish the proof by showing that T (G) is bounded by a polynomial in n. With some
abuse of notation, let T (n) denote the maximum of T (G) over all such graphs G on n vertices.
We prove that T (n) is polynomial in n. By the above case analysis,

T (n) ≤ max
1<k≤n/2,k odd

(
T (n− k + 1) + 4T (k + 1)

)
+O(n2)

where the O(n2) term accounts for finding a nontrivial tight cut, if one exists, and for glu-
ing/lifting the subgraphs obtained from smaller instances. Note that in the maximum shown
above we require that k is odd. This is because |δ(S)| and |S| have the same parity in a
3-regular graph. Clearly, the recursive inequality is satisfied by taking T (n) to be O(n3),
thus giving an (not necessarily tight) upper bound on the expected running time.

5 Improving the running time in Theorem 2 via dynamic
graph algorithms

Eppstein et al., [EGIN97] and Thorup [Tho01] have presented algorithms for maintaining the
size k of a min-cut for a fully-dynamic graph in Õ(

√
n) time per edge insertion or deletion, for

k upper-bounded by a poly-logarithmic function of n. (In this section, we use the term graph
rather than multigraph. The Õ() notation hides poly-logarithmic factors, i.e., Õ(f(n)) =
O(f(n) logj n) for a positive integer j = O(1).) Recently, Jin and Sun [JS20] have reported
substantial improvements from Õ(

√
n) time per operation to no(1) time per operation for
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k = (log n)o(1); [JS20, Section 2, p. 11] lists four operations: edge insertion, edge deletion,
insertion of an isolated vertex, deletion of an isolated vertex. Theorem 1.1 of [JS20] states:
There is a deterministic fully dynamic k-edge connectivity algorithm on a graph of n vertices
and m edges with m1+o(1) preprocessing time and no(1) update and query time for any positive
integer k = (log n)o(1).

Recall that each iteration of the algorithm in Section 3 starts with a 4-regular 4-edge con-
nected graph and applies one or two complete splittings at a chosen vertex; clearly, each graph
Ĝ that occurs in an execution of the algorithm is Eulerian, hence, we can determine whether
Ĝ is 4-edge connected or not via a 3-edge connectivity query. We improve the running time
of the algorithm in Section 3 by O(n) applications of the following three macro operations:

• given a vertex v and an edge uv incident to v, apply a (tentative) first complete splitting
at v;

• query whether or not the resulting graph Ĝ is 3-edge connected;

• if Ĝ is not 3-edge connected, then “undo” the first complete splitting at v, and apply
a different complete splitting at v (the resulting graph is guaranteed to be 4-edge
connected, see Lemma 7).

Thus, the revised algorithm applies O(n) macro operations, and each of these runs in
time no(1); the running time for all other steps is O(n1+o(1)). Hence, the overall running time
is O(n1+o(1)), compared to the O(n2) running time of the algorithm in Section 3.

Proposition 14. Using the results of [JS20], the algorithm for Theorem 2 can be implemented
to run in time O(n1+o(1)).

We note that the results in the older papers [EGIN97, Tho01] also give improvements on
the O(n2) running time of the algorithm in Section 3. The earlier paper [EGIN97] has the
following setting. Vertex insertion/deletion is not allowed explicitly. Moreover,

• there is a fixed vertex set V (let n denote |V |);

• edges can be inserted or deleted;

• queries for (global) 3-edge connectivity can be made.

Theorem 5.4 of Eppstein et al., [EGIN97], states: The 4-edge connected components of
an undirected graph can be maintained in time O(n2/3) per update and O(n2/3) per query.

In our algorithm in Section 3, in each iteration, we pick the designated edge e of the
current graph, but we are free to apply complete splitting at either end vertex of e. Now,
we will exploit this property. At the start of the algorithm, we fix a designated vertex v∗

of the given 4-regular 4-edge connected graph G = (V,E). Our plan is to avoid applying
any splitting-off operation at v∗. Moreover, whenever we apply complete splitting at some
vertex v, then instead of deleting v, we attach v to v∗ by four parallel edges; thus the graph
induced by V stays 4-edge connected and all vertices except v∗ have degree four (in general,
the graph induced by V need not be 4-regular; nevertheless, Lemma 7 applies to the graph).

Observe that in each iteration, we apply O(1) edge insertions/deletions and O(1) queries
for 3-edge connectivity. The overall running time of the revised algorithm is O(n5/3), since
the time bound in [EGIN97] for each of these operations is O(n2/3), and the running time
for all other steps is O(n5/3).
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Proposition 15. Using the results of [EGIN97], the algorithm for Theorem 2 can be imple-
mented to run in time O(n5/3).
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