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Abstract

Given a graph G=(V; E) and a set T ⊆ V , an orientation of G is called T -odd if precisely the
vertices of T get odd in-degree. We give a good characterization for the existence of a T -odd
orientation for which there exist k edge-disjoint spanning arborescences rooted at a prespeci7ed
set of k roots. Our result implies Nash-Williams’ theorem on covering the edges of a graph by
k forests and a (generalization of a) theorem due to Nebesk�y on upper embeddable graphs. ?
2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Let G=(V; E) be a graph. We denote the number of components of G by c(G)
and we use 	(G) to denote |E(G)| − |V (G)| + c(G). Let G be a connected graph.
An embedding of G into an orientable surface is called a 2-cell embedding if every
region is homeomorphic to an open disk. The maximum integer g for which there
exists a 2-cell embedding of G into an orientable surface of genus g is the maximum
genus of G, denoted by �M (G). It is known [13] that �M (G)6 �	(G)=2�. Graphs with
�M (G)= �	(G)=2� are called upper embeddable.
The following theorem of Xuong gave the 7rst characterization of maximum genus

and was used later by Furst et al. [6] to construct a polynomial-time algorithm to
compute �M (G). For a spanning tree F of G let xG(F) denote the number of those
components C of G − E(F) for which |E(C)| is odd. Let F(G) denote the set of
spanning trees of G.
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Theorem 1.1 (Xuong [15]). If G is a connected graph then

�M (G)= (	(G)−min{xG(F): F ∈F(G)})=2: (1)

Notice that 	(G)− xG(F) is even for every spanning tree F . A spanning tree F of
G is called an even tree of G if each connected component of G − E(F) has an even
number of edges. A special case of Theorem 1.1 (see also [9]) is as follows.

Corollary 1.2. Let G be a connected graph with even 	(G). Then G is upper embed-
dable if and only if it has an even tree.

Some years later Nebesk�y found the 7rst NP∩co-NP characterization of �M (G) by
proving the following equality.

Theorem 1.3 (Nebesk�y [12]). A connected graph G=(V; E) satis=es

min{xG(F): F ∈F(G)}=max{c(G − A) + b(G − A)− |A| − 1: A ⊆ E}; (2)

where b(G−A) denotes the number of those components D of G−A for which 	(D)
is odd.

Specializing this result to upper embeddable graphs G of even 	(G) gives:

Theorem 1.4 (Nebesk�y [12]). A connected graph G=(V; E) has an even tree if and
only if

|A|¿ c(G − A) + b(G − A)− 1 (3)

holds for every A ⊆ E.

For more results on maximum genus see the survey paper [14]. The starting point of
our investigations is the purely graph theoretic Theorem 1.4 which involves parity as
well as connectivity conditions. We shall prove (generalizations of) this result from a
new viewpoint (namely, in terms of orientations of G) and hence give a new framework
which links this result to other, probably more familiar results in graph theory.
Theorem 1.4 can be reformulated in terms of orientations of G. An orientation of an

undirected graph G is a directed graph obtained from G by assigning an orientation to
each edge of G. A subset F of edges of a directed graph is a spanning arborescence
rooted at vertex r if F forms a spanning tree in the underlying undirected graph and
each vertex has in-degree one in F , except the root r:
Let G=(V; E) be a connected undirected graph and let T ⊆ V . An orientation of

G is called T -odd if precisely the vertices of T get odd in-degree. It is easy to see
that G has a T -odd orientation if and only if |E|+ |T | is even. (This can be seen by
induction as follows. Take v∈V for which G − v is connected. If v∈T and d(v) is
odd or v 
∈ T and d(v) is even then orient the edges incident to v towards v and apply
induction on G− v with respect to T − v to obtain the orientation of the rest. If this is
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not the case then orient all edges but one, say vx, towards v, and apply induction on
G − v with respect to (T − v)⊕ {x}. Here ⊕ denotes the symmetric diMerence.) From
this fact we obtain the following observation (which was found earlier by Chevalier et
al. [2], too).

Proposition 1.5. Let G=(V; E) be a connected graph for which 	(G) is even and let
r ∈V . Then G has an even tree if and only if there exists a (V − r)-odd orientation
of G which contains a spanning arborescence rooted at r.

Thus we can reformulate Theorem 1.4 as follows.

Corollary 1.6. Let G=(V; E) be a connected graph for which 	(G) is even and let
r ∈V . Then G has a (V − r)-odd orientation which contains a spanning arborescence
rooted at r if and only if (3) holds for every A ⊆ E.

Motivated by Theorem 1.4 and Corollary 1.6, we investigate more general problems
concerning orientations of undirected graphs simultaneously satisfying connectivity and
parity requirements. Namely, given an undirected graph G=(V; E); T ⊆ V and k¿ 0,
our main result gives a necessary and suNcient condition for the existence of a T -odd
orientation of G which contains k edge-disjoint spanning arborescences rooted at a
given set of k roots. This good characterization generalizes Theorem 1.4 and at the
same time slightly simpli7es condition (3). Furthermore, it implies Nash-Williams’
theorem on covering the edges of a graph by k forests as well. We also point out
some connections to a related problem on k-edge-connected T -odd orientations which
was investigated in [5]. These corollaries are discussed in Section 3.
The proof of our main result employs the proof method which was developed in-

dependently by Gallai and Anderson and which was 7rst used to show an elegant
proof for Tutte’s theorem on perfect matchings of graphs, see [1]. In our case, the
weaker result the proof hinges on (which is Hall’s theorem in the previously mentioned
proof for Tutte’s result) is an orientation theorem of the 7rst author (Theorem 1.9
below).
Let R= {r1; : : : ; rk} be a multiset of vertices of G (that is, the elements of R are

not necessarily pairwise distinct). By T ⊕ R we mean ((T ⊕ r1)⊕ · · ·)⊕ rk . For some
X ⊆ V the subgraph induced by X is denoted by G[X ]. The number of edges in G[X ]
is denoted by i(X ). For a partition P= {V1; : : : ; Vt} of V with t elements the set of
edges connecting diMerent elements of P is denoted by E(P). We set e(P)= |E(P)|.
The in-degree of a set X ⊆ V in a directed graph D=(V; E) is denoted by �(X ). The
following well-known result is due to Edmonds.

Theorem 1.7 (Edmonds [3]). Let R be a multiset of vertices of size k in a directed
graph D=(V; E): Then D contains k edge-disjoint spanning arborescences rooted at
R if and only if

�(X )¿ k − |X ∩ R| for every X ⊆ V: (4)
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The following result is due to Frank.

Theorem 1.8 (Frank [4, Theorem 2.1]). Let H =(V; E) be a graph; and let g :V →
Z+ be a function. Then there exists an orientation of H whose in-degree function �
satis=es �(v)= g(v) for every v∈V if and only if the following two conditions hold:

g(V )= |E|; (5)

g(X )¿ i(X ) for every ∅ 
=X ⊆ V: (6)

We shall rely on the following orientation theorem, which is easy to prove from
Theorems 1.8 and 1.7.

Theorem 1.9. Let H =(V; E) be a graph; let R= {r1; : : : ; rk} be a multiset of k vertices
of H and let g :V → Z+ be a function. Then there exists an orientation of H whose
in-degree function � satis=es �(v)= g(v) for every v∈V and for which there exist k
edge-disjoint spanning arborescences with roots {r1; : : : ; rk} if and only if (5) and the
following condition hold:

g(X )¿ i(X ) + k − |X ∩ R| for every ∅ 
=X ⊆ V: (7)

Proof. It is easy to see that both (5) and (7) are necessary. To see the other direction
let us take an orientation of H whose in-degree function � satis7es �(v)= g(v) for every
v∈V . By (5) and since (7) implies (6), such an orientation exists by Theorem 1.8.
We claim that this directed graph satis7es (4) with respect to the multiset R of roots.
Indeed, by observing that �(X )=

∑
x∈X �(x)− i(X )=

∑
x∈X g(x)− i(X )= g(X )− i(X )

for every X ⊆ V , by (7) we obtain �(X )¿ i(X ) + k − |X ∩ R| − i(X )= k − |X ∩ R|,
as required. Hence we are done by Theorem 1.7.

Note that R is a multiset in Theorem 1.9, hence by |X ∩ R| in (7) we mean
|{ri ∈R: ri ∈X; i=1; : : : ; k}|. This convention will be used later on, whenever we take
the intersection (or union) with a multiset.
Given G=(V; E), T ⊆ V , k ∈Z+ and a partition P= {V1; : : : ; Vt} of V , an element

Vj (16 j6 t) is called odd if |Vj ∩ T | − i(Vj) − k is odd, otherwise Vj is even. The
number of odd elements of P is denoted by sG(P; T; k) (where some parameters may
be omitted if they are clear from the context). The following is our main result.

Theorem 1.10. Let G=(V; E) be a graph; T ⊆ V and let k¿ 0 be an integer. For a
multiset of k vertices R= {r1; : : : ; rk} of V there exists a T ⊕ R-odd orientation of G
for which there exist k edge-disjoint spanning arborescences with roots {r1; : : : ; rk} if
and only if

e(P)¿ k(t − 1) + s(P; T ) (8)

holds for every partition P= {V1; : : : ; Vt} of V .
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Note that taking P= {V} in (8) yields the condition |T | − |E| − k is even. Also,
note that the multiset R of roots plays no role in the characterization. This fact is easy
to see directly by observing that if G has a proper T ⊕ R-odd orientation for some R
then G has a proper T⊕R′-odd orientation for any other multiset R′ of k roots. Indeed,
by repeatedly taking two roots r ∈R− R′ and r′ ∈R′ − R and a spanning arborescence
F of root r in the proper T ⊕ R-odd orientation and then reversing the edges of the
directed r − r′ path in F , one obtains a proper T ⊕ R′-odd orientation. In the proof,
however, the most general formulation will be convenient.

2. The proof of Theorem 1.10

Proof of Theorem 1.10. To see the necessity of condition (8), consider an orienta-
tion of G with the required properties and some partition P= {V1; : : : ; Vt} of V . The
following fact is easy to observe.

Proposition 2.1. For every T ⊕ R-odd orientation of G and for every Vj (16 j6 t)
we have |Vj ∩ T | − i(Vj)− k ≡ �(Vj)− (k − |Vj ∩ R|) (mod 2).

Proof. Since the orientation is T ⊕ R-odd, we obtain �(Vj) + i(Vj)=
∑

v∈Vj �(v) ≡
|Vj ∩ (T ⊕ R)| ≡ |Vj ∩ T | − |Vj ∩ R| and the claim follows.

Since there exist k edge-disjoint arborescences rooted at vertices of R, it follows
from the easy part of Theorem 1.7 that �(Vj) − (k − |Vj ∩ R|)¿ 0 for each Vj: If
this number is odd (or, equivalently by Proposition 2.1, if Vj is odd) then it is at
least one. This yields e(P)=

∑
Vj∈P �(Vj)=

∑
Vj∈P (�(Vj)− (k − |Vj ∩R|))+ kt− |V ∩

R|¿ s(P; T ) + kt − k = k(t − 1) + s(P; T ), hence the necessity follows.
In what follows we prove that (8) is suNcient. An orientation is called good if

the directed graph obtained contains k edge disjoint spanning arborescences rooted at
R: Let us suppose that the statement of the theorem does not hold and let us take a
counter-example (that is, a graph G=(V; E) with T; R and k, for which (8) holds but
no good T ⊕ R-odd orientation exists) for which |V |+ |E| is as small as possible.

Proposition 2.2. e(P) ≡ k(t − 1) + s(P; T ) (mod 2) for every partition P.

Proof. By choosing P0 = {V} in (8) we obtain that |T |− |E|−k is even. This implies
s(P; T ) ≡ ∑t

1 (|Vj ∩ T | − i(Vj)− k)= |T | − (|E| − e(P))− kt= |T | − |E| − k + e(P)−
k(t − 1) ≡ e(P)− k(t − 1):

We call a partition P of V consisting of t elements tight if e(P)= k(t−1)+s(P; T )
and t¿ 2:

Lemma 2.3. There exists a tight partition of V .
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Proof. Let ab be an arbitrary edge of G. Focus on the graph G′ =G − ab and the
modi7ed set T ′ =T ⊕ b: If there was a good T ′ ⊕R-odd orientation of G′ then adding
the arc ab would provide a good T ⊕ R-odd orientation of G, which is impossible.
Thus, by the minimality of G, there exists a partition P of V consisting of t elements
violating (8) in G′, that is, by Proposition 2.2, eG′(P) + 26 k(t − 1) + sG′(P; T ′):
Clearly, t¿ 2 holds.
For the same partition in G we have eG(P)6 eG′(P) + 1 and also sG(P; T )¿

sG′(P; T ′) − 1, since adding the edge ab and replacing T ⊕ b by T may change the
parity of at most one element of the partition. Thus k(t − 1) + sG(P; T )¿ k(t − 1) +
sG′(P; T ′)− 1¿ eG′(P) + 2− 1¿ eG(P)¿ k(t − 1) + sG(P; T ), hence P is tight in
G and the lemma follows.

Let us 7x a tight partition P= {V1; : : : ; Vt} in G for which t is maximal. Denote the
number of odd components of P by s.

Lemma 2.4. Every element Vj of P (16 j6 t) has the following property:
(a) if Vj is even; then (8) holds in G[Vj]; with respect to T ∩ Vj;
(b) if Vj is odd; then for each vertex v∈Vj; (8) holds in G[Vj]; with respect to

(T ∩ Vj)⊕ v.

Proof. We handle the two cases simultaneously. Suppose that there exists a partition
P′ of t′ elements in G[Vj] violating (8) (with respect to T ∩ Vj in case (a) or with
respect to (T ∩ Vj)⊕ v, for some v∈Vj, in case (b)). By Proposition 2.2 this implies
k(t′−1)+s′¿ e(P′)+2, where s′ denotes the number of odd elements of P′. Consider
the partition P′′ =(P − Vj) ∪ P′, consisting of t′′ elements from which s′′ are odd.
Clearly, e(P′′)= e(P)+e(P′) and t′′ = t+ t′−1: Furthermore, s′′¿ s+s′−2, since the
parity of at most two elements may be changed (these are Vj—only in case (b)—and
the element in P′ which contains the vertex v—only in case (b) again). Since (8) holds
for P′′ by the assumption of the theorem, we have k(t′′ − 1) + s′′6 e(P′′)= e(P) +
e(P′)6 k(t−1)+ s+k(t′−1)+ s′−2= k((t+ t′−1)−1)+ s+ s′−26 k(t′′−1)+ s′′:
Thus P′′ is a tight partition with t′′¿t, which contradicts the choice of P.

Let us denote the graph obtained from G by contracting each element Vj of P into a
single vertex vj (16 j6 t) by H . Let R′ = {r′1; : : : ; r′k} denote the multiset of vertices
of H corresponding to the vertices of R in G (that is, every root in some Vj yields a
new root vj). Furthermore, let A denote those vertices of H which correspond to odd
elements of P and let B=V (H)− A. Note that since P is tight, we have

|E(H)|= e(P)= k(t − 1) + s(P): (9)

Now, de7ne the following function g on the vertex set of H :

g(vj)=
{
k + 1− |Vj ∩ R| if vj ∈A;
k − |Vj ∩ R| otherwise:
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Lemma 2.5. There exists an orientation of H whose in-degree function is g and which
contains k edge-disjoint spanning arborescences with roots {r′1; : : : ; r′k}:

Proof. To prove the lemma we have to verify that the two conditions (5) and (7) of
Theorem 1.9 are satis7ed. First, we can see that g(V (H))= g(A) + g(B)= s(k + 1) +
(t − s)k − k = k(t − 1) + s= |E(H)| by the de7nition of g and by (9). Thus (5) is
satis7ed.
To verify (7), let us choose an arbitrary non-empty subset X of V (H). Let us

de7ne the partition P∗ of V (G) by P∗:={Vj: vj ∈V (H)−X }∪⋃
vj∈X Vj. Then P∗ has

t∗ = t− |X |+1 elements and the number of its odd elements s∗ is at least s− |X ∩A|:
Applying (8) for P∗, it follows that k(t∗ − 1) + s∗6 e(P∗): Hence k((t − |X |+ 1)−
1) + s− |X ∩ A|6 k(t∗ − 1) + s∗6 e(P∗)= e(P)− i(X )= k(t − 1) + s− i(X ). From
this it follows that i(X ) + k6 k|X |+ |X ∩A|. Therefore, i(X ) + k − |X ∩R′|6 k|X |+
|X ∩A| − |X ∩R′|= |X ∩A|(k +1)+ |X ∩B|k − |X ∩R′|= g(X ∩A)+ g(X ∩B)= g(X ),
proving that (7) is also satis7ed.

Let us 7x an orientation of H whose in-degree function �H = g and which contains
a set F of k edge-disjoint spanning arborescences {F1; : : : ; Fk} with roots {r′1; : : : ; r′k}.
Such an orientation exists by Lemma 2.5. Observe, that this orientation of H corre-
sponds to a partial orientation of G (namely, an orientation of the edges of E(P)).
For any vertex vj of H there are g(vj) arcs entering vj: If Vj is even then each arc

entering vj belongs to some arborescence in F. If Vj is odd then each arc entering vj
except exactly one belongs to some arborescence of F, by the de7nition of g.
For an arbitrary Vj ∈P let us denote by RHj the multiset of those vertices in Vj

which are the heads of the arcs of this partial orientation entering Vj and belonging
to some arborescence in F. By the de7nition of g, we have |RHj |= k − |Vj ∩ R|: Let
Rj =(Vj ∩ R) ∪ RHj : Note that |Rj|= |Vj ∩ R|+ |RHj |= k: Furthermore, if Vj is odd then
let us denote by aj the vertex in Vj which is the head of the unique arc entering Vj
and not belonging to any arborescence in F. Let Tj =T ∩ Vj if Vj is even and let
Tj =(T ∩ Vj)⊕ aj if Vj is odd.
By the minimality of G and since |Vj|¡ |V (G)| for each 16 j6 t, Lemma 2.4

implies that for each j there exists a Tj ⊕ Rj-odd orientation of G[Vj] which contains
k edge-disjoint spanning arborescences with roots in Rj: Combining these orientations
of the subgraphs induced by the elements of P and the orientation of E(P) obtained
earlier, we get an orientation of G. This orientation is clearly a good T ⊕ R-odd
orientation of G, contradicting our assumption on G. This contradiction proves the
theorem.

3. Corollaries

As we reformulated Theorem 1.4 in terms of odd orientations and spanning arbores-
cences in Corollary 1.6, we can similarly reformulate Theorem 1.10 in terms of even
components and spanning trees.
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Theorem 3.1. A graph G=(V; E) has k edge-disjoint spanning trees F1; : : : ; Fk so that
each connected component of G−⋃k

1 E(Fi) has an even number of edges if and only
if

e(P)¿ k(t − 1) + s (10)

holds for each partition P= {V1; : : : ; Vt} of V; where s is the number of those elements
of P for which i(Vj) + k(|Vj| − 1) is odd.

Proof. As we observed, G has an orientation for which the in-degree of every vertex is
even if and only if each connected component of G contains an even number of edges.
Thus the desired spanning trees exist in G if and only if G has a T ⊕R-odd orientation
which contains k edge-disjoint r-arborescences, where T =V , if k is odd, T = ∅, if k
is even, and R= {r1; : : : ; rk}; ri= r (i=1; : : : ; k) for an arbitrary r ∈V . Based on this
fact, Theorem 1.10 proves the theorem (by observing that (8) specializes to (10) due
to the special choice of T ).

The special case k =1 of Theorem 3.1 corresponds to Theorem 1.4. Since (3) implies
(10) if k =1, Theorem 3.1 applies and we obtain a slightly simpli7ed version of
Nebesk�y ’s result. Note also that our main result provides a proof of diMerent nature
for Theorem 1.4 by using Theorem 1.9.
Nash-Williams’ classical theorem on forest covers can also be deduced from our

main result.

Theorem 3.2 (Nash-Williams [11]). The edges of a graph G=(V; E) can be covered
by k forests if and only if

i(X )6 k(|X | − 1) (11)

holds for every ∅ 
=X ⊆ V .

Proof. We consider the suNciency of the condition. Let G=(V; E) be a graph for
which (11) holds. The 7rst claim is that we can add new edges to G until the number
of edges equals k(|V |−1) without destroying (11). To see this, observe that the addition
of a new edge e= xy (which may be parallel to some other edges already present in G)
cannot be added if and only if x; y∈Z for some Z ⊆ V with i(Z)= k(|Z |− 1). Such a
set, satisfying (11) with equality, will be called full. It is well known that the function
i : 2V → Z+ is supermodular, that is, it satis7es i(X ) + i(Y )6 i(X ∩ Y ) + i(X ∪ Y )
for every X; Y ⊆ V . Therefore, for two intersecting full sets Z and W , we have
k(|Z |−1)+ k(|W |−1)= i(Z)+ i(W )6 i(Z ∩W )+ i(Z ∪W )6 k(|Z ∩W |−1)+ k(|Z ∪
W |−1)= k(|Z |−1)+ k(|W |−1): Thus equality holds everywhere, and the sets Z ∩W
and Z ∪W are also full. Now let F be a maximal full set (we may assume F 
=V ) and
e= xy for some pair x∈F; y∈V − F . If we destroyed (11) by adding e, we would
have a full set x; y∈F ′ in G intersecting F , hence F ∪ F ′ would also be full by our
previous observation. This contradicts the maximality of F .



A. Frank et al. / Discrete Applied Mathematics 115 (2001) 37–47 45

Thus in the rest of the proof we may assume that |E|= k(|V | − 1). We claim that
there exist k edge-disjoint spanning trees in G: The existence of these trees immediately
implies that G can be covered by k forests because |E|= k(|V | − 1).

By Theorem 3.1, it is enough to prove that (10) holds in G. Let P= {V1; : : : ; Vt}
be a partition of V and let V1; : : : ; Vs denote the odd elements of P (with respect to
k). Observe that for an odd element Vj the parity of i(Vj) and k(|Vj| − 1) must be
diMerent (this holds for even k and for odd k as well), hence these numbers can-
not be equal. Thus we can count as follows: e(P)= |E| − ∑

i(Vi)= k(|V | − 1) −∑
(i(Vi) :Vi is even)−

∑
(i(Vj): Vj is odd)¿ k(|V |−1)−∑

(k(|Vi|−1): Vi is even)−∑
(k(|Vj| − 1)− 1: Vj is odd)= k(|V | − 1)− k|V |+ kt + s= k(t − 1) + s; as required.

Finally, we point out some connections to a related problem which was solved
recently by Frank and Kir�aly [5]. In an undirected graph G=(V; E) a set T ⊆ V
is G-even if |T | + |E| is even. As we remarked, G has a T -odd orientation if and
only if T is G-even. Given a graph G and a G-even subset T ⊆ V (G) one may
ask for a necessary and suNcient condition for the existence of a T -odd orientation
of G which is k-edge-connected. (A directed graph G=(V; E) is k-edge-connected
if �(X )¿ k holds for every ∅ 
=X ⊂ V , where �(X ) denotes the number of edges
entering X .) This question is still open, even for k =1. On the other hand, Frank and
Kir�aly characterized those graphs G which have k-edge-connected T -odd orientations
for every G-even T . One of their main result is the following.

Theorem 3.3 (Frank and Kir�aly [5]). Let G be an undirected graph and k be a pos-
itive integer. Then G has a k-edge-connected T -odd orientation for every G-even
subset T ⊆ V if and only if

e(P)¿ (k + 1)t − 1 (12)

holds for every partition P= {V1; : : : ; Vt}; t¿ 2; of V .

Our results imply a similar condition for those graphs G which have a T ⊕ R-odd
orientation with k edge-disjoint spanning arborescences rooted at R for every T and
every set R of k roots.

Theorem 3.4. Let G=(V; E) be an undirected graph and k be a positive integer.
Then G has a T ⊕ R-odd orientation for which there exist k edge-disjoint spanning
arborescences with roots {r1; : : : ; rk} for every subset T ⊆ V with |T |+ |E| − k even
(and for an arbitrarily chosen multiset R= {r1; : : : ; rk} ⊆ V of k roots) if and only if

e(P)¿ (k + 1)(t − 1) (13)

holds for every partition P= {V1; : : : ; Vt}; t¿ 2; of V .

Proof. First suppose G satis7es (13) and take some T ⊆ V with |T | + |E| − k even.
Clearly, s(P; T )6 t for any partition P consisting of t classes. Thus e(P)¿ (k + 1)
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(t − 1)= k(t − 1) + t − 1 shows that G satis7es (8) for every partition P with
t¿ 2 unless e(P)= (k +1)(t− 1) and s(P; T )= t. However, by Proposition 2.2 every
partition P′ satis7es e(P′) ≡ k(t − 1) + s(P′; T ) (mod 2) and hence (k + 1)(t − 1) ≡
k(t − 1) + s(P; T ) (mod 2) follows. Thus the latter case cannot occur. This shows (8)
holds for every T and every P. Therefore, Theorem 1.10 implies that G has the desired
T ⊕ R-odd orientation for T and for every set R of k roots.
Conversely, suppose that for some partition P= {V1; : : : ; Vt}, t¿ 2, we have e(P)¡

(k+1)(t−1). Now by de7ning T ⊆ V appropriately, we can make at least t−1 classes
Vi “odd” and hence s(P; T )¿ t − 1. (Since |T |+ |E| − k has to be even, the parity of
s(P; T ) is determined.) Thus for this T and P we have e(P)¡ (k +1)(t− 1)= k(t−
1)+ t− 16 k(t− 1)+ s(P; T ), showing that G violates (8). Thus, by the easy part of
Theorem 1.10, the required orientation does not exist for every T in G.

Note that by a theorem of Tutte and Nash-Williams on edge-disjoint spanning trees,
condition (13) is equivalent to the fact that G has k + 1 edge-disjoint spanning trees.
Using this, one can obtain a diMerent proof for Theorem 3.4.

4. Remarks

The problem of 7nding a spanning tree of Theorem 1.4 with the required properties
(or more generally, the problem of computing min{xG(F): F ∈F(G)}) can be formu-
lated as a matroid parity problem in a certain co-graphic matroid, hence it can be solved
in polynomial time. This was observed by Furst et al. [6] who gave a O(en2 log6 n)
time algorithm based on results from [7]. With the help of this reduction one can obtain
Theorem 1.3 from Lov�asz’s characterization of the maximum size matroid-matching in
a linear matroid [10].
A similar reduction, where the matroid is the dual of the sum of k graphic matroids,

seems to work in the more general case of Theorem 3.1, too. However, from algorithmic
point of view, such a reduction is not satisfactory, since it is not known how to
represent the matroid in question. This diNculty can be handled by a useful observation
of Iwata [8] which reduces the matroid parity problem on the sum of the k matroids
to an instance of the matroid matching problem on the direct sum of the k matroids.
It would be interesting to develop a more eNcient algorithm for this problem as well
as for the problem of Theorem 1.10.
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