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Abstract

The graph sandwich problem for property Π is defined as follows: Given two graphs
G1 = (V, E1) and G2 = (V, E2) such that E1 ⊆ E2, is there a graph G = (V, E) such
that E1 ⊆ E ⊆ E2 which satisfies property Π? We propose to study sandwich problems
for properties Π concerning orientations, such as Eulerian orientation of a mixed graph
and orientation with given in-degrees of a graph. We present a characterization and a
polynomial-time algorithm for solving the m-orientation sandwich problem.

1 Introduction

Given two graphs G1 = (V,E1) and G2 = (V,E2) with the same vertex set V and E1 ⊆ E2, a
graph G = (V,E) is called a sandwich graph for the pair G1, G2 if E1 ⊆ E ⊆ E2. The graph
sandwich problem for property Π is defined as follows [13]:

graph sandwich problem for property Π
Instance: Given undirected graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2.
Question: Is there a graph G = (V,E) such that E1 ⊆ E ⊆ E2 and G satisfies property Π?

We call E1 the mandatory edge set, E0 = E2 \ E1 the optional edge set and E3 the
forbidden edge set, where E3 denotes the set of edges of the complementary graph G2 of
G2. Thus any sandwich graph G = (V,E) for the pair G1, G2 must contain all mandatory
edges, no forbidden edges and may contain a subset of the optional edges. Graph sandwich
problems have attracted much attention lately arising from many applications and as a natural
generalization of recognition problems [1, 2, 3, 7, 23, 25]. The recognition problem for a class
of graphs C is equivalent to the graph sandwich problem in which G1 = G2 = G, where G is
the graph we want to recognize and property Π is “to belong to class C”.

In this paper we propose to study sandwich problems for properties Π concerning orien-
tations, such as Eulerian orientation of a mixed graph and orientation with given in-degrees
of a graph, or more generally of a mixed graph.

The paper is organized as follows: Section 2 contains some basic definitions, notations and
results. Section 3 contains some known results on degree constrained sandwich problems. We
consider the undirected version and the directed version, the complexity, the characterization
and the related optimization problems. We also define a simultaneous version and discuss its
complexity. Section 4 focuses on Eulerian sandwich problems. We consider first undirected
graphs and then directed graphs. These problems were already solved in [13], here we point
out that the undirected case reduces to T -joins, while the directed case to circulations. We
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discuss the complexity of the problems and their characterizations and we also propose some
mixed versions. In Section 5 we consider sandwich problems regarding an m-orientation, i.e.,
given undirected graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2 and a non-negative
integer vector m on V , we show that it is polynomial to decide whether there exists a sandwich
graph G = (V,E) (E1 ⊆ E ⊆ E2) that has an orientation ~G whose in-degree vector is m
that is d−

~G
(v) = m(v) for all v ∈ V . This result stands in contrast to the strongly connected

m-orientation sandwich problem which we show is NP-complete. Section 6 is devoted to a
new kind of sandwich problem where we may contract (and not delete) optional edges and
property Π is being bipartite.

2 Definitions

Undirected graphs. Let G = (V,E) be an undirected graph. For vertex sets X and Y ,
the cut induced by X is defined to be the set of edges of G having exactly one end-vertex
in X and is denoted by δG(X). The degree dG(X) (or dE(X)) of X is the cardinality of
the cut induced by X, that is dG(X) = |δG(X)|. The number of edges between X \ Y and
Y \ X is denoted by dG(X, Y ). The number of edges of G having both (resp. at least
one) end-vertices in X is denoted by iG(X) or iE(X) or simply i(X) (resp. eG(X)). It is
well-known that (1) is satisfied for all X,Y ⊆ V,

dG(X) + dG(Y ) = dG(X ∩ Y ) + dG(X ∪ Y ) + 2dG(X,Y ). (1)

We say that a vector m on V is the degree vector of G if dG(v) = m(v) for all v ∈ V. For
a vector m on V , we consider m as a modular function, that is we use the notation: m(X)=∑

v∈X
m(v). Let us recall that dG(X) is the degree function of G. We define d̂G as the modular

function defined by the degree vector dG(v) of G. Note that d̂G(X) = dG(X)+2iG(X) ∀X ⊆ V.
We denote by TG the set of vertices of G of odd degree. For an edge set F of G, the

subgraph induced by F , that is (V, F ), is denoted by G(F ). We say that G is Eulerian if
the degree of each vertex is even, that is if TG = ∅. Note that we do not suppose the graph
to be connected.

Let T be a vertex set in G. An edge set F of G is called T -join if the set of odd degree
vertices in the subgraph induced by F coincide with T, that is if TG(F ) = T. Given a cost
vector on the edge set of G, a minimum cost T-join can be found in polynomial time by
Edmonds and Johnson’s algorithm [5].

Let f be a non-negative integer vector on V . An edge set F of G is called an f -factor of
G if f is the degree vector of G(F ), that is dF (v) = f(v) for all v ∈ V. If f(v) = 1 for all
v ∈ V , then we say that F is a 1-factor or a perfect matching. An f -factor - if it exists - can
be found in polynomial time, see [21]. The graph G is called 3-regular if each vertex is of
degree 3. Note that for a 3-regular graph, the existence of two edge-disjoint perfect matchings
is equivalent to the existence of three edge-disjoint perfect matchings which is equivalent to
the 3-edge-colorability of the graph.

Directed graphs. Let D = (V,A) be a directed graph. For a vertex set X, the set of arcs
of D entering (resp. leaving) X is denoted by ̺D(X) (resp. δD(X)). The in-degree d

−

D
(X)

(resp. out-degree d
+

D
(X)) of X is the number of arcs of D entering (resp. leaving) X, that

is d−
D

(X) = |̺D(X)| (resp. d+
D

(X) = |δD(X)|). The set of arcs of G having both end-vertices
in X is denoted by A(X). The following equality will be used frequently without reference.

d−
D

(X) − d+
D

(X) =
∑

v∈X

(d−
D

(v) − d+
D

(v)). (2)
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We say that a vector m on V is the in-degree vector of D if d−
D

(v) = m(v) for all v ∈ V.
Let us recall that d−

D
(X) is the in-degree function of D. Let f be a non-negative integer

vector on V . An arc set F of D is called a directed f -factor of D if f is the in-degree vector
of D(F ), that is d−

F
(v) = f(v) for all v ∈ V.

We say that D is Eulerian if the in-degree of v is equal to the out-degree of v for all v ∈ V ,
that is d−

D
(v) = d+

D
(v) for all v ∈ V . Note that we do not suppose the graph to be connected.

Let f and g be two vectors on the arcs of D such that f(e) ≤ g(e) for all e ∈ A. A vector
x on the arcs of D is a circulation if (3) and (4) are satisfied.

x(δD(v)) = x(̺D(v)) ∀v ∈ V, (3)

f(e) ≤ x(e) ≤ g(e) ∀e ∈ A. (4)

Note that if f(e) = g(e) = 1 for all e ∈ A, then D is Eulerian if and only if f is a circulation.
We will use the following characterization when a circulation exists.

Theorem 1 (Hoffmann [16]) Let D = (V,A) be a directed graph and f and g two vectors
on A such that f(e) ≤ g(e) ∀e ∈ A. There exists a circulation in D if and only if

f(̺D(X)) ≤ g(δD(X)) ∀X ⊆ V. (5)

We say that H = (V,E ∪ A) is a mixed graph if E is an edge set and A is an arc set on
V . For an undirected graph G = (V,E), if we replace each edge uv by the arc uv or vu, then
we get the directed graph ~G= (V, ~E). We say that ~G is an orientation of G.

Mixed graphs having Eulerian orientations are characterized as follows:

Theorem 2 (Ford, Fulkerson [8]) A mixed graph H = (V,E ∪A) has an Eulerian orien-
tation if and only if

d−
A
(v) + d+

A
(v) + dE(v) is even ∀v ∈ V, (6)

d−
A
(X) − d+

A
(X) ≤ dE(X) ∀X ⊆ V. (7)

The following theorem characterizes graphs having an orientation with a given in-degree
vector.

Theorem 3 (Hakimi [14]) Given an undirected graph G = (V,E) and a non-negative in-
teger vector m on V , there exists an orientation ~G of G whose in-degree vector is m if and
only if

m(X) ≥ i(X) ∀X ⊆ V, (8)

m(V ) = |E|. (9)

Functions. Let b be a set function on the subsets of V. We say that b is submodular if for
all X,Y ⊆ V,

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ). (10)

The function b is called supermodular if −b is submodular. A function is modular if it is
supermodular and submodular. We will use frequently in this paper the following facts.

Claim 1 The degree function dG(Z) of an undirected graph G and the in-degree function
d−

D
(Z) of a directed graph D are submodular and the function i(Z) is supermodular.
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Theorem 4 [18, 22] The minimum value of a submodular function can be found in polyno-
mial time.

Theorem 5 (Frank [10]) Let b and p be a submodular and a supermodular set function on
V such that p(X) ≤ b(X) for all X ⊆ V. Then there exists a modular function m on V such
that p(X) ≤ m(X) ≤ b(X) for all X ⊆ V. If b and p are integer valued then m can also be
chosen integer valued.

A pair (p, b) of set-functions on 2V is a strong pair if p (resp. b) is supermodular (sub-
modular) and they are compliant, that is, for every pairwise disjoint triple X,Y,Z,

b(X ∪ Z) − p(Y ∪ Z) ≥ b(X) − p(Y ).

Note that a pair (α, β) of modular functions is a strong pair if and only if α ≤ β. If (p, b) is
a strong pair then the polyhedron

Q(p, b) = {x ∈ R
V : p(X) ≤ x(X) ≤ b(X), for every X ⊆ V }

is called a generalized polymatroid (or a g-polymatroid). When α ≤ β are modular, we also
call the g-polymatroid Q(α, β) a box.

Theorem 6 (Frank, Tardos [12]) The intersection of an integral g-polymatroid Q(p, b)
and an integral box Q(α, β) is an integral g-polymatroid. It is nonempty if and only if α ≤ b
and p ≤ β.

Matroids. A set system M = (V,F) is called a matroid if F satisfies the following three
conditions:

(I1) ∅ ∈ F ,
(I2) if F ∈ F and F ′ ⊆ F , then F ′ ∈ F ,
(I3) if F,F ′ ∈ F and |F | > |F ′|, then there exists f ∈ F \ F ′ such that F ′ ∪ f ∈ F .

A subset X of V is called independent in M if X ∈ F , otherwise it is called dependent.
The maximal independent sets of V are the basis of M . Let B be the set of basis of M. Then
B satisfies the following two conditions:

(B1) B 6= ∅,
(B2) if B,B′ ∈ B and b ∈ B \B′, then there exists b′ ∈ B′ \B such that (B − b)∪ b′ ∈ B.

Conversely, if a set system (V,B) satisfies (B1) and (B2), then M = (V,F) is a matroid,
where F = {F ⊆ V : ∃B ∈ B, F ⊆ B}.

For S ⊂ V , the matroid M \ S obtained from M by deleting S is defined as M \ S =
(V \S,F|V \S), where X ⊆ V \S belongs to F|V \S if and only if X ∈ F . For S ∈ F , the matroid
M/S obtained from M by contracting S is defined as M/S = (V \ S,FS), where X ⊆ V \ S
belongs to FS if and only if X∪S ∈ F . Let {V1, . . . , Vl} be a partition of V and a1, . . . , al a set
of non-negative integers. Then M = (V,F) is a matroid, where F = {F ⊆ V : |F ∩Vi| ≤ ai},
we call it partition matroid. The dual matroid M∗ of M is defined as follows : the basis of
M∗ are the complements of the basis of M .

Let M = (V,F) be a matroid and c a cost vector on V = {v1, . . . , vn}. We can find
a minimum cost basis Fn of M in polynomial time by the greedy algorithm: take a non-
decreasing order of the elements of V : c(v1) ≤ · · · ≤ c(vn). Let F0 be empty and for
i = 1, . . . , n, let Fi = Fi−1 + vi if Fi−1 + vi ∈ F , otherwise let Fi = Fi−1.

If M1 and M2 are two matroids on the same ground set V , then we can find a common
basis of M1 and M2 in polynomial time (if there exists one) by the matroid intersection
algorithm of Edmonds [4].
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Theorem 7 (Edmonds, Rota [19]) For an integer-valued, non-decreasing, submodular func-
tion b defined on a ground set S, the set {F ⊆ S; |F ′| ≤ b(F ′) for all ∅ 6= F ′ ⊆ F} forms the
set of independent sets of a matroid Mb whose rank function rb is given by

rb(Z) = min{b(X) + |Z − X|,X ⊆ Z}.

Given an undirected graph G = (V,E) and a non-negative integer vector m on V , let
m̄G = m̄ be the set-function defined on E by m̄(F ) = m(V (F )) where V (F ) is the set of
vertices covered by F . One can easily check that m̄ is integer-valued, non-decreasing and
submodular. Thus, by Theorem 7, m̄ defines a matroid Mm̄. The following claim is straight-
forward.

Claim 2 The set {F ⊆ E : m(X) ≥ iF (X),∀X ⊆ V } is the set of independent sets of the
matroid Mm̄.

3 Degree Constrained Sandwich Problems

Before studying sandwich problems on orientations of given in-degrees, let us start as a
warming up by considering sandwich problems for undirected and directed graphs of given
degrees. These problems reduce to the undirected and directed f -factor problems. We
mention that the directed case is much easier than the undirected case because the addition
of an arc in a directed graph contributes only to the in-degree of the head and not of the
tail, while the addition of an edge in an undirected graph contributes to the degree of both
end-vertices. This section contains no new results, we added it for the sake of completeness.

3.1 Undirected graphs

Undirected Degree Constrained Sandwich Problem

Instance: Given undirected graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2 and a
non-negative integer vector f on V .
Question: Does there exist a sandwich graph G = (V,E) (E1 ⊆ E ⊆ E2) such that dG(v) =
f(v) for all v ∈ V ?

Complexity : It is in P because the answer is Yes if and only if there exists an (f(v) −
dG1

(v))-factor in the optional graph G0 = (V,E0).

Characterization : The general f -factor theorem due to Tutte [26] can be applied to get a
characterization.

Optimization : The minimum cost f -factor problem in undirected graphs can be solved in
polynomial time, see Schrijver [21].

Simultaneous Undirected Degree Constrained Sandwich Problem

Instance: Given two edge-disjoint graphs G1 = (V,E1) and G2 = (V,E2) in G3 = (V,E3)
and two non-negative integer vectors f1 and f2 on V .
Question: Do there exist simultaneously sandwich graphs Ĝ1 = (V, Ê1) (E1 ⊆ Ê1 ⊆ E3) and
Ĝ2 = (V, Ê2) (E2 ⊆ Ê2 ⊆ E3) such that Ê1 ∩ Ê2 = ∅ and d

Ĝ1
(v) = f1(v) and d

Ĝ2
(v) = f2(v)

for all v ∈ V ?

Complexity : It is NP-complete because it contains as a special case whether there exist
two edge-disjoint perfect matchings so 3-edge-colorability of 3-regular graphs. Indeed, let
G = (V,E) be an arbitrary 3-regular graph. Let G1 and G2 be the edgeless graph on V ,
G3 = G and f1(v) = f2(v) = 1 for all v ∈ V. Then the sandwich graphs Ĝ1 and Ĝ2 exists
if and only if Ê1 and Ê2 are edge-disjoint perfect matchings of G or equivalently, if there
exists a 3-edge-coloring of G. Since the problem of 3-edge-colorability of 3-regular graphs is
NP-complete [17], so is our problem.
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3.2 Directed graphs

Directed Degree Constrained Sandwich Problem

Instance: Given directed graphs D1 = (V,A1) and D2 = (V,A2) with A1 ⊆ A2 and a non-
negative integer vector f on V .
Question: Does there exist a sandwich graph D = (V,A) (A1 ⊆ A ⊆ A2) such that d−

D
(v) =

f(v) for all v ∈ V ?

Complexity + Characterization : It is in P because the answer is Yes if and only if
there exists a directed (f(v) − d−

D1
(v))-factor in the optional directed graph D0 = (V,A0),

hence we have the following.

Theorem 8 The Directed Degree Constrained Sandwich Problem has a Yes an-
swer if and only if d−

D2
(v) ≥ f(v) ≥ d−

D1
(v) for all v ∈ V.

Optimization : The feasible arc sets form the basis of a partition matroid, so the greedy
algorithm provides a minimum cost solution.

Simultaneous Directed Degree Constrained Sandwich Problem 1

Instance: Given two arc-disjoint directed graphs D1 = (V,A1) and D2 = (V,A2) in D3 =
(V,A3) and two non-negative integer vectors f1 and f2 on V .
Question: Do there exist simultaneously sandwich graphs D̂1 = (V, Â1) (A1 ⊆ Â1 ⊆ A3) and
D̂2 = (V, Â2) (A2 ⊆ Â2 ⊆ A3) such that Â1 ∩ Â2 = ∅ and d−

D̂1

(v) = f1(v) and d−
D̂2

(v) = f2(v)

for all v ∈ V ?

Complexity : It is in P because the answer is Yes if and only if d−
D3

(v) ≥ f1(v) + f2(v),

f1(v) ≥ d−
D1

(v) and f2(v) ≥ d−
D2

(v) for all v ∈ V.

Simultaneous Directed Degree Constrained Sandwich Problem 2

Instance: Given directed graphs D1 = (V,A1) and D2 = (V,A2) with A1 ⊆ A2 and two
non-negative integer vectors f and g on V .
Question: Does there exist a sandwich graph D = (V,A) (A1 ⊆ A ⊆ A2) such that d−

D
(v) =

f(v) and d+
D

(v) = g(v) for all v ∈ V.

Complexity : The feasible arc sets for the in-degree constraint form the basis of a partition
matroid and the feasible arc sets for the out-degree constraint form the basis of a partition
matroid. The answer is Yes if and only if there exists a common basis in these two matroids.
Thus it is in P by the matroid intersection algorithm of Edmonds [4].

4 Eulerian Sandwich Problems

In this section we consider first two problems that were already solved in [13]: Eulerian
sandwich problems for undirected and directed graphs. We point out that the undirected
case reduces to T -joins, while the directed case to circulations. We show that in both cases
the simultaneous versions are NP-complete.

Then we propose to study the problem in mixed graphs. We show two cases that can be
solved. The first case will be solved by the Discrete Separation Theorem 5 of Frank [10], while
the second case reduces to the Directed Eulerian Sandwich Problem. The general case
however remains open.

4.1 Undirected graphs

Undirected Eulerian Sandwich Problem

Instance: Given undirected graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2.
Question: Does there exists a sandwich graph G = (V,E) (E1 ⊆ E ⊆ E2) that is Eulerian?

6



Complexity : It is in P because the answer is Yes if and only if there exists a TG1
-join in

the optional graph G0.

Characterization : The answer is Yes if and only if each connected component of G0

contains an even number of vertices of TG1
.

Optimization : The minimum cost T -join problem can be solved in polynomial time [5].

Simultaneous Undirected Eulerian Sandwich Problem

Instance: Given two edge-disjoint graphs G1 = (V,E1) and G2 = (V,E2) in G3 = (V,E3).
Question: Do there exist simultaneously Eulerian sandwich graphs Ĝ1 = (V, Ê1) (E1 ⊆ Ê1 ⊆
E3) and Ĝ2 = (V, Ê2) (E2 ⊆ Ê2 ⊆ E3) such that Ê1 ∩ Ê2 = ∅?

Complexity : It is NP-complete because it contains as a special case whether there exist two
edge-disjoint perfect matchings so 3-colorability of 3-regular graphs. Indeed, let G = (V,E)
be an arbitrary 3-regular graph. Let G3 be obtained from G by adding 2 edge-disjoint
perfect matchings M1 and M2 to G, let G1 = (V,M1) and G2 = (V,M2). Then the Eulerian
sandwich graphs Ĝ1 and Ĝ2 exist if and only if Ê1 \M1 and Ê2 \M2 are edge-disjoint perfect
matchings of G or equivalently, if there exists a 3-edge-coloring of G. Since the problem of
3-edge-colorability of 3-regular graphs is NP-complete [17], so is our problem.

4.2 Directed graphs

Directed Eulerian Sandwich Problem

Instance: Given directed graphs D1 = (V,A1) and D2 = (V,A2) with A1 ⊆ A2.
Question: Does there exist a sandwich graph D = (V,A) (A1 ⊆ A ⊆ A2) that is Eulerian?

Complexity : It is in P because it can be reformulated as a circulation problem: let f(e) =
1, g(e) = 1 if e ∈ A1 and f(e) = 0, g(e) = 1 if e ∈ A0. This way the arcs of A1 are forced and
the arcs of A0 can be chosen if necessary.

Characterization : The answer is Yes if and only if d−
D1

(X) ≤ d+
D2

(X) for all X ⊆ V by
Theorem 1.
Optimization : The minimum cost circulation problem can be solved in polynomial time,
see Tardos [24].

Simultaneous Directed Eulerian Sandwich Problem

Instance: Given two arc-disjoint directed graphs D1 = (V,A1) and D2 = (V,A2) in D3 =
(V,A3).
Question: Do there exist simultaneously Eulerian sandwich graphs D̂1 = (V, Â1) (A1 ⊆ Â1 ⊆
A3) and D̂2 = (V, Â2) (A2 ⊆ Â2 ⊆ A3) such that Â1 ∩ Â2 = ∅?

Complexity : It is NP-complete, it contains as a special case (D1 = (V, t1s1), D2 = (V, t2s2)
and D3 = D) the following directed 2-commodity integral flow problem that is NP-complete
[6]: Given a directed graph D and two pairs of vertices, s1, t1 and s2, t2, decide whether there
exist a path from s1 to t1 and a path from s2 to t2 that are arc-disjoint.

4.3 Mixed graphs

Mixed Eulerian Sandwich Problem

Instance: Given mixed graphs H1 = (V,E1 ∪A1) and H2 = (V,E2 ∪A2) with E1 ⊆ E2, A1 ⊆
A2.
Question: Does there exist a sandwich mixed graph H = (V,E ∪ A) (E1 ⊆ E ⊆ E2, A1 ⊆
A ⊆ A2) that has an Eulerian orientation?

Complexity : We provide two special cases that can be treated, while the general problem
remains open.
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SPECIAL CASE 1: E1 = E2 = E and d+
A2

(X) − d−
A1

(X) + d̂E(X) is even for all X ⊆ V.

Characterization + Complexity : We show that the problem is in P and we provide a
characterization.

Theorem 9 The Mixed Eulerian Sandwich Problem with E1 = E2 = E and d+
A2

(X)−

d−
A1

(X) + d̂E(X) is even for all X ⊆ V has a Yes answer if and only if

d−
A1

(X) − d+
A2

(X) ≤ dE(X) ∀X ⊆ V. (11)

In particular, this problem is in P.

Proof. By the result of Section 4.2, the answer is Yes if and only if there exists an orientation
~E of E such that d−

A1∪ ~E
(X) ≤ d+

A2∪ ~E
(X) ∀X ⊆ V, or equivalently

d−
~E
(X) − d+

~E
(X) ≤ d+

A2
(X) − d−

A1
(X) ∀X ⊆ V. (12)

Let m be the in-degree vector of ~E. Then d−
~E
(X) − d+

~E
(X) =

∑
v∈X

(d−
~E
(v) − d+

~E
(v)) =

∑
v∈X

(2d−
~E
(v) − dE(v)) = 2m(X) − d̂E(X), and (12) becomes

2m(X) ≤ d+
A2

(X) − d−
A1

(X) + d̂E(X). (13)

Let b(X) = 1
2(d+

A2
(X)−d−

A1
(X)+ d̂E(X)). Then b, being the sum of a modular function and a

submodular function (b(X) = 1
2

∑
v∈X

(d+
A1

(v)− d−
A1

(v) + dE(v)) + d+
A0

(X)), is a submodular

function and, by the assumption, it is integer valued. By Theorem 3, an orientation ~E
satisfying (12) exists if and only if there exists a vector m such that iE(X) ≤ m(X) ≤ b(X),
that is by Claim 1 and Theorem 5, if and only if iE(X) ≤ b(X). This is equivalent to (11)
and can be decided in polynomial time by Theorem 4, namely the submodular function
b′(X) = b(X) − iE(X) must have minimum value 0. 2

SPECIAL CASE 2: E1 = ∅.

Characterization + Complexity : It is in P because it can be reformulated as the following
problem : We create two copies of each edge in E2 and orient them in opposite directions.

Denote this arc set by
−→
E2

2 . It is not difficult to see that the graph (V,E2∪A2) has a subgraph

containing (V,A1) with an Eulerian orientation if and only if the graph (V,
−→
E2

2 ∪ A2) has a
directed Eulerian subgraph containing (V,A1). Indeed, in such a graph, if every edge of E2

is used at most once, we are done. If some edge of E2 is used twice, as two arcs in opposite
directions, we can just remove these two arcs, the obtained graph remaining Eulerian and
containing (V,A1). Now applying the result for Directed Eulerian Sandwich Problem

we have :

Theorem 10 The Mixed Eulerian Sandwich Problem with E1 = ∅ has a Yes answer
if and only if

d−
A1

(X) − d+
A2

(X) ≤ dE2
(X) ∀X ⊆ V. (14)

In particular, this problem is in P.

Proof. Let D1 = (V,A1) and D2 = (V,A2 ∪
−→
E2

2). By the arguments above, the Mixed

Eulerian Sandwich Problem with E1 = ∅ has a solution if and only if there is an
Eulerian sandwich graph for D1 and D2 or equivalently, d−

D1
(X) ≤ d+

D2
(X) for all X ⊆ V .

By d+
D2

(X) = d+
A2

(X) + dE2
(X), we have d−

A1
(X) − d+

A2
(X) ≤ dE2

(X) for all X ⊆ V . Note

that dE2
(X)+d+

A2
(X)−d−

A1
(X) is a submodular function, and hence by Theorem 4, (14) can

be verified in polynomial time. 2
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5 m-orientation Sandwich Problems

In this section we consider the sandwich problem where the property Π is to have an orien-
tation of given in-degrees.

5.1 m-Orientation

m-orientation Sandwich Problem

Instance: Given undirected graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2 and a
non-negative integer vector m on V .
Question: Does there exist a sandwich graph G = (V,E) (E1 ⊆ E ⊆ E2) that has an
orientation ~G whose in-degree vector is m that is d−

~G
(v) = m(v) for all v ∈ V ?

Characterization : We prove the following theorem.

Theorem 11 The following assertions are equivalent.

(a) The m-orientation Sandwich Problem has a Yes answer.

(b) E1 is independent in Mm̄ and Mm̄ has an independent set of size m(V ).

(c) rm̄(E1) = |E1| and rm̄(E2) ≥ m(V ).

(d) iE1
(X) ≤ m(X) ≤ eE2

(X) for all X ⊆ V .

Proof. (a) implies (d) Let X ⊆ V . Since each edge of G1 in X contributes 1 to m(X), we
have iE1

(X) ≤ m(X). On the other hand, the edges of G2 that have no end-vertex in X can
not contribute 1 to m(X), so we have m(X) ≤ eE2

(X).

(d) implies (c). Let F be a subset of E1 and X = V (F ). The condition iE1
(X) ≤ m(X)

implies |F | ≤ m(V (F )) = m̄(F ), that is |E1| ≤ m̄(F )+|E1\F |. By Theorem 7, rm̄(E1) ≥ |E1|,
or equivalently rm̄(E1) = |E1|. Let now F be a subset of E2 and X = V \V (F ). The condition
m(X) ≤ eE2

(X) implies that m(V ) ≤ m(V (F )) + eE2
(V − V (F )) ≤ m̄(F ) + |E2 \ F |. By

Theorem 7, rm̄(E2) ≥ m(V ).

(c) implies (b). By definition.

(b) implies (a). By (b), E1 is independent in Mm̄ and there exists an independent in
Mm̄ of size m(V ). Therefore, by (I3), there exists an independent set E of size m(V ) that
contains E1. By Theorem 3 and Claim 2, E is a solution of the m-orientation Sandwich

Problem. 2

We say that a subset F of E0 is feasible if (V, F ∪ E1) has an m-orientation. The next
corollary of Theorem 11 characterizes the feasible sets.

Corollary 1 If the m-orientation Sandwich Problem has a Yes answer then a subset
F of E0 is feasible if and only if F is a base of the matroid Mm̄/E1.

Complexity : The condition (d) of Theorem 11 can be verified in polynomial time by
Theorem 4, so the m-orientation Sandwich Problem is in P.

Optimization : The minimum cost version of the problem can be solved in polynomial
time. First, we find an optimal feasible subset F by greedy algorithm. Then we can orient
the edges of F ∪ E1 using a known algorithm. (See [11] for example).

Corollary 1 and the matroid intersection algorithm of Edmonds [4] imply that the two
following simultaneous versions of the m-orientation Sandwich Problem are also in P.

9



Simultaneous m-orientation Sandwich Problem 1

Instance: Given two edge-disjoint undirected subgraphs G1 = (V,E1) and G2 = (V,E2) of
an undirected graph G3 = (V,E3) and two non-negative integer vectors m1 and m2 on V .
Question: Do there exist simultaneously edge-disjoint sandwich graphs Ĝ1 = (V, Ê1) (E1 ⊆
Ê1 ⊆ E3) and Ĝ2 = (V, Ê2) (E2 ⊆ Ê2 ⊆ E3) such that Ĝi has an orientation whose in-degree
vector is mi for i ∈ {1, 2}?

Note that, the two input matroids for the matroid intersection algorithm must be taken
as (MG1

m̄1
/E1) \ E2 and the dual matroid of (MG2

m̄2
/E2) \ E1.

Simultaneous m-orientation Sandwich Problem 2

Instance: Given two undirected subgraphs G1 = (V,E1) and G2 = (V,E2) of an undirected
graph G3 = (V,E3) and two non-negative integer vectors m1 and m2 on V .
Question: Does there exist an edge set F in E3\(E1∪E2) such that the graph Gi = (V,Ei∪F )
admits an orientation whose in-degree vector is mi for i ∈ {1, 2}?

5.2 Strongly Connected m-Orientation

Strongly Connected m-Orientation Sandwich Problem

Instance: Given undirected graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2 and a
non-negative integer vector m on V .
Question: Does there exist a sandwich graph G = (V,E) (E1 ⊆ E ⊆ E2) that has a strongly
connected orientation ~G whose in-degree function is m?

Complexity : It is NP-complete because the special case E1 = ∅,m(v) = 1 ∀v ∈ V is
equivalent to decide if G2 has a Hamiltonian cycle.

5.3 (m1, m2)-Orientation

(m1,m2)-orientation Sandwich Problem

Instance: Given undirected graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2 and non-
negative integer vectors m1 and m2 on V .
Question: Does there exist a sandwich graph G = (V,E) (E1 ⊆ E ⊆ E2) that has an
orientation ~G whose in-degree vector is m1 and whose out-degree vector is m2 ?

Complexity : The problem is NP-complete since it contains as a special case (E1 = ∅) the
NP-complete problem of [20].

5.4 Mixed m-Orientation

Mixed m-orientation Sandwich Problem

Instance: Given mixed graphs G1 = (V,E1 ∪ A1) and G2 = (V,E2 ∪ A2) with E1 ⊆ E2,
A1 ⊆ A2 and an non-negative integer vector m on V .
Question: Does there exist a sandwich mixed graph G = (V,E ∪ A) with E1 ⊆ E ⊆ E2 and

A1 ⊆ A ⊆ A2, that has an orientation
−→
G = (V,

−→
E ∪ A) whose in-degree vector is m?

Characterization : Suppose that E1 ⊆ E ⊆ E2 has been chosen and oriented, then the
problem is reduced to the Directed Degree Constrained Sandwich Problem with
m1(v) = m(v) − d−−→

E
(v) which, by Theorem 8, has a solution if and only if d−

A2
(v) ≥ m(v) −

d−−→
E

(v) ≥ d−
A1

(v) for all v ∈ V . Hence the Mixed m-orientation Sandwich Problem

has a solution if and only if there exists E1 ⊆ E ⊆ E2 which admits an orientation
−→
E

with m(v) − d−
A1

(v) ≥ d−−→
E

(v) ≥ m(v) − d−
A2

(v) for all v ∈ V . Let m2 : V → Z satisfy
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m(v) − d−
A2

(v) ≤ m2(v) ≤ m(v) − d−
A1

(v). By Theorem 11, there exists E1 ⊆ E ⊆ E2 which

admits an orientation
−→
E with d−−→

E
(v) = m2(v) if and only if iE1

(X) ≤ m2(X) ≤ eE2
(X) for

all X ⊆ V . Therefore we have

Claim 3 The Mixed m-orientation Sandwich Problem has a Yes answer if and only
if there exists an integer valued function m2 : V → Z such that

m(v) − d−
A2

(v) ≤ m2(v) ≤ m(v) − d−
A1

(v) ∀v ∈ V,

iE1
(X) ≤ m2(X) ≤ eE2

(X) ∀X ⊆ V.

Claim 4 The pair (iE1
, eE2

) is a strong pair.

Proof. Let X,Y,Z be three pairwise disjoint subset of V . We show that eE2
(X ∪ Z) −

iE1
(Y ∪Z) ≥ eE2

(X)− iE1
(Y ). In fact, we have iE1

(Y ∪Z)− iE1
(Y ) = iE1

(Z)+ dE1
(Y,Z) ≤

iE2
(Z) + dE2

(Y,Z), and eE2
(X ∪ Z) − eE2

(X) = iE2
(Z) + dE2

(Z) − dE2
(X,Z). As X,Y,Z

are pairwise disjoint, dE2
(Y,Z) + dE2

(X,Z) ≤ dE2
(Z). The claim follows by Claim 1. 2

By Claim 3, 4 and Theorem 6 applied for α(v) = m(v)−d−
A2

(v), β(v) = m(v)−d−
A1

(v), p =
iE1

, b = eE2
, we have

Theorem 12 The Mixed m-orientation Sandwich Problem has a Yes answer if and
only if

iE1
(X) + d̂−

A1
(X) ≤ m(X) ≤ eE2

(X) + d̂−
A2

(X) (15)

for every subset X of V .

Note that Theorem 12 implies Theorems 8 and 11.

Complexity : The condition (15) can be verified in polynomial time by Theorem 4. If
it is satisfied, then a vector m2 satisfying the conditions in Claim 3 can be found using
greedy algorithm for g-polymatroids. Then we find and orient an edge set E (E1 ⊆ E ⊆ E2)
with in-degree m2 (m-orientation Sandwich Problem). Last, we choose an arc set A
(A1 ⊆ A ⊆ A2) such that d−

A
(v) = m1(v) = m(v)−m2(v), for all v ∈ V (Directed Degree

Constrained Sandwich Problem).

6 Contracting Sandwich Problems

In this section, we propose to consider a new type of sandwich problems. Instead of deleting
edges from the optional graph, we are interested in contracting edges. We solve the problem
for the property Π being a bipartite graph.

Contracting Sandwich Problem

Instance: Given an undirected graph G = (V,E) and E0 ⊆ E.
Question: Does there exist F ⊆ E0 such that contracting F results in a bipartite graph?

Complexity: Since a graph is bipartite if and only if all its cycles have an even length, the
problem is equivalent to finding F ⊆ E0 such that, for all cycles C, |C ∩ F | ≡ |C| mod 2.

Fixe a spanning forest T of G. For e ∈ E \T , denote C(T, e) the unique cycle contained in
T ∪e. By [19, Theorem 9.1.2], if C is a cycle of G then C = ∆e∈CC(T, e), where ∆ denotes the
symmetric difference of sets. Therefore, |C ∩F | ≡

∑
e∈C

|C(T, e) ∩F | mod 2. Let CT denote
the collection of cycles C(T, e) of G. The problem is reduced to finding F ⊆ E0 such that,
for all C ∈ CT , |C ∩ F | ≡ |C| mod 2, or equivalently, finding an F ′(= E \ F ) ⊇ E1 = E \ E0

such that |F ′ ∩ C| ≡ 0 mod 2, for all C ∈ CT .
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Consider now the matrix M defined as the following. The rows of M correspond to C ∈ CT

and the columns correspond to the edges of G; the entry MCe is 1 if e ∈ C and is 0 otherwise.
For X ⊆ E, let χX denote the characteristic vector of X. For a vector x ∈ {0, 1}E , let x|X

denote the projection of x on X. Let 1 be the all-one vector in {0, 1}E . A subset F ′ ⊆ E
satisfies |F ′ ∩ C| ≡ 0 mod 2, for all C ∈ CT , if and only if χF ′ ∈ Ker M in F2. Such an F ′ is
the solution of the Contracting Sandwich Problem if and only if χF ′|E1

= 1|E1
.

Let B be a basis of the kernel of M in F2. (This can be computed in polynomial time using
the Gauss elimination.) Consider the projections B′ of B on E1. Then the Contracting

Sandwich Problem has a solution if and only if 1|E1
is in the subspace of {0, 1}E1 spanned

by B′, that is rankB′ = rankB′ ∪ 1|E1
. This can be decided in polynomial time using the

Gauss elimination. We conclude that the Contracting Sandwich Problem is in P.

We finish with a related problem. For a fixed integer k, solving the Contracting

Sandwich Problem when E0 = E with extra requirement |F | ≤ k is known to be tractable
in polynomial time [15]. However the authors mention that finding a solution of minimum
cardinality is NP-complete.
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