Sandwich problems on orientations*

Olivier Durand de Gevigney ${ }^{\dagger}$ Sulamita Klein \ddagger Viet Hang Nguyen ${ }^{\dagger}$, Zoltán Szigeti ${ }^{\dagger}$

January 18, 2012

Abstract

The graph sandwich problem for property Π is defined as follows: Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ such that $E_{1} \subseteq E_{2}$, is there a graph $G=(V, E)$ such that $E_{1} \subseteq E \subseteq E_{2}$ which satisfies property Π ? We propose to study sandwich problems for properties Π concerning orientations, such as Eulerian orientation of a mixed graph and orientation with given in-degrees of a graph. We present a characterization and a polynomial-time algorithm for solving the m-orientation sandwich problem.

1 Introduction

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with the same vertex set V and $E_{1} \subseteq E_{2}$, a graph $G=(V, E)$ is called a sandwich graph for the pair G_{1}, G_{2} if $E_{1} \subseteq E \subseteq E_{2}$. The graph sandwich problem for property Π is defined as follows [13]:

GRAPH SANDWICH PROBLEM FOR PROPERTY Π

Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$. Question: Is there a graph $G=(V, E)$ such that $E_{1} \subseteq E \subseteq E_{2}$ and G satisfies property Π ?

We call E_{1} the mandatory edge set, $E_{0}=E_{2} \backslash E_{1}$ the optional edge set and E_{3} the forbidden edge set, where E_{3} denotes the set of edges of the complementary graph \bar{G}_{2} of G_{2}. Thus any sandwich graph $G=(V, E)$ for the pair G_{1}, G_{2} must contain all mandatory edges, no forbidden edges and may contain a subset of the optional edges. Graph sandwich problems have attracted much attention lately arising from many applications and as a natural generalization of recognition problems $[1,2,3,7,23,25]$. The recognition problem for a class of graphs \mathcal{C} is equivalent to the graph sandwich problem in which $G_{1}=G_{2}=G$, where G is the graph we want to recognize and property Π is "to belong to class \mathcal{C} ".

In this paper we propose to study sandwich problems for properties Π concerning orientations, such as Eulerian orientation of a mixed graph and orientation with given in-degrees of a graph, or more generally of a mixed graph.

The paper is organized as follows: Section 2 contains some basic definitions, notations and results. Section 3 contains some known results on degree constrained sandwich problems. We consider the undirected version and the directed version, the complexity, the characterization and the related optimization problems. We also define a simultaneous version and discuss its complexity. Section 4 focuses on Eulerian sandwich problems. We consider first undirected graphs and then directed graphs. These problems were already solved in [13], here we point out that the undirected case reduces to T-joins, while the directed case to circulations. We

[^0]discuss the complexity of the problems and their characterizations and we also propose some mixed versions. In Section 5 we consider sandwich problems regarding an m-orientation, i.e., given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and a non-negative integer vector m on V, we show that it is polynomial to decide whether there exists a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that has an orientation \vec{G} whose in-degree vector is m that is $d_{\vec{G}}^{-}(v)=m(v)$ for all $v \in V$. This result stands in contrast to the strongly connected m-orientation sandwich problem which we show is NP-complete. Section 6 is devoted to a new kind of sandwich problem where we may contract (and not delete) optional edges and property Π is being bipartite.

2 Definitions

Undirected graphs. Let $G=(V, E)$ be an undirected graph. For vertex sets X and Y, the cut induced by X is defined to be the set of edges of G having exactly one end-vertex in X and is denoted by $\boldsymbol{\delta}_{\boldsymbol{G}}(\boldsymbol{X})$. The degree $\boldsymbol{d}_{\boldsymbol{G}}(\boldsymbol{X})$ (or $d_{E}(X)$) of X is the cardinality of the cut induced by X, that is $d_{G}(X)=\left|\delta_{G}(X)\right|$. The number of edges between $X \backslash Y$ and $Y \backslash X$ is denoted by $\boldsymbol{d}_{\boldsymbol{G}}(\boldsymbol{X}, \boldsymbol{Y})$. The number of edges of G having both (resp. at least one) end-vertices in X is denoted by $\boldsymbol{i}_{\boldsymbol{G}}(\boldsymbol{X})$ or $i_{E}(X)$ or simply $i(X)$ (resp. $\boldsymbol{e}_{\boldsymbol{G}}(\boldsymbol{X})$). It is well-known that (1) is satisfied for all $X, Y \subseteq V$,

$$
\begin{equation*}
d_{G}(X)+d_{G}(Y)=d_{G}(X \cap Y)+d_{G}(X \cup Y)+2 d_{G}(X, Y) \tag{1}
\end{equation*}
$$

We say that a vector m on V is the degree vector of G if $d_{G}(v)=m(v)$ for all $v \in V$. For a vector m on V, we consider m as a modular function, that is we use the notation: $\boldsymbol{m}(\boldsymbol{X})=$ $\sum_{v \in X} m(v)$. Let us recall that $d_{G}(X)$ is the degree function of G. We define $\hat{\boldsymbol{d}}_{\boldsymbol{G}}$ as the modular function defined by the degree vector $d_{G}(v)$ of G. Note that $\hat{d}_{G}(X)=d_{G}(X)+2 i_{G}(X) \forall X \subseteq V$.

We denote by $\boldsymbol{T}_{\boldsymbol{G}}$ the set of vertices of G of odd degree. For an edge set F of G, the subgraph induced by F, that is (V, F), is denoted by $\boldsymbol{G}(\boldsymbol{F})$. We say that G is Eulerian if the degree of each vertex is even, that is if $T_{G}=\emptyset$. Note that we do not suppose the graph to be connected.

Let T be a vertex set in G. An edge set F of G is called T-join if the set of odd degree vertices in the subgraph induced by F coincide with T, that is if $T_{G(F)}=T$. Given a cost vector on the edge set of G, a minimum cost T-join can be found in polynomial time by Edmonds and Johnson's algorithm [5].

Let f be a non-negative integer vector on V. An edge set F of G is called an f-factor of G if f is the degree vector of $G(F)$, that is $d_{F}(v)=f(v)$ for all $v \in V$. If $f(v)=1$ for all $v \in V$, then we say that F is a 1-factor or a perfect matching. An f-factor - if it exists - can be found in polynomial time, see [21]. The graph G is called 3-regular if each vertex is of degree 3 . Note that for a 3-regular graph, the existence of two edge-disjoint perfect matchings is equivalent to the existence of three edge-disjoint perfect matchings which is equivalent to the 3-edge-colorability of the graph.

Directed graphs. Let $D=(V, A)$ be a directed graph. For a vertex set X, the set of arcs of D entering (resp. leaving) X is denoted by $\varrho_{\boldsymbol{D}}(\boldsymbol{X})$ (resp. $\boldsymbol{\delta}_{\boldsymbol{D}}(\boldsymbol{X})$). The in-degree $\boldsymbol{d}_{\boldsymbol{D}}^{-}(\boldsymbol{X})$ (resp. out-degree $\boldsymbol{d}_{\boldsymbol{D}}^{+}(\boldsymbol{X})$) of X is the number of arcs of D entering (resp. leaving) X, that is $d_{D}^{-}(X)=\left|\varrho_{D}(X)\right|$ (resp. $\left.d_{D}^{+}(X)=\left|\delta_{D}(X)\right|\right)$. The set of arcs of G having both end-vertices in X is denoted by $\boldsymbol{A}(\boldsymbol{X})$. The following equality will be used frequently without reference.

$$
\begin{equation*}
d_{D}^{-}(X)-d_{D}^{+}(X)=\sum_{v \in X}\left(d_{D}^{-}(v)-d_{D}^{+}(v)\right) \tag{2}
\end{equation*}
$$

We say that a vector m on V is the in-degree vector of D if $d_{D}^{-}(v)=m(v)$ for all $v \in V$. Let us recall that $d_{D}^{-}(X)$ is the in-degree function of D. Let f be a non-negative integer vector on V. An arc set F of D is called a directed f-factor of D if f is the in-degree vector of $D(F)$, that is $d_{F}^{-}(v)=f(v)$ for all $v \in V$.

We say that D is Eulerian if the in-degree of v is equal to the out-degree of v for all $v \in V$, that is $d_{D}^{-}(v)=d_{D}^{+}(v)$ for all $v \in V$. Note that we do not suppose the graph to be connected.

Let f and g be two vectors on the arcs of D such that $f(e) \leq g(e)$ for all $e \in A$. A vector x on the arcs of D is a circulation if (3) and (4) are satisfied.

$$
\begin{array}{r}
x\left(\delta_{D}(v)\right)=x\left(\varrho_{D}(v)\right) \quad \forall v \in V, \\
f(e) \leq x(e) \leq g(e) \quad \forall e \in A . \tag{4}
\end{array}
$$

Note that if $f(e)=g(e)=1$ for all $e \in A$, then D is Eulerian if and only if f is a circulation. We will use the following characterization when a circulation exists.

Theorem 1 (Hoffmann [16]) Let $D=(V, A)$ be a directed graph and f and g two vectors on A such that $f(e) \leq g(e) \forall e \in A$. There exists a circulation in D if and only if

$$
\begin{equation*}
f\left(\varrho_{D}(X)\right) \leq g\left(\delta_{D}(X)\right) \quad \forall X \subseteq V . \tag{5}
\end{equation*}
$$

We say that $H=(V, E \cup A)$ is a mixed graph if E is an edge set and A is an arc set on V. For an undirected graph $G=(V, E)$, if we replace each edge $u v$ by the arc $u v$ or $v u$, then we get the directed graph $\overrightarrow{\boldsymbol{G}}=(V, \vec{E})$. We say that \vec{G} is an orientation of G.

Mixed graphs having Eulerian orientations are characterized as follows:
Theorem 2 (Ford, Fulkerson [8]) A mixed graph $H=(V, E \cup A)$ has an Eulerian orientation if and only if

$$
\begin{array}{lr}
d_{A}^{-}(v)+d_{A}^{+}(v)+d_{E}(v) \text { is even } & \forall v \in V, \\
d_{A}^{-}(X)-d_{A}^{+}(X) \leq d_{E}(X) & \forall X \subseteq V . \tag{7}
\end{array}
$$

The following theorem characterizes graphs having an orientation with a given in-degree vector.

Theorem 3 (Hakimi [14]) Given an undirected graph $G=(V, E)$ and a non-negative integer vector m on V, there exists an orientation \vec{G} of G whose in-degree vector is m if and only if

$$
\begin{align*}
m(X) & \geq i(X) \forall X \subseteq V, \tag{8}\\
m(V) & =|E| \tag{9}
\end{align*}
$$

Functions. Let b be a set function on the subsets of V. We say that b is submodular if for all $X, Y \subseteq V$,

$$
\begin{equation*}
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y) \tag{10}
\end{equation*}
$$

The function b is called supermodular if $-b$ is submodular. A function is modular if it is supermodular and submodular. We will use frequently in this paper the following facts.

Claim 1 The degree function $d_{G}(Z)$ of an undirected graph G and the in-degree function $d_{D}^{-}(Z)$ of a directed graph D are submodular and the function $i(Z)$ is supermodular.

Theorem 4 [18, 22] The minimum value of a submodular function can be found in polynomial time.

Theorem 5 (Frank [10]) Let b and p be a submodular and a supermodular set function on V such that $p(X) \leq b(X)$ for all $X \subseteq V$. Then there exists a modular function m on V such that $p(X) \leq m(X) \leq b(X)$ for all $X \subseteq V$. If b and p are integer valued then m can also be chosen integer valued.

A pair (p, b) of set-functions on 2^{V} is a strong pair if p (resp. b) is supermodular (submodular) and they are compliant, that is, for every pairwise disjoint triple X, Y, Z,

$$
b(X \cup Z)-p(Y \cup Z) \geq b(X)-p(Y)
$$

Note that a pair (α, β) of modular functions is a strong pair if and only if $\alpha \leq \beta$. If (p, b) is a strong pair then the polyhedron

$$
Q(p, b)=\left\{x \in \mathbb{R}^{V}: p(X) \leq x(X) \leq b(X), \text { for every } X \subseteq V\right\}
$$

is called a generalized polymatroid (or a g-polymatroid). When $\alpha \leq \beta$ are modular, we also call the g -polymatroid $Q(\alpha, \beta)$ a box.

Theorem 6 (Frank, Tardos [12]) The intersection of an integral g-polymatroid $Q(p, b)$ and an integral box $Q(\alpha, \beta)$ is an integral g-polymatroid. It is nonempty if and only if $\alpha \leq b$ and $p \leq \beta$.

Matroids. A set system $M=(V, \mathcal{F})$ is called a matroid if \mathcal{F} satisfies the following three conditions:
(I1) $\emptyset \in \mathcal{F}$,
(I2) if $F \in \mathcal{F}$ and $F^{\prime} \subseteq F$, then $F^{\prime} \in \mathcal{F}$,
(I3) if $F, F^{\prime} \in \mathcal{F}$ and $|F|>\left|F^{\prime}\right|$, then there exists $f \in F \backslash F^{\prime}$ such that $F^{\prime} \cup f \in \mathcal{F}$.
A subset X of V is called independent in M if $X \in \mathcal{F}$, otherwise it is called dependent. The maximal independent sets of V are the basis of M. Let \mathcal{B} be the set of basis of M. Then \mathcal{B} satisfies the following two conditions:
(B1) $\mathcal{B} \neq \emptyset$,
(B2) if $B, B^{\prime} \in \mathcal{B}$ and $b \in B \backslash B^{\prime}$, then there exists $b^{\prime} \in B^{\prime} \backslash B$ such that $(B-b) \cup b^{\prime} \in \mathcal{B}$.
Conversely, if a set system (V, \mathcal{B}) satisfies $(B 1)$ and $(B 2)$, then $M=(V, \mathcal{F})$ is a matroid, where $\mathcal{F}=\{F \subseteq V: \exists B \in \mathcal{B}, F \subseteq B\}$.

For $S \subset V$, the matroid $M \backslash S$ obtained from M by deleting S is defined as $M \backslash S=$ $\left(V \backslash S,\left.\mathcal{F}\right|_{V \backslash S}\right)$, where $X \subseteq V \backslash S$ belongs to $\left.\mathcal{F}\right|_{V \backslash S}$ if and only if $X \in \mathcal{F}$. For $S \in \mathcal{F}$, the matroid M / S obtained from M by contracting S is defined as $M / S=\left(V \backslash S, \mathcal{F}_{S}\right)$, where $X \subseteq V \backslash S$ belongs to \mathcal{F}_{S} if and only if $X \cup S \in \mathcal{F}$. Let $\left\{V_{1}, \ldots, V_{l}\right\}$ be a partition of V and a_{1}, \ldots, a_{l} a set of non-negative integers. Then $M=(V, \mathcal{F})$ is a matroid, where $\mathcal{F}=\left\{F \subseteq V:\left|F \cap V_{i}\right| \leq a_{i}\right\}$, we call it partition matroid. The dual matroid M^{*} of M is defined as follows : the basis of M^{*} are the complements of the basis of M.

Let $M=(V, \mathcal{F})$ be a matroid and c a cost vector on $V=\left\{v_{1}, \ldots, v_{n}\right\}$. We can find a minimum cost basis F_{n} of M in polynomial time by the greedy algorithm: take a nondecreasing order of the elements of $V: c\left(v_{1}\right) \leq \cdots \leq c\left(v_{n}\right)$. Let F_{0} be empty and for $i=1, \ldots, n$, let $F_{i}=F_{i-1}+v_{i}$ if $F_{i-1}+v_{i} \in \mathcal{F}$, otherwise let $F_{i}=F_{i-1}$.

If M_{1} and M_{2} are two matroids on the same ground set V, then we can find a common basis of M_{1} and M_{2} in polynomial time (if there exists one) by the matroid intersection algorithm of Edmonds [4].

Theorem 7 (Edmonds, Rota [19]) For an integer-valued, non-decreasing, submodular function b defined on a ground set S, the set $\left\{F \subseteq S ;\left|F^{\prime}\right| \leq b\left(F^{\prime}\right)\right.$ for all $\left.\emptyset \neq F^{\prime} \subseteq F\right\}$ forms the set of independent sets of a matroid M_{b} whose rank function r_{b} is given by

$$
r_{b}(Z)=\min \{b(X)+|Z-X|, X \subseteq Z\} .
$$

Given an undirected graph $G=(V, E)$ and a non-negative integer vector m on V, let $\bar{m}^{G}=\bar{m}$ be the set-function defined on E by $\bar{m}(F)=m(V(F))$ where $V(F)$ is the set of vertices covered by F. One can easily check that \bar{m} is integer-valued, non-decreasing and submodular. Thus, by Theorem $7, \bar{m}$ defines a matroid $M_{\bar{m}}$. The following claim is straightforward.

Claim 2 The set $\left\{F \subseteq E: m(X) \geq i_{F}(X), \forall X \subseteq V\right\}$ is the set of independent sets of the matroid $M_{\bar{m}}$.

3 Degree Constrained Sandwich Problems

Before studying sandwich problems on orientations of given in-degrees, let us start as a warming up by considering sandwich problems for undirected and directed graphs of given degrees. These problems reduce to the undirected and directed f-factor problems. We mention that the directed case is much easier than the undirected case because the addition of an arc in a directed graph contributes only to the in-degree of the head and not of the tail, while the addition of an edge in an undirected graph contributes to the degree of both end-vertices. This section contains no new results, we added it for the sake of completeness.

3.1 Undirected graphs

Undirected Degree Constrained Sandwich Problem
Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and a non-negative integer vector f on V.
Question: Does there exist a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ such that $d_{G}(v)=$ $f(v)$ for all $v \in V$?
Complexity : It is in P because the answer is Yes if and only if there exists an $(f(v)-$ $\left.d_{G_{1}}(v)\right)$-factor in the optional graph $G_{0}=\left(V, E_{0}\right)$.
Characterization : The general f-factor theorem due to Tutte [26] can be applied to get a characterization.
Optimization : The minimum cost f-factor problem in undirected graphs can be solved in polynomial time, see Schrijver [21].

Simultaneous Undirected Degree Constrained Sandwich Problem

Instance: Given two edge-disjoint graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ in $G_{3}=\left(V, E_{3}\right)$ and two non-negative integer vectors f_{1} and f_{2} on V.
Question: Do there exist simultaneously sandwich graphs $\hat{G}_{1}=\left(V, \hat{E}_{1}\right)\left(E_{1} \subseteq \hat{E}_{1} \subseteq E_{3}\right)$ and $\hat{G}_{2}=\left(V, \hat{E}_{2}\right)\left(E_{2} \subseteq \hat{E}_{2} \subseteq E_{3}\right)$ such that $\hat{E}_{1} \cap \hat{E}_{2}=\emptyset$ and $d_{\hat{G}_{1}}(v)=f_{1}(v)$ and $d_{\hat{G}_{2}}(v)=f_{2}(v)$ for all $v \in V$?
Complexity : It is NP-complete because it contains as a special case whether there exist two edge-disjoint perfect matchings so 3 -edge-colorability of 3 -regular graphs. Indeed, let $G=(V, E)$ be an arbitrary 3 -regular graph. Let G_{1} and G_{2} be the edgeless graph on V, $G_{3}=G$ and $f_{1}(v)=f_{2}(v)=1$ for all $v \in V$. Then the sandwich graphs \hat{G}_{1} and \hat{G}_{2} exists if and only if \hat{E}_{1} and \hat{E}_{2} are edge-disjoint perfect matchings of G or equivalently, if there exists a 3 -edge-coloring of G. Since the problem of 3 -edge-colorability of 3 -regular graphs is NP-complete [17], so is our problem.

3.2 Directed graphs

Directed Degree Constrained Sandwich Problem

Instance: Given directed graphs $D_{1}=\left(V, A_{1}\right)$ and $D_{2}=\left(V, A_{2}\right)$ with $A_{1} \subseteq A_{2}$ and a nonnegative integer vector f on V.
Question: Does there exist a sandwich graph $D=(V, A)\left(A_{1} \subseteq A \subseteq A_{2}\right)$ such that $d_{D}^{-}(v)=$ $f(v)$ for all $v \in V$?
Complexity + Characterization : It is in P because the answer is Yes if and only if there exists a directed $\left(f(v)-d_{D_{1}}^{-}(v)\right)$-factor in the optional directed graph $D_{0}=\left(V, A_{0}\right)$, hence we have the following.

Theorem 8 The Directed Degree Constrained Sandwich Problem has a Yes answer if and only if $d_{D_{2}}^{-}(v) \geq f(v) \geq d_{D_{1}}^{-}(v)$ for all $v \in V$.

Optimization : The feasible arc sets form the basis of a partition matroid, so the greedy algorithm provides a minimum cost solution.

Simultaneous Directed Degree Constrained Sandwich Problem 1

Instance: Given two arc-disjoint directed graphs $D_{1}=\left(V, A_{1}\right)$ and $D_{2}=\left(V, A_{2}\right)$ in $D_{3}=$ (V, A_{3}) and two non-negative integer vectors f_{1} and f_{2} on V.
Question: Do there exist simultaneously sandwich graphs $\hat{D}_{1}=\left(V, \hat{A}_{1}\right)\left(A_{1} \subseteq \hat{A}_{1} \subseteq A_{3}\right)$ and $\hat{D}_{2}=\left(V, \hat{A}_{2}\right)\left(A_{2} \subseteq \hat{A}_{2} \subseteq A_{3}\right)$ such that $\hat{A}_{1} \cap \hat{A}_{2}=\emptyset$ and $d_{\hat{D}_{1}}^{-}(v)=f_{1}(v)$ and $d_{\hat{D}_{2}}^{-}(v)=f_{2}(v)$ for all $v \in V$?
Complexity : It is in P because the answer is YES if and only if $d_{D_{3}}^{-}(v) \geq f_{1}(v)+f_{2}(v)$, $f_{1}(v) \geq d_{D_{1}}^{-}(v)$ and $f_{2}(v) \geq d_{D_{2}}^{-}(v)$ for all $v \in V$.
Simultaneous Directed Degree Constrained Sandwich Problem 2
Instance: Given directed graphs $D_{1}=\left(V, A_{1}\right)$ and $D_{2}=\left(V, A_{2}\right)$ with $A_{1} \subseteq A_{2}$ and two non-negative integer vectors f and g on V.
Question: Does there exist a sandwich graph $D=(V, A)\left(A_{1} \subseteq A \subseteq A_{2}\right)$ such that $d_{D}^{-}(v)=$ $f(v)$ and $d_{D}^{+}(v)=g(v)$ for all $v \in V$.
Complexity : The feasible arc sets for the in-degree constraint form the basis of a partition matroid and the feasible arc sets for the out-degree constraint form the basis of a partition matroid. The answer is Yes if and only if there exists a common basis in these two matroids. Thus it is in P by the matroid intersection algorithm of Edmonds [4].

4 Eulerian Sandwich Problems

In this section we consider first two problems that were already solved in [13]: Eulerian sandwich problems for undirected and directed graphs. We point out that the undirected case reduces to T-joins, while the directed case to circulations. We show that in both cases the simultaneous versions are NP-complete.

Then we propose to study the problem in mixed graphs. We show two cases that can be solved. The first case will be solved by the Discrete Separation Theorem 5 of Frank [10], while the second case reduces to the Directed Eulerian Sandwich Problem. The general case however remains open.

4.1 Undirected graphs

Undirected Eulerian Sandwich Problem
Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$.
Question: Does there exists a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that is Eulerian?

Complexity : It is in P because the answer is YES if and only if there exists a $T_{G_{1}}$-join in the optional graph G_{0}.
Characterization : The answer is YES if and only if each connected component of G_{0} contains an even number of vertices of $T_{G_{1}}$.
Optimization : The minimum cost T-join problem can be solved in polynomial time [5].
Simultaneous Undirected Eulerian Sandwich Problem
Instance: Given two edge-disjoint graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ in $G_{3}=\left(V, E_{3}\right)$. Question: Do there exist simultaneously Eulerian sandwich graphs $\hat{G}_{1}=\left(V, \hat{E}_{1}\right)\left(E_{1} \subseteq \hat{E}_{1} \subseteq\right.$ $\left.E_{3}\right)$ and $\hat{G}_{2}=\left(V, \hat{E}_{2}\right)\left(E_{2} \subseteq \hat{E}_{2} \subseteq E_{3}\right)$ such that $\hat{E}_{1} \cap \hat{E}_{2}=\emptyset$?

Complexity : It is NP-complete because it contains as a special case whether there exist two edge-disjoint perfect matchings so 3-colorability of 3-regular graphs. Indeed, let $G=(V, E)$ be an arbitrary 3-regular graph. Let G_{3} be obtained from G by adding 2 edge-disjoint perfect matchings M_{1} and M_{2} to G, let $G_{1}=\left(V, M_{1}\right)$ and $G_{2}=\left(V, M_{2}\right)$. Then the Eulerian sandwich graphs \hat{G}_{1} and \hat{G}_{2} exist if and only if $\hat{E}_{1} \backslash M_{1}$ and $\hat{E}_{2} \backslash M_{2}$ are edge-disjoint perfect matchings of G or equivalently, if there exists a 3 -edge-coloring of G. Since the problem of 3 -edge-colorability of 3-regular graphs is NP-complete [17], so is our problem.

4.2 Directed graphs

Directed Eulerian Sandwich Problem

Instance: Given directed graphs $D_{1}=\left(V, A_{1}\right)$ and $D_{2}=\left(V, A_{2}\right)$ with $A_{1} \subseteq A_{2}$.
Question: Does there exist a sandwich graph $D=(V, A)\left(A_{1} \subseteq A \subseteq A_{2}\right)$ that is Eulerian?
Complexity : It is in P because it can be reformulated as a circulation problem: let $f(e)=$ $1, g(e)=1$ if $e \in A_{1}$ and $f(e)=0, g(e)=1$ if $e \in A_{0}$. This way the arcs of A_{1} are forced and the arcs of A_{0} can be chosen if necessary.
Characterization : The answer is YES if and only if $d_{D_{1}}^{-}(X) \leq d_{D_{2}}^{+}(X)$ for all $X \subseteq V$ by Theorem 1.
Optimization : The minimum cost circulation problem can be solved in polynomial time, see Tardos [24].

Simultaneous Directed Eulerian Sandwich Problem

Instance: Given two arc-disjoint directed graphs $D_{1}=\left(V, A_{1}\right)$ and $D_{2}=\left(V, A_{2}\right)$ in $D_{3}=$ $\left(V, A_{3}\right)$.
Question: Do there exist simultaneously Eulerian sandwich graphs $\hat{D}_{1}=\left(V, \hat{A}_{1}\right)\left(A_{1} \subseteq \hat{A}_{1} \subseteq\right.$ $\left.A_{3}\right)$ and $\hat{D}_{2}=\left(V, \hat{A}_{2}\right)\left(A_{2} \subseteq \hat{A}_{2} \subseteq A_{3}\right)$ such that $\hat{A}_{1} \cap \hat{A}_{2}=\emptyset$?

Complexity : It is NP-complete, it contains as a special case ($D_{1}=\left(V, t_{1} s_{1}\right), D_{2}=\left(V, t_{2} s_{2}\right)$ and $D_{3}=D$) the following directed 2-commodity integral flow problem that is NP-complete [6]: Given a directed graph D and two pairs of vertices, s_{1}, t_{1} and s_{2}, t_{2}, decide whether there exist a path from s_{1} to t_{1} and a path from s_{2} to t_{2} that are arc-disjoint.

4.3 Mixed graphs

Mixed Eulerian Sandwich Problem
Instance: Given mixed graphs $H_{1}=\left(V, E_{1} \cup A_{1}\right)$ and $H_{2}=\left(V, E_{2} \cup A_{2}\right)$ with $E_{1} \subseteq E_{2}, A_{1} \subseteq$ A_{2}.
Question: Does there exist a sandwich mixed graph $H=(V, E \cup A)\left(E_{1} \subseteq E \subseteq E_{2}, A_{1} \subseteq\right.$ $A \subseteq A_{2}$) that has an Eulerian orientation?

Complexity : We provide two special cases that can be treated, while the general problem remains open.

SPECIAL CASE 1: $E_{1}=E_{2}=E$ and $d_{A_{2}}^{+}(X)-d_{A_{1}}^{-}(X)+\hat{d}_{E}(X)$ is even for all $X \subseteq V$.
Characterization + Complexity : We show that the problem is in P and we provide a characterization.

Theorem 9 The Mixed Eulerian Sandwich Problem with $E_{1}=E_{2}=E$ and $d_{A_{2}}^{+}(X)-$ $d_{A_{1}}^{-}(X)+\hat{d}_{E}(X)$ is even for all $X \subseteq V$ has a YES answer if and only if

$$
\begin{equation*}
d_{A_{1}}^{-}(X)-d_{A_{2}}^{+}(X) \leq d_{E}(X) \forall X \subseteq V \tag{11}
\end{equation*}
$$

In particular, this problem is in P.
Proof. By the result of Section 4.2, the answer is YES if and only if there exists an orientation \vec{E} of E such that $d_{A_{1} \cup \vec{E}}^{-}(X) \leq d_{A_{2} \cup \vec{E}}^{+}(X) \forall X \subseteq V$, or equivalently

$$
\begin{equation*}
d_{\vec{E}}^{-}(X)-d_{\vec{E}}^{+}(X) \leq d_{A_{2}}^{+}(X)-d_{A_{1}}^{-}(X) \forall X \subseteq V \tag{12}
\end{equation*}
$$

Let m be the in-degree vector of \vec{E}. Then $d_{\vec{E}}^{-}(X)-d_{\vec{E}}^{+}(X)=\sum_{v \in X}\left(d_{\vec{E}}^{-}(v)-d_{\vec{E}}^{+}(v)\right)=$ $\sum_{v \in X}\left(2 d_{\vec{E}}^{-}(v)-d_{E}(v)\right)=2 m(X)-\hat{d}_{E}(X)$, and (12) becomes

$$
\begin{equation*}
2 m(X) \leq d_{A_{2}}^{+}(X)-d_{A_{1}}^{-}(X)+\hat{d}_{E}(X) \tag{13}
\end{equation*}
$$

Let $b(X)=\frac{1}{2}\left(d_{A_{2}}^{+}(X)-d_{A_{1}}^{-}(X)+\hat{d}_{E}(X)\right)$. Then b, being the sum of a modular function and a submodular function $\left(b(X)=\frac{1}{2} \sum_{v \in X}\left(d_{A_{1}}^{+}(v)-d_{A_{1}}^{-}(v)+d_{E}(v)\right)+d_{A_{0}}^{+}(X)\right)$, is a submodular function and, by the assumption, it is integer valued. By Theorem 3, an orientation \vec{E} satisfying (12) exists if and only if there exists a vector m such that $i_{E}(X) \leq m(X) \leq b(X)$, that is by Claim 1 and Theorem 5, if and only if $i_{E}(X) \leq b(X)$. This is equivalent to (11) and can be decided in polynomial time by Theorem 4, namely the submodular function $b^{\prime}(X)=b(X)-i_{E}(X)$ must have minimum value 0 .
SPECIAL CASE 2: $E_{1}=\emptyset$.
Characterization + Complexity : It is in P because it can be reformulated as the following problem : We create two copies of each edge in E_{2} and orient them in opposite directions. Denote this arc set by $\overrightarrow{E_{2}^{2}}$. It is not difficult to see that the graph $\left(V, E_{2} \cup A_{2}\right)$ has a subgraph containing $\left(V, A_{1}\right)$ with an Eulerian orientation if and only if the graph $\left(V, \overrightarrow{E_{2}^{2}} \cup A_{2}\right)$ has a directed Eulerian subgraph containing $\left(V, A_{1}\right)$. Indeed, in such a graph, if every edge of E_{2} is used at most once, we are done. If some edge of E_{2} is used twice, as two arcs in opposite directions, we can just remove these two arcs, the obtained graph remaining Eulerian and containing $\left(V, A_{1}\right)$. Now applying the result for Directed Eulerian Sandwich Problem we have :

Theorem 10 The Mixed Eulerian Sandwich Problem with $E_{1}=\emptyset$ has a Yes answer if and only if

$$
\begin{equation*}
d_{A_{1}}^{-}(X)-d_{A_{2}}^{+}(X) \leq d_{E_{2}}(X) \forall X \subseteq V \tag{14}
\end{equation*}
$$

In particular, this problem is in P.
Proof. Let $D_{1}=\left(V, A_{1}\right)$ and $D_{2}=\left(V, A_{2} \cup \overrightarrow{E_{2}^{2}}\right)$. By the arguments above, the MixED Eulerian Sandwich Problem with $E_{1}=\emptyset$ has a solution if and only if there is an Eulerian sandwich graph for D_{1} and D_{2} or equivalently, $d_{D_{1}}^{-}(X) \leq d_{D_{2}}^{+}(X)$ for all $X \subseteq V$. By $d_{D_{2}}^{+}(X)=d_{A_{2}}^{+}(X)+d_{E_{2}}(X)$, we have $d_{A_{1}}^{-}(X)-d_{A_{2}}^{+}(X) \leq d_{E_{2}}(X)$ for all $X \subseteq V$. Note that $d_{E_{2}}(X)+d_{A_{2}}^{+}(X)-d_{A_{1}}^{-}(X)$ is a submodular function, and hence by Theorem 4 , (14) can be verified in polynomial time.

5 m-orientation Sandwich Problems

In this section we consider the sandwich problem where the property Π is to have an orientation of given in-degrees.

5.1 m-Orientation

m-orientation Sandwich Problem

Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and a non-negative integer vector m on V.
Question: Does there exist a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that has an orientation \vec{G} whose in-degree vector is m that is $d_{\vec{G}}^{-}(v)=m(v)$ for all $v \in V$?
Characterization : We prove the following theorem.
Theorem 11 The following assertions are equivalent.
(a) The m-orientation Sandwich Problem has a Yes answer.
(b) E_{1} is independent in $M_{\bar{m}}$ and $M_{\bar{m}}$ has an independent set of size $m(V)$.
(c) $r_{\bar{m}}\left(E_{1}\right)=\left|E_{1}\right|$ and $r_{\bar{m}}\left(E_{2}\right) \geq m(V)$.
(d) $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X)$ for all $X \subseteq V$.

Proof. (a) implies (d) Let $X \subseteq V$. Since each edge of G_{1} in X contributes 1 to $m(X)$, we have $i_{E_{1}}(X) \leq m(X)$. On the other hand, the edges of G_{2} that have no end-vertex in X can not contribute 1 to $m(X)$, so we have $m(X) \leq e_{E_{2}}(X)$.
(d) implies (c). Let F be a subset of E_{1} and $X=V(F)$. The condition $i_{E_{1}}(X) \leq m(X)$ implies $|F| \leq m(V(F))=\bar{m}(F)$, that is $\left|E_{1}\right| \leq \bar{m}(F)+\left|E_{1} \backslash F\right|$. By Theorem $7, r_{\bar{m}}\left(E_{1}\right) \geq\left|E_{1}\right|$, or equivalently $r_{\bar{m}}\left(E_{1}\right)=\left|E_{1}\right|$. Let now F be a subset of E_{2} and $X=V \backslash V(F)$. The condition $m(X) \leq e_{E_{2}}(X)$ implies that $m(V) \leq m(V(F))+e_{E_{2}}(V-V(F)) \leq \bar{m}(F)+\left|E_{2} \backslash F\right|$. By Theorem 7, $r_{\bar{m}}\left(E_{2}\right) \geq m(V)$.
(c) implies (b). By definition.
(b) implies (a). By (b), E_{1} is independent in $M_{\bar{m}}$ and there exists an independent in $M_{\bar{m}}$ of size $m(V)$. Therefore, by (I3), there exists an independent set E of size $m(V)$ that contains E_{1}. By Theorem 3 and Claim $2, E$ is a solution of the m-orientation Sandwich Problem.

We say that a subset F of E_{0} is feasible if $\left(V, F \cup E_{1}\right)$ has an m-orientation. The next corollary of Theorem 11 characterizes the feasible sets.

Corollary 1 If the m-orientation Sandwich Problem has a Yes answer then a subset F of E_{0} is feasible if and only if F is a base of the matroid $M_{\bar{m}} / E_{1}$.

Complexity : The condition (d) of Theorem 11 can be verified in polynomial time by Theorem 4, so the m-orientation Sandwich Problem is in P.

Optimization : The minimum cost version of the problem can be solved in polynomial time. First, we find an optimal feasible subset F by greedy algorithm. Then we can orient the edges of $F \cup E_{1}$ using a known algorithm. (See [11] for example).

Corollary 1 and the matroid intersection algorithm of Edmonds [4] imply that the two following simultaneous versions of the m-orientation Sandwich Problem are also in P.

Simultaneous m-orientation Sandwich Problem 1

Instance: Given two edge-disjoint undirected subgraphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ of an undirected graph $G_{3}=\left(V, E_{3}\right)$ and two non-negative integer vectors m_{1} and m_{2} on V. Question: Do there exist simultaneously edge-disjoint sandwich graphs $\hat{G}_{1}=\left(V, \hat{E}_{1}\right)\left(E_{1} \subseteq\right.$ $\left.\hat{E}_{1} \subseteq E_{3}\right)$ and $\hat{G}_{2}=\left(V, \hat{E}_{2}\right)\left(E_{2} \subseteq \hat{E}_{2} \subseteq E_{3}\right)$ such that \hat{G}_{i} has an orientation whose in-degree vector is m_{i} for $i \in\{1,2\}$?

Note that, the two input matroids for the matroid intersection algorithm must be taken as $\left(M_{\bar{m}_{1}}^{G_{1}} / E_{1}\right) \backslash E_{2}$ and the dual matroid of $\left(M_{\bar{m}_{2}}^{G_{2}} / E_{2}\right) \backslash E_{1}$.

Simultaneous m-orientation Sandwich Problem 2

Instance: Given two undirected subgraphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ of an undirected graph $G_{3}=\left(V, E_{3}\right)$ and two non-negative integer vectors m_{1} and m_{2} on V.
Question: Does there exist an edge set F in $E_{3} \backslash\left(E_{1} \cup E_{2}\right)$ such that the graph $G_{i}=\left(V, E_{i} \cup F\right)$ admits an orientation whose in-degree vector is m_{i} for $i \in\{1,2\}$?

5.2 Strongly Connected m-Orientation

Strongly Connected m-Orientation Sandwich Problem

Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and a non-negative integer vector m on V.
Question: Does there exist a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that has a strongly connected orientation \vec{G} whose in-degree function is m ?
Complexity : It is NP-complete because the special case $E_{1}=\emptyset, m(v)=1 \forall v \in V$ is equivalent to decide if G_{2} has a Hamiltonian cycle.

$5.3\left(m_{1}, m_{2}\right)$-Orientation

(m_{1}, m_{2})-orientation Sandwich Problem
Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and nonnegative integer vectors m_{1} and m_{2} on V.
Question: Does there exist a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that has an orientation \vec{G} whose in-degree vector is m_{1} and whose out-degree vector is m_{2} ?
Complexity : The problem is NP-complete since it contains as a special case ($E_{1}=\emptyset$) the NP-complete problem of [20].

5.4 Mixed m-Orientation

Mixed m-orientation Sandwich Problem
Instance: Given mixed graphs $G_{1}=\left(V, E_{1} \cup A_{1}\right)$ and $G_{2}=\left(V, E_{2} \cup A_{2}\right)$ with $E_{1} \subseteq E_{2}$, $A_{1} \subseteq A_{2}$ and an non-negative integer vector m on V.
Question: Does there exist a sandwich mixed graph $G=(V, E \cup A)$ with $E_{1} \subseteq E \subseteq E_{2}$ and $A_{1} \subseteq A \subseteq A_{2}$, that has an orientation $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is m ?
Characterization : Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been chosen and oriented, then the problem is reduced to the Directed Degree Constrained Sandwich Problem with $m_{1}(v)=m(v)-d_{\vec{E}}^{-}(v)$ which, by Theorem 8, has a solution if and only if $d_{A_{2}}^{-}(v) \geq m(v)-$ $d_{\vec{E}}^{-}(v) \geq d_{A_{1}}^{-}(v)$ for all $v \in V$. Hence the Mixed m-orientation Sandwich Problem has a solution if and only if there exists $E_{1} \subseteq E \subseteq E_{2}$ which admits an orientation \vec{E} with $m(v)-d_{A_{1}}^{-}(v) \geq d_{\vec{E}}^{-}(v) \geq m(v)-d_{A_{2}}^{-}(v)$ for all $v \in V$. Let $m_{2}: V \rightarrow \mathbb{Z}$ satisfy
$m(v)-d_{A_{2}}^{-}(v) \leq m_{2}(v) \leq m(v)-d_{A_{1}}^{-}(v)$. By Theorem 11, there exists $E_{1} \subseteq E \subseteq E_{2}$ which admits an orientation \vec{E} with $d_{\vec{E}}^{-}(v)=m_{2}(v)$ if and only if $i_{E_{1}}(X) \leq m_{2}(X) \leq e_{E_{2}}(X)$ for all $X \subseteq V$. Therefore we have

Claim 3 The Mixed m-orientation Sandwich Problem has a Yes answer if and only if there exists an integer valued function $m_{2}: V \rightarrow \mathbb{Z}$ such that

$$
\begin{array}{rlrl}
m(v)-d_{A_{2}}^{-}(v) & \leq m_{2}(v) & \leq m(v)-d_{A_{1}}^{-}(v) \forall v \in V \\
i_{E_{1}}(X) & \leq m_{2}(X) & \leq e_{E_{2}}(X) & \forall X \subseteq V
\end{array}
$$

Claim 4 The pair $\left(i_{E_{1}}, e_{E_{2}}\right)$ is a strong pair.
Proof. Let X, Y, Z be three pairwise disjoint subset of V. We show that $e_{E_{2}}(X \cup Z)-$ $i_{E_{1}}(Y \cup Z) \geq e_{E_{2}}(X)-i_{E_{1}}(Y)$. In fact, we have $i_{E_{1}}(Y \cup Z)-i_{E_{1}}(Y)=i_{E_{1}}(Z)+d_{E_{1}}(Y, Z) \leq$ $i_{E_{2}}(Z)+d_{E_{2}}(Y, Z)$, and $e_{E_{2}}(X \cup Z)-e_{E_{2}}(X)=i_{E_{2}}(Z)+d_{E_{2}}(Z)-d_{E_{2}}(X, Z)$. As X, Y, Z are pairwise disjoint, $d_{E_{2}}(Y, Z)+d_{E_{2}}(X, Z) \leq d_{E_{2}}(Z)$. The claim follows by Claim 1.

By Claim 3, 4 and Theorem 6 applied for $\alpha(v)=m(v)-d_{A_{2}}^{-}(v), \beta(v)=m(v)-d_{A_{1}}^{-}(v), p=$ $i_{E_{1}}, b=e_{E_{2}}$, we have

Theorem 12 The Mixed m-orientation Sandwich Problem has a Yes answer if and only if

$$
\begin{equation*}
i_{E_{1}}(X)+\hat{d}_{A_{1}}^{-}(X) \leq m(X) \leq e_{E_{2}}(X)+\hat{d}_{A_{2}}^{-}(X) \tag{15}
\end{equation*}
$$

for every subset X of V.
Note that Theorem 12 implies Theorems 8 and 11.
Complexity : The condition (15) can be verified in polynomial time by Theorem 4. If it is satisfied, then a vector m_{2} satisfying the conditions in Claim 3 can be found using greedy algorithm for g-polymatroids. Then we find and orient an edge set $E\left(E_{1} \subseteq E \subseteq E_{2}\right)$ with in-degree $m_{2}(m$-orientation Sandwich Problem). Last, we choose an arc set A $\left(A_{1} \subseteq A \subseteq A_{2}\right)$ such that $d_{A}^{-}(v)=m_{1}(v)=m(v)-m_{2}(v)$, for all $v \in V$ (Directed Degree Constrained Sandwich Problem).

6 Contracting Sandwich Problems

In this section, we propose to consider a new type of sandwich problems. Instead of deleting edges from the optional graph, we are interested in contracting edges. We solve the problem for the property Π being a bipartite graph.

Contracting Sandwich Problem

Instance: Given an undirected graph $G=(V, E)$ and $E_{0} \subseteq E$.
Question: Does there exist $F \subseteq E_{0}$ such that contracting F results in a bipartite graph?
Complexity: Since a graph is bipartite if and only if all its cycles have an even length, the problem is equivalent to finding $F \subseteq E_{0}$ such that, for all cycles $C,|C \cap F| \equiv|C| \bmod 2$.

Fixe a spanning forest T of G. For $e \in E \backslash T$, denote $C(T, e)$ the unique cycle contained in $T \cup e$. By [19, Theorem 9.1.2], if C is a cycle of G then $C=\Delta_{e \in C} C(T, e)$, where Δ denotes the symmetric difference of sets. Therefore, $|C \cap F| \equiv \sum_{e \in C}|C(T, e) \cap F| \bmod 2$. Let \mathcal{C}_{T} denote the collection of cycles $C(T, e)$ of G. The problem is reduced to finding $F \subseteq E_{0}$ such that, for all $C \in \mathcal{C}_{T},|C \cap F| \equiv|C| \bmod 2$, or equivalently, finding an $F^{\prime}(=E \backslash F) \supseteq E_{1}=E \backslash E_{0}$ such that $\left|F^{\prime} \cap C\right| \equiv 0 \bmod 2$, for all $C \in \mathcal{C}_{T}$.

Consider now the matrix M defined as the following. The rows of M correspond to $C \in \mathcal{C}_{T}$ and the columns correspond to the edges of G; the entry $M_{C e}$ is 1 if $e \in C$ and is 0 otherwise. For $X \subseteq E$, let χ_{X} denote the characteristic vector of X. For a vector $x \in\{0,1\}^{E}$, let $x_{\mid X}$ denote the projection of x on X. Let $\mathbf{1}$ be the all-one vector in $\{0,1\}^{E}$. A subset $F^{\prime} \subseteq E$ satisfies $\left|F^{\prime} \cap C\right| \equiv 0 \bmod 2$, for all $C \in \mathcal{C}_{T}$, if and only if $\chi_{F^{\prime}} \in \operatorname{Ker} M$ in \mathbb{F}_{2}. Such an F^{\prime} is the solution of the Contracting Sandwich Problem if and only if $\chi_{F^{\prime} \mid E_{1}}=\mathbf{1}_{\mid E_{1}}$.

Let B be a basis of the kernel of M in \mathbb{F}_{2}. (This can be computed in polynomial time using the Gauss elimination.) Consider the projections B^{\prime} of B on E_{1}. Then the Contracting Sandwich Problem has a solution if and only if $\mathbf{1}_{\mid E_{1}}$ is in the subspace of $\{0,1\}^{E_{1}}$ spanned by B^{\prime}, that is $\operatorname{rank} B^{\prime}=\operatorname{rank} B^{\prime} \cup \mathbf{1}_{\mid E_{1}}$. This can be decided in polynomial time using the Gauss elimination. We conclude that the Contracting Sandwich Problem is in P.

We finish with a related problem. For a fixed integer k, solving the Contracting Sandwich Problem when $E_{0}=E$ with extra requirement $|F| \leq k$ is known to be tractable in polynomial time [15]. However the authors mention that finding a solution of minimum cardinality is NP-complete.

References

[1] S. Dantas, S. Klein, C.P. Mello, A. Morgana. The graph sandwich problem for P_{4}-sparse graphs. Discrete Math. 309 (2009) 3664-3673.
[2] S. Dantas, C.M.H. Figueiredo, M.C. Golumbic, S. Klein, F. Maffray. The chain graph sandwich problem. Ann. Oper. Res. 188 (2011), 133-139.
[3] M. Dourado, P. Petito, R.B. Teixeira, C.M.H. Figueiredo. Helly property, clique graphs, complementary graph classes, and sandwich problems. J. Brazilian Computer Society 14 (2008) 45-52.
[4] J. Edmonds, Matroid intersection. Discrete optimization (Proc. Adv. Res. Inst. Discrete Optimization and Systems Appl., Banff, Alta., 1977), I. Ann. Discrete Math. 4 (1979) 39-49.
[5] J. Edmonds, E.L. Johnson, Matching, Euler tours and the Chinese postman. Math. Programming 5 (1973) 88-124.
[6] S. Even, A Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM J. Comput. 5 (1976) 691-703.
[7] C.M.H. Figueiredo, L. Faria, S. Klein, R. Sritharan. On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs. Theoret. Comput. Sci. 381 (2007) 57-67.
[8] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton NJ., 1962.
[9] A. Frank, Connections in Combinatorial Optimization, Oxford Lecture Series in Mathematics and its Applications, 38. Oxford University Press, Oxford, 2011.
[10] A. Frank, An algorithm for submodular functions on graphs, Annals of Discrete Mathematics, 16 (1982) 97-120.
[11] A. Frank, A. Gyárfás, How to orient the edges of a graph, in: Combinatorics, (Keszthely 1976), Coll. Math. Soc. J. Bolyai 18, 353-364, North-Holland.
[12] A. Frank, É. Tardos, Generalized polymatroids and submodular flows. Submodular optimization. Math. Programming 42 (1988), no. 3, (Ser. B), 489-563.
[13] M.C. Golumbic, H. Kaplan, R. Shamir, Graph sandwich problems. J. Algorithms 19 (1995), no. 3, 449-473.
[14] S.L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst., 279 (4) (1965) 290-308.
[15] P. Heggernes, P. van 't Hof, D. Lokshtanov, Christophe Paul, Obtaining a Bipartite Graph by Contracting Few Edges, Proceedings of IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, (2011) 217-228.
[16] A.J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, Proceedings of the Symposia of Applied Mathematics, 10 (1960) 113-127.
[17] I. Holyer, The NP-completeness of edge-coloring. SIAM J. Comput. 10 (1981), no. 4, 718-720.
[18] S. Iwata, L. Fleischer, S. Fujishige, A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48 (2001), no. 4, 761-777.
[19] J.G. Oxley, Matroid theory, Oxford University Press, New York, 1992.
[20] D. Pálvölgyi, Deciding Soccer Scores and Partial Orientations of Graphs, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 35-42.
[21] A. Schrijver, Combinatorial Optimization: Polyhedra and efficiency, Springer, 2003.
[22] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80 (2000), no. 2, 346-355.
[23] R. Sritharan, Chordal bipartite completion of colored graphs. Discrete Math. 308 (2008) 2581-2588.
[24] E. Tardos, A strongly polynomial minimum cost circulation algorithm. Combinatorica 5 (1985), no. 3, 247-255.
[25] R.B. Teixeira, S. Dantas, C.M.H. Figueiredo. The polynomial dichotomy for three nonempty part sandwich problems. Discrete Appl. Math., 158 (2010), 1286-1304.
[26] W.T. Tutte, The factors of graphs, Canad. J. Math. 4, 1952, 314-328.

[^0]: *This research was partially supported by CNPq, CAPES (Brazil)/COFECUB (France), FAPERJ.
 ${ }^{\dagger}$ Laboratoire G-SCOP, CNRS, Grenoble INP, UJF, 46, Avenue Félix Viallet, Grenoble, France, 38000.
 ${ }^{\ddagger}$ Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Brazil.

