Covering symmetric semi-monotone functions

Roland Grappe*, Zoltán Szigeti*

Abstract

We define a new set of functions called semi-monotone, a subclass of skew-supermodular functions. We show that the problem of augmenting a given graph to cover a symmetric semi-monotone function is NP-complete if all the values of the function are in $\{0,1\}$ and we provide a minimax theorem if all the values of the function are different from 1. Our problem is equivalent to the node to area augmentation problem. Our contribution is to provide a significantly simpler and shorter proof.

1 Introduction

In this paper we only consider loopless graphs. The global edge-connectivity augmentation problem of graphs consists of adding a minimum number of new edges to a given graph to obtain a k-edge-connected graph. The problem has been generalized in many directions, for example for directed graphs, for local edge-connectivity, for bipartite graphs, for hypergraphs, for adding stars. For a survey, we refer to [5].

Another way of generalization is to cover a function by a graph. Here we are looking for a graph so that each cut contains at least as many edges as the value of the function. We may start with the empty graph or more generally with a given graph. For symmetric supermodular functions, the problem was solved in [1]. For a larger class of functions, namely for symmetric skew-supermodular functions, the problem is already NP-complete, see in [5].

Here we propose to consider symmetric semi-monotone functions. We call a function R on V semi-monotone if $R(\emptyset) = R(V) = 0$ and for each set $\emptyset \neq X \neq V$, $0 \leq R(X) \leq R(X')$ either for all $\emptyset \neq X' \subseteq X$ (in this case, X is **in-monotone**) or for all $\emptyset \neq X' \subseteq V - X$ (then X is **out-monotone**). We remark that if R is symmetric, then X is out-monotone if $R(X') \geq R(X)$ holds for all $V \neq X' \supseteq X$.

The subject of the present paper is to solve the following problem. Given a graph G = (V, E) and a symmetric semi-monotone function R on V, add a minimum number Opt(R, G) of new edges M to G to get a **covering** of R, that is

$$d_{G+M}(X) \ge R(X) \text{ for all } X \subseteq V,$$
 (1)

where $d_L(X)$ denotes the number of edges in L having exactly one end-vertex in X.

^{*}G-SCOP, INPGrenoble, UJF, CNRS, 46 avenue Félix Viallet 38031 Grenoble Cedex

It is easy to see that symmetric semi-monotone functions are skew-supermodular, see Lemma 4. The proof of Z. Király in [5], for the NP-completeness of the skew-supermodular function covering problem, provides the NP-completeness of our problem. It shows that

Theorem 1. Covering a symmetric semi-monotone function valued in $\{0,1\}$ is NP-complete.

By consequence, we suppose from now on that

$$R(X) \neq 1 \text{ for all } X \subseteq V.$$
 (2)

In this case we provide a minimax theorem for the symmetric semi-monotone function covering problem, see Theorem 13.

The starting point of our research was the paper of Ishii and Hagiwara [4] on node to area augmentation. This problem can be defined as follows: Given a graph G = (V, E), a family \mathcal{W} of sets $W \subseteq V$ (called areas), and a requirement function $r : \mathcal{W} \to \mathbb{Z}_+$, add a minimum number of new edges to G so that the resulting graph contains r(W) edge-disjoint paths from any area W to any vertex $v \notin W$. As Ishii showed in [3], our problem is equivalent to this, see also Claim 3.

In order to explain how we deal with our problem, we need a few definitions. Let G' = (V, E') be a graph. The deficiency of $X \subseteq V$ is defined as follows: $q_{E'}(X) = R(X) - d_{E'}(X)$. For $Y \subseteq V$, let us define $Q_{E'}(Y) := \max\{\sum_{X \in \mathcal{X}} q_{E'}(X) : \mathcal{X} \text{ subpartition of } Y\}$. A subpartition \mathcal{X} is called **optimal**, if it provides the maximum. Let $Q(G') := Q_{E'}(V)$. We mention that, by Lemma 14, $\lceil \frac{Q(G')}{2} \rceil$ is a lower bound for Opt(R, G').

Let $K = (V + s, E' \cup F')$ be a graph where F' denotes the set of edges incident to s. We call a connected component K_i of K - s such that $d_K(s, V(K_i)) = 1$ (resp. odd, ≥ 3 .) a **small** (resp. **odd, big**) component of K. A small component C contains a unique neighbour v_C of s. We will see that most of the difficulties come from the existence of a unique small component, hence we will try to get rid of them as soon as possible. We say that K **covers** R if

$$d_K(X) \geq R(X)$$
 for all $X \subseteq V$ (equivalently $d_{F'}(X) \geq q_{E'}(X)$ for all $X \subseteq V$). (3)

Suppose that K covers R. By **splitting off** a pair su, sv of edges incident to s, we mean the operation that deletes these edges and add a new edge uv. We say that the pair or equivalently the splitting off is **admissible** if the graph after the splitting still covers R. A **complete** splitting off is a sequence of splitting off which decreases the degree of s to 0. We will use the technique of splitting off to get the minimax result.

First we extend the graph G = (V, E) by adding a new vertex s and a minimum set F_{min} of new edges incident to s so that the new graph covers the function R. By Lemma 4, R is symmetric skew-supermodular, so we may apply the following general theorem of Frank [2].

Theorem 2. $|F_{min}| = Q(G)$.

Then, if this number is odd, we add another edge incident to s as follows. If $(V + s, E + F_{min})$ has a unique small component C: add a copy of sv_C , if it has only small components: add an edge anywhere, otherwise: add an edge not incident to a small component. The graph obtained after these operations is denoted by H = (V + s, E + F) and called an **optimal extension** of G = (V, E). Note that $d_H(s)$ is even, and if Q(G) is odd, H has none or several small components. The reader should keep in mind that in this paper G denotes the starting graph, and H an optimal extension of G.

Finally, we will split off the edges incident to s to get the cover. The complete admissible splitting off will exist in H (in other words, the lower bound given by the deficient subpartitions can be achieved) only if H does not have a special obstacle, or equivalently, G contains no configuration, see Theorem 11. If G does contain a configuration, then an extra edge is needed, see Theorem 13.

We would like to emphasize that our approach provides a significantly simpler and shorter proof than that in [4]. This is due to the efficient tools we developed here (like Lemma 5) and to the use of allowed pairs (defined in section 5).

2 Semi-monotone fuctions

We present some important properties on semi-monotone functions in this section.

Claim 3. Covering a symmetric semi-monotone function is equivalent to solving a problem of node to area connectivity augmentation.

Proof. Sufficiency. Given W, r, the function $R_{\mathcal{W}}$ defined by $R_{\mathcal{W}}(X) = \max\{r(W) : W \in \mathcal{W}, W \cap X = \emptyset \text{ or } W \subseteq X\}$ if $V \neq X \neq \emptyset$ and $R_{\mathcal{W}}(V) = R_{\mathcal{W}}(\emptyset) = 0$ is symmetric semi-monotone.

Necessity. Given R symmetric semi-monotone, for all $\emptyset \neq X \subset V$, let W_X be the out-monotone set of $\{X, V - X\}$, $r(W_X) = R(X)$ and $\mathcal{W} = \{W_X, \emptyset \neq X \subset V\}$. We show that $R_{\mathcal{W}}(X) = R(X)$ for all $\emptyset \neq X \subset V$. Since $W_X \cap X = \emptyset$ or $W_X \subseteq X$, we have $R_{\mathcal{W}}(X) \geq r(W_X) = R(X)$. Let $W \in \{Z \subset V : Z \cap X = \emptyset \text{ or } Z \subseteq X\}$ such that $R_{\mathcal{W}}(X) = r(W)$. Then since X or V - X is out-monotone, and R is symmetric, $R(X) \geq R(W) = r(W) = R_{\mathcal{W}}(X)$.

A function R is called **skew-supermodular** if for all $X, Y \subset V$, $R(X) + R(Y) \leq \max\{R(X \cap Y) + R(X \cup Y), R(X - Y) + R(Y - X)\}$.

Lemma 4. A symmetric semi-monotone function is skew-supermodular.

Proof. For $X, Y \subset V$, apply that if X is out-monotone, then $R(X) \leq \min\{R(X \cup Y), R(Y - X)\}$, and if X is in-monotone, then $R(X) \leq \min\{R(X \cap Y), R(X - Y)\}$.

For
$$Y_1, Y_2, Y_3 \subset V$$
, let $Y_i^* := Y_i - \bigcup_{j \neq i} Y_j \ (1 \le i \le 3)$, and $Y_4^* := \bigcap_1^3 Y_i$.

Lemma 5. Let R be a semi-monotone function and $Y_1, Y_2, Y_3 \subset V$ with $Y_i^* \neq \emptyset$ $(1 \leq i \leq 4)$. Then there exists an index $1 \leq j \leq 4$ such that $\sum_{1,i \neq j}^4 R(Y_i^*) \geq \sum_{1}^3 R(Y_i)$.

3 Preliminaries

Given a graph L = (U, J) and $X, Y \subset U$, $d_L(X, Y)$ denotes the number of edges in J between X - Y and Y - X, while $\overline{d}_L(X, Y) = d_L(U - X, Y)$. We will apply the following equalities.

$$d_L(X) + d_L(Y) = d_L(X \cup Y) + d_L(X \cap Y) + 2d_L(X, Y), \tag{4}$$

$$d_L(X) + d_L(Y) = d_L(X - Y) + d_L(Y - X) + 2\overline{d}_L(X, Y).$$
(5)

In sections 3 and 4, we will deal with a graph K = (V + s, E' + F') satisfying (3) and $d_K(s)$ is even and positive, where $E \subseteq E'$ and F' denotes the set of edges incident to s. Such a graph K may be obtained from H by splitting off some admissible pairs. E' - E will be the set of split edges.

A set $X \subset V$ is called **tight** (resp. **dangerous**) if $2 \leq R(X)$ and $d_K(X) = R(X)$ or equivalently $d_{F'}(X) = q_{E'}(X)$ holds (resp. $2 \leq R(X)$ and $d_K(X) \leq R(X) + 1$ or equivalently $d_{F'}(X) \leq q_{E'}(X) + 1$). We say that a subpartition \mathcal{X} is tight (resp. in-monotone) if each member is tight (resp. in-monotone). To clear up the notations, we may use Y for the subgraph induced by the vertex set Y. $\Gamma_K(s)$ is the set of neighbours of s in K. From now on, let $su \in F'$.

Claim 6. Let $\emptyset \neq X, Y \subset V$.

- (6.1) If Y is dangerous out-monotone and X is a connected component of K-s with $X-Y \neq \emptyset$, then $d_K(s, X-Y) + 1 \geq d_K(s, Y)$. Moreover, if Y is tight, then the inequality is strict.
- (6.2) Every in-monotone dangerous set Y is connected.
- (6.3) If X and Y are both in- or out-monotone, both tight (resp. dangerous and $u \in X \cap Y$) and $X Y \neq \emptyset \neq Y X$, then X Y, Y X are tight in-monotone, $\overline{d}_K(X, Y) = 0$ (resp. = 1).
- (6.4) If X and Y are dangerous in-monotone, for $A \in \{X \cap Y, X Y, Y X\}$, $A \cap \Gamma_K(s) \neq \emptyset$, then $X \cup Y$ is connected and for all $\emptyset \neq Z \subset X \cup Y$, $d_K(Z) \geq 2$.

Proof. (6.1) $R(Y)+1 \ge d_K(Y) \ge d_K(s,Y)+d_K(Y,X-Y)=d_K(s,Y)+d_K(X-Y)-d_K(s,X-Y) \ge d_K(s,Y)+R(Y)-d_K(s,X-Y).$ (6.2) If $\emptyset \subset X \subset Y$, then $R(Y)+R(Y) \le R(X)+R(Y-X) \le d_K(X)+d_K(Y-X)=d_K(Y)+2d_K(X,Y-X) \le R(Y)+1+2d_K(X,Y-X)$, so $R(Y) \ge 2$ implies $d_K(X,Y-X) \ge 1$. (6.3) Suppose both are out-monotone, the other case is similar. By (5) and (1), X-Y,Y-X are tight and $R(X-Y)=R(Y),R(Y-X)=R(X),\overline{d}_K(X,Y)=0$ (resp. = 1, for dangerous sets). Combined with X,Y are out-monotone, it concludes. (6.4) Since $X\cap Y\ne\emptyset$, and, by (6.2), X and Y are connected, so is $X\cup Y$. Let $\emptyset\ne Z\subseteq X\cup Y$. If $Z\subseteq X$, then since X is in-monotone and dangerous, $d_K(Z)\ge R(Z)\ge R(X)\ge 2$. Similarly, if $Z\subseteq Y$, then $d_K(Z)\ge 2$. Otherwise, Z intersects X and Y. By (6.3), X-Y and Y-X are in-monotone and tight hence connected by (6.2). So $d_K(Z)\ge 2$.

- Claim 7. Suppose that Q(G) is even. Let H = (V + s, E + F) be an optimal extension of G = (V, E).
 - (7.1) A subpartition \mathcal{X} of V is optimal if and only if \mathcal{X} is tight and each neighbour of s is contained in some $X \in \mathcal{X}$.
 - (7.2) Let \mathcal{X} be an optimal subpartition of V. If $Y \subset V$ contains some members of \mathcal{X} and is disjoint from the others, then $d_F(Y) = Q_E(Y)$.

Proof. (7.1) In both directions we use that, by Q(G) is even, Theorem 2 implies $Q(G) = |F| = d_F(s)$. Sufficiency. $Q(G) = \sum_{X \in \mathcal{X}} q_E(X) \le \sum_{X \in \mathcal{X}} d_F(X) \le d_F(s) = Q(G)$, so we have equality everywhere. Necessity. $Q(G) = |F| = \sum_{X \in \mathcal{X}} d_F(X) = \sum_{X \in \mathcal{X}} q_E(X)$, so \mathcal{X} is optimal. (7.2) Let \mathcal{X}_Y be an optimal subpartition of Y. Then, by (7.1), $Q_E(Y) \ge \sum_{Y \supset X \in \mathcal{X}} q_E(X) = \sum_{Y \supset X \in \mathcal{X}} d_F(X) = d_F(Y) \ge \sum_{X \in \mathcal{X}_Y} d_F(X) = \sum_{X \in \mathcal{X}_Y} q_E(X) = Q_E(Y)$.

4 Dangerous families

In this section we present a few results about dangerous families to describe the structure of the graph K for which no complete admissible splitting off exists. For a neighbour u of s and $S \subseteq \Gamma_K(s)$, we say that \mathcal{Y} is a **dangerous family** covering u and S if each set in \mathcal{Y} is dangerous, contains u and a vertex of S not contained in the other sets of \mathcal{Y} , and $S \subseteq \bigcup \mathcal{Y}$. A neighbour of s contained in a big component of K is called **big-neighbour**. A connected component S of S of S with S with S is called a **boring** component of S. Let S be the family of boring components of S.

Lemma 8. In the graph K, the edge su belongs to no admissible pair if and only if there is a dangerous family \mathcal{Y} covering u and $\Gamma_K(s)$. In this case, K has a unique small component C. If $u \notin C$, then C and a unique big component D of K cover $\Gamma_K(s)$ and D is the union of two dangerous in-monotone sets containing u.

Proof. The first part is obvious. We show first that $|\mathcal{Y}| \geq 3$. For $Y \in \mathcal{Y}$, we have $d_{F'}(V - Y) \geq q_{E'}(V - Y) = q_{E'}(Y) \geq d_{F'}(Y) - 1 = d_{F'}(s) - d_{F'}(V - Y) - 1$. Then, $d_{F'}(V - Y) \geq \lceil (d_{F'}(s) - 1)/2 \rceil = d_{F'}(s)/2 > 0$. Thus $|\mathcal{Y}| \geq 2$. Suppose $\mathcal{Y} = \{Y_1, Y_2\}$. By the above inequality, $u \in Y_1 \cap Y_2$ and $\Gamma(s) \subseteq Y_1 \cup Y_2$, we have $d_{F'}(s) = d_{F'}(V - Y_1) + d_{F'}(V - Y_2) + d_{F'}(Y_1 \cap Y_2) \geq d_{F'}(s)/2 + d_{F'}(s)/2 + 1$, a contradiction.

Let $Y_1, Y_2, Y_3 \in \mathcal{Y}$. By Y_i dangerous, a well-known inequality on d_K , (1), Lemma 5 and $u \in \bigcap \mathcal{Y}$, $\sum_{1}^{3} (R(Y_i) + 1) \ge \sum_{1}^{3} d_K(Y_i) \ge \sum_{1}^{4} d_K(Y_i^{\star}) + 2d_K(Y_4^{\star}, s) \ge \sum_{1, i \ne j}^{4} R(Y_i^{\star}) + d_K(Y_j^{\star}) + 2 \ge \sum_{1}^{3} R(Y_i) + 3$. Then $d_K(Y_j^{\star}) = 1$, and, by (1) and (2), $R(Y_j^{\star}) = 0$. It follows that if j = 4, then Y_1, Y_2, Y_3 are out-monotone and $d_K(Y_4^{\star}) = d_K(s, Y_4^{\star}) = 1$, and if say j = 3, then Y_3 is out-monotone with $d_K(Y_3^{\star}) = d_K(s, Y_3^{\star}) = 1$ and Y_1 and Y_2 are in-monotone. Note that if $j \ne 4$, each triplet of \mathcal{Y} consists of an in-monotone and two out-monotone sets, therefore $|\mathcal{Y}| = 3$.

It follows that K contains a small component C. We show that the small component is unique. In the first case (j = 4), by contradiction, let C' be another one. By $d_K(Y_4^*) = 1$, $C' \cap Y_4^* = \emptyset$. We suppose

that $v_{C'} \notin Y_1$. By (6.3) and (6.2), $Y_1 - Y_i$ is connected $(2 \le i \le 3)$, thus so is $Y_1 - Y_4^*$. Since C' is small, $(Y_1 - Y_4^*) \cap C' = \emptyset$. Thus $C' \cap Y_1 = \emptyset$. By Y_1 is out-monotone, $0 = R(C') \ge R(Y_1) \ge 2$, contradiction. In the second case $(j \ne 4, \text{ e.g. } j = 3)$ that is when $u \notin C$, by (6.4) and $|\mathcal{Y}| = 3$, $Y_1 \cup Y_2$ is contained in a big component D covering $\Gamma(s) - v_C$ implying that C is unique.

To prove the last statement, suppose that $u \notin C$ and $Z := D - (Y_1 \cup Y_2) \neq \emptyset$. By $d_K(Y_3^*) = 1$, $Z \cap Y_3 = \emptyset$. By (1) and Y_3 out-monotone, $d_K(\bigcup_1^3 Y_i) \geq d_K(Z) + d_K(s, \bigcup_1^3 Y_i) \geq R(Z) + 4 \geq R(Y_3) + 4$. Then, by Y_i dangerous, (4), Y_1 and Y_2 in-monotone, we have $\sum_1^3 (R(Y_i) + 1) \geq \sum_1^3 d_K(Y_i) \geq d_K(Y_1) + d_K(Y_2 \cup Y_3) + d_K(Y_2 \cap Y_3) \geq d_K(Y_1 \cap (Y_2 \cup Y_3)) + d_K(\bigcup_1^3 Y_i) + R(Y_2) \geq R(Y_1) + R(Y_3) + 4 + R(Y_2)$, contradiction.

Lemma 9. Suppose K has a big component. Let \mathcal{Y} be a dangerous family covering u and the set of bigneighbours of s. If u belongs to a small component C, then $C \subseteq \bigcap \mathcal{Y}$ and each $v \in \Gamma_K(s) - u$ belongs to either a boring component disjoint from $\bigcup \mathcal{Y}$ or a big component.

Proof. Since u belongs to a small component, each set in \mathcal{Y} is disconnected, so by (6.2), out-monotone. Suppose $\mathcal{Y} = \{Y_1\}$. $Y_1 \neq V$ so there exists a connected component X of K - s not contained in Y_1 . Then, since Y_1 contains all the big-neighbours of s, we have, by (6.1), $2 + 1 \geq d_K(s, X - Y_1) + 1 \geq d_K(s, Y_1) \geq 4$, contradiction. So $|\mathcal{Y}| \geq 2$, let $Y_1, Y_2 \in \mathcal{Y}$. By (6.1) applied to C and Y_i , and $u \in Y_i$, we have $C \subseteq Y_i$ for all $Y_i \in \mathcal{Y}$. Hence $C \subseteq \bigcap \mathcal{Y}$.

To prove the second statement, let X be a not big component of K with $X \cap (\Gamma_K(s) - u) \neq \emptyset$. Then $1 \leq d_K(s, X) \leq 2$. By (6.3), $Y_1 - Y_2$ is tight in-monotone, hence connected by (6.2), thus, since by definition $Y_1 - Y_2$ contains a big-neighbour, $(Y_1 - Y_2) \cap X = \emptyset$. By (6.3), $\overline{d}_H(Y_1, Y_2) = 1$, thus $Y_1 \cap Y_2 \cap X = \emptyset$. It follows that $Y_1 \cap X = \emptyset$. So $X \cap \bigcup \mathcal{Y} = \emptyset$. Then, since Y_1 is out-monotone, $2 \leq R(Y_1) \leq R(X) \leq d_K(X) = d_K(s, X) \leq 2$, so X is a boring component of K.

We provide here a first result on complete admissible splitting off, an easy consequence of Lemma 8, which will be useful later in the general case.

Lemma 10. If K has no odd or big component, then there is a complete admissible splitting off in K.

Proof. After an admissible splitting, both properties are preserved, so we only have to show that there is an admissible pair. Otherwise, by Lemma 8, K - s has a unique small component. This is a contradiction because in both cases the number of small components is even $(d_K(s))$ being even).

5 Configuration and obstacle

We denote by \mathbb{B} the set of in-monotone connected components B of G satisfying $R(B) = Q_E(B) = 2$. When Q(G) is even, these sets will be boring components in an optimal extension.

We say that G contains a **configuration** if Q(G) is even, there exist a unique connected component C of G with $Q_E(C) = 1$, and families \mathcal{X} and \mathcal{Y} of subsets of $V - \bigcup \mathbb{B}$; $\mathcal{X} \cup \mathbb{B}$ is an optimal in-monotone

subpartition of G; \mathcal{Y} consists of out-monotone sets Y_i , containing C, containing or disjoint from each member of \mathcal{X} , satisfying $Q_E(Y_i) \leq q_E(Y_i) + 1$, whose union covers all members of \mathcal{X} .

We say that an optimal extension H of G contains an **obstacle** if Q(G) is even, there exists a unique small component C, it satisfies $Q_E(C) = 1$, and there exists a dangerous family \mathcal{Y} covering v_C and the set of big-neighbours of s. Note that, by (6.2) and (6.1), \mathcal{Y} consists of out-monotone sets containing C.

Theorem 11. Let H = (V + s, E + F) be an optimal extension of G = (V, E). Then G contains a configuration if and only if H contains an obstacle.

Proof. In both cases, by definition, Q(G) is even.

Suppose G contains a configuration, then choose one with \mathcal{X} and \mathcal{Y} minimal. Then $q_E(X) \geq 1$ for all $X \in \mathcal{X}$ and each $Y_i \in \mathcal{Y}$ contains a set $X_i \in \mathcal{X}$ not contained in C. Since $\mathcal{X} \cup \mathbb{B}$ is an optimal subpartition, each $X \in \mathcal{X}$ is tight by (7.1) and in-monotone therefore connected by (6.2). Thus if $C \cap X \neq \emptyset$, $X \in \mathcal{X}$, then $X \subseteq C$. By (7.2), $d_F(C) = Q_E(C) = 1$, so C is a small component. Then, by (7.2), $2 \leq d_F(C) + d_F(X_i) \leq d_F(Y_i) = Q_E(Y_i) \leq q_E(Y_i) + 1$, so each Y_i is dangerous. From the definition of the configuration, their union covers all big-neighbours of s.

Suppose that H contains an obstacle. By parity, there exists a big component. Lemma 9 applies to v_C and $\mathcal{Y} = \{Y_1, ..., Y_k\}$, so $Y_i \subseteq V - \bigcup \mathcal{B}_H$. By $Q_E(C) = 1$, v_C belongs to a tight in-monotone set $X_{v_c} \subset C$. For a big-neighbour v in some Y_i , let X_v be the minimal tight in-monotone set containing v. By (6.3), for $j \neq i$, $Y_i - Y_j$ is tight in-monotone. Hence $X_v \subseteq Y_i - Y_j, \forall i \neq j$. Therefore $X_v \subseteq \bigcap_{j \neq i} (Y_i - Y_j) = Y_i - \bigcup_{j \neq i} Y_j$. Let $\mathcal{X} = \{X_{v_C}\} \cup \{X_v : v \text{ big neighbour}\}$. Clearly each Y_i contains or is disjoint from each member of $\mathcal{X} \cup \mathcal{B}_H$. By (6.3), the members of \mathcal{X} are disjoint (they are also disjoint from the members of \mathcal{B}_H). By Lemma 9, $\mathcal{X} \cup \mathcal{B}_H$ covers $\Gamma(s)$, every $X \in \mathcal{X} \cup \mathcal{B}_H$ is tight so, by (7.1), $\mathcal{X} \cup \mathcal{B}_H$ is an optimal subpartition of V in G. By Y_i dangerous and by (7.2), $q_E(Y_i) + 1 \geq d_F(Y_i) = Q_E(Y_i)$. For every $B \in \mathcal{B}_H$, $C \cap B = \emptyset$ thus $\mathcal{X} \cup \mathcal{B}_H$ is in-monotone. Moreover we have $2 = R(B) = q_E(B) \leq Q_E(B) = d_H(B) = 2$. Therefore $\mathcal{B}_H = \mathbb{B}$.

6 Complete admissible splitting off

Let H be an optimal extension of G. This section provides a complete admissible splitting off when H contains no obstacle. The case when H contains an obstacle is handled in Theorem 13. In section 4, we have seen that when a big-neighbour belongs to no admissible pair, the graph can easily be described. This led us to use **allowed** pairs, that is admissible pairs su, sv with at least one of u and v is a big neighbour.

Theorem 12. If H contains no obstacle, then there is a complete admissible splitting off in H.

Proof. We may assume that H has a big component, otherwise we are done by Lemma 10.

Step 1: If there exists a unique small component C of H, we prove that we can destroy C (by moving sv_C , or by splitting off an allowed pair containing sv_C). Since there is no obstacle in H, one of the following cases happens.

- 1. Q(G) is odd. In fact this case is impossible by construction of the optimal extension.
- 2. $Q_E(C) \neq 1$. Then $Q_E(C) = 0$ and v_C belongs to no tight in-monotone set, so there exists a minimal tight out-monotone set X containing v_C . By (6.3), an out-monotone tight set containing v_C contains X. Since X is out-monotone and $d_H(X) = R(X) \geq 2$, we have $X \nsubseteq C$ hence there exists a connected component Z in H s with $X \cap Z \neq \emptyset$. Then, by (6.1), $Z \cap \Gamma_H(s) \neq \emptyset$. Let $x \in X \cap Z$. Replace sv_C by sx, the new graph still satisfies (1) and has no small component.
- **3.** There is an allowed pair containing sv_C . Split it off.

Let H' be the graph obtained after Step 1 (eventually, H' = H).

Step 2: H' has none or several small components. Split off allowed pairs as long as possible. If there is no big component any more, then, by Lemma 10, find a complete admissible splitting off. Otherwise, Lemma 8 applied for a big-neighbour u implies that the new graph H'' has a unique small component C and a unique big component D (which is in fact odd as well). If H' contains no small component then C contains a split edge ab which is not a bridge. We show that this is also true if H' contains several small components. Let $X \neq C$ be a small component of H'. Since C is unique in H'', sv_X has been split off previously, (let's say with sy). Note that the new edge yv_X is a bridge in H''. Hence, by Lemma 8 and (6.4), yv_X is not in D. So it is in H'' - D. Since the splittings were allowed, it follows that C contains a split edge and the last one ab is not a bridge.

Let us unsplit ab that is replace the edge ab by sa and sb. Then there is no small component anymore. Therefore by Lemma 8 there exists an admissible pair $\{su, sv\}$. Since D is the union of two dangerous sets containing u in H'' and also in the graph after the unsplitting, su belongs to no admissible pair su, sx with $x \in D$, so necessarily $v \in C$. After splitting this pair, the new graph has no odd component, so Lemma 10 provides a complete admissible splitting off.

7 Augmentation

By applying the above splitting result we can solve the augmentation problem.

Theorem 13. Let G = (V, E) be a graph and R a symmetric semi-monotone function on V. If G contains no configuration, then $Opt(R, G) = \lceil \frac{Q(G)}{2} \rceil$, otherwise $Opt(R, G) = \lceil \frac{Q(G)}{2} \rceil + 1$.

Proof. The following lemmas prove the theorem.

Lemma 14. $Opt(R,G) \ge \lceil \frac{Q(G)}{2} \rceil$. If G contains a configuration, then the inequality is strict.

Proof. For a minimum set M of edges such that G+M satisfies (1), since for any edge f, $Q_{E+f}(V) \geq Q(G)-2$, we have $0 \geq Q_{E+M}(V) \geq Q(G)-2|M|$. Now suppose G contains a configuration and equality holds. Let H be the extension of G from which we can obtain G+M by a complete admissible splitting off. By the minimality of M, H is an optimal extension of G. Since G contains a configuration, by Theorem 11, H

contains an obstacle. Then sv_C belongs to one of the admissible pairs, say $\{su, sv_C\}$. Since sv_C belongs to no allowed pair, by Lemma 9, u belongs to a boring set B. Split off $\{su, sv_C\}$, denote by H' the new graph. Note that H' is an optimal extension of $G + uv_C$. Note that $Y'_i = Y_i \cup B$ is dangerous in H' because $R(Y_i \cup B) + 1 \ge R(Y_i) + 1 \ge d_H(Y_i) + d_H(B) - 2 \ge d_H(Y_i \cup B) - 2 = d_{H'}(Y_i \cup B)$ and, by (6.2), it is also out-monotone. $C' = C \cup B$ has a unique neighbour $v_{C'}$ of s and $1 = d_{H'}(C') \ge Q_{E+uv_C}(C') \ge Q_{E+uv_C}(B) \ge R(B) - d_{H'-s}(B) = 1$. Then $v_{C'}, C', Y'_1, \ldots Y'_k$ form an obstacle in H', and $|\mathcal{B}_{H'}| = |\mathcal{B}_H| - 1$. Repeating this operation, we may assume $\mathcal{B}_H = \emptyset$. Then sv_C belongs to no admissible pair, contradiction.

Lemma 15. $Opt(R,G) \leq \lceil \frac{Q(G)}{2} \rceil + 1$. If G contains no configuration, then the inequality is strict.

Proof. Let H be an optimal extension of G. By Theorem 2, $|F| = 2\lceil \frac{Q(G)}{2} \rceil$. If G contains no configuration, then, by Theorem 11, H contains no obstacle and hence, by Theorem 12, there exists a complete admissible splitting off, and the strict inequality follows. Otherwise, we split off admissible pairs as long as possible. In the new graph, by Lemma 8, there exist a unique small and a unique big component, C and D. We add an edge between C and D. Since there is no odd component anymore, by Lemma 10, we have a complete admissible splitting off and the inequality follows.

We thank Balázs Fleiner for a very careful reading of the paper and for calling our attention to a missing case, and Tibor Jordán for helpful discussions on the topic.

References

- A. Benczúr, A. Frank, Covering symmetric supermodular functions by graphs, Math. Program. Vol. 84, No. 3 (1999) 483-503.
- [2] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Math. Vol. 5, No. 1 (1992) 22-53.
- [3] T. Ishii, Minimum augmentation of edge-connectivity with monotone requirements in undirected graphs, Proceedings of the thirteenth Australasian symposium on Theory of computing, (2007) 91-100.
- [4] T. Ishii, M. Hagiwara, Minimum augmentation of local edge-connectivity between vertices and vertex subsets in undirected graphs, *Disc. Appl. Math.* **154** (2006) 2307-2329.
- [5] Z. Szigeti, Edge-connectivity augmentations of graphs and hypergraphs, Technical Report No. 04941, Research Institute for Discrete Mathematics, Bonn (2004).