A Characterization of Seymour Graphs

A. A. Ageev, A. V. Kostochka^{*} and Z. Szigeti †

Abstract

Following Gerards [1] we say that a connected undirected graph G is a Seymour graph if the maximum number of edge disjoint T-cuts is equal to the cardinality of a minimum T-join for every even vertex subset $T \subseteq V(G)$. Several families of graphs have been shown to be subfamilies of Seymour graphs (Seymour [4][5], Gerards [1], Szigeti [6]). In this paper we prove a characterization of Seymour graphs which was conjectured by Sebő and implies the results mentioned above.

1 Introduction

Graphs in this paper are undirected connected and may have loops and multiple edges.

Let G be a graph. For $F \subseteq E(G)$ and $x, y \in V(G)$, we write $xy \in F$ if some edge of G with endpoints x and y is in F.

For $X \subseteq V(G)$, the *cut* $\delta(X)$ is the set of edges connecting X and $V(G) \setminus X$, $N(X) = \{v \in V(G) \setminus X : v \text{ has neighbors in } X\}$. If $X = \{x\}$ we write $\delta(x)$, N(x). For $F \subseteq E(G)$ and $v \in V(G)$, denote $d_F(v) = |\{e \in F : e \text{ is incident to } v\}|$. A pair (G, T) where T is an even subset of V(G) is called a *graft*.

Let T be an even subset of V(G). If $|X \cap T|$ is odd the cut $\delta(X)$ is called the Tcut. A set of edges $F \subseteq E(G)$ is a T-join if $v \in T \Leftrightarrow d_F(v)$ is odd. Let $\nu(G,T)$ denote the maximum number of edge disjoint T-cuts and $\tau(G,T)$ the cardinality of a minimum T-join in G.

Since every T-join meets every T-cut,

$$\nu(G,T) \le \tau(G,T). \tag{1}$$

The simplest example of a graft for which (1) holds with strict inequality is $(K_4, V(K_4))$. However, several families of graphs satisfying (1) with equality for every even vertex

^{*}Research was partially supported by the Russian Foundation for Fundamental Research, grant 93-011-1486. The second author completed his part of the work when visiting KAM, Charles University.

[†]Research was partially supported by the Hungarian National Foundation for Scientific Research, grants OTKA 2118 and 4271.

subset T have been found. These are bipartite graphs (Seymour [5]), series-parallel graphs (Seymour [4]), graphs containing neither an odd K_4 nor an odd prism (Gerards [1]). The last family contains bipartite and series-parallel graphs.

Following Gerards [1], we call a graph G a Seymour graph if (1) holds with equality for all even subsets $T \subseteq V(G)$.

Recently Szigeti [6] refined the Gerards' result having proved that a graph is a Seymour graph if it does not contain neither an odd K_4 nor an odd prism which are not Seymour graphs. Sebő (unpublished) conjectured a necessary and sufficient condition for a graph to be a Seymour graph. His conjecture is stated in terms of conservative weightings and implies the Szigeti's result (and whence other results mentioned above).

Let G be a graph and $\mathbf{w} : E(G) \to \{-1, +1\}$ be a ± 1 valued weighting defined on edges of G. The weighting \mathbf{w} is called *conservative* if G has no cycle of negative total weight (a loop is considered as a special case of cycle). For any $F \subseteq E(G)$, the weighting \mathbf{w}_F is defined by the equation:

$$\mathbf{w}_F(e) := \begin{cases} -1 & \text{if } e \in F, \\ +1 & \text{if } e \notin F. \end{cases}$$

The following observation (Mei Gu Guan's lemma [3]) reveals a one-to-one correspondence between conservative weightings and T-joins of minimum cardinality:

F is a T-join of minimum cardinality if and only if \mathbf{w}_F is a conservative weighting.

A conservative graph is a pair (G, \mathbf{w}) in which G is a graph, \mathbf{w} is a conservative weighting of G. For any conservative graph (G, \mathbf{w}) , denote $E^{-}(\mathbf{w}) = \{e \in E(G) : \mathbf{w}(e) = -1\}$ and $T(\mathbf{w}) = \{v \in V(G) : d_{E^{-}(\mathbf{w})}(v) \text{ is odd}\}$. From now on we assume that $E^{-}(\mathbf{w}) \neq \emptyset$.

Given a conservative graph (G, \mathbf{w}) , a cycle C of G is called a $0(\mathbf{w})$ -cycle if the total weight of the edges of C is equal to zero. A graph G is an odd K_4 if it is a subdivision of K_4 such that each cycle bounding a face of G has an odd length. A graph G is an odd prism if it is a subdivision of triangular prism such that each cycle bounding a triangular face of G has an odd length while each cycle bounding a quadrangular face has an even length.

Conjecture (Sebő). A graph G is not a Seymour graph if and only if there exist a conservative weighting \mathbf{w} and $0(\mathbf{w})$ -cycles C_1 , C_2 such that the graph $C_1 \cup C_2$ is either an odd K_4 or an odd prism.

The conjecture implies that the class of Seymour graphs belongs to co-NP. The 'if' part of the conjecture was shown to be true by Sebő (unpublished). Section 3 of this paper presents a proof of the 'only if' part modulo Lemma 1. In the next section we state basic known results needed in the proof of the conjecture. Sections 4-5 are devoted to the proof of Lemma 1.

2 Background

In this section we present basic known results to which we will refer further. To do this some extra notation and definitions are needed.

A graph G is called 1-extendable if each edge of G lies in a perfect matching. A subdivision of a graph G is said to be *even* if the number of new vertices inserted in every edge of G is even. Clearly, any even subdivision of K_4 (respectively, of triangular prism) is an odd K_4 (respectively, an odd prism).

The first result is an easy consequence of Theorem 5.4.11 in [2].

Theorem 1 (Lovász) Let G be a 1-extendable non-bipartite graph. Then G contains an even subdivision of either K_4 or triangular prism.

Let (G, \mathbf{w}) be a conservative graph. For any $x, y \in V(G)$, denote by $\lambda_{\mathbf{w}}(x, y)$ the length of a shortest path connecting x and y with respect to the edge length function \mathbf{w} . For $x \in V(G)$, let $m = m(x) = \min\{\lambda_{\mathbf{w}}(x, v) : v \in V(G)\}, M = M(x) =$ $\max\{\lambda_{\mathbf{w}}(x, v) : v \in V(G)\}, V^i = V^i(x) = \{v \in V(G) : \lambda_{\mathbf{w}}(x, v) = i\}, G^i = G^i(x) =$ $G[\bigcup_{j=m}^i V^j], \tilde{G}^i = G^i - E(G[V^i]).$ Let further $\mathcal{D}^i = \mathcal{D}^i(x)$ be the collection of vertex sets of components of G^i and $\mathcal{Q}^i = \mathcal{Q}^i(x)$ be the collection of vertex sets of components of \tilde{G}^i . Set $\mathcal{D} = \mathcal{D}(x) = \bigcup_{i=m}^M \mathcal{D}^i, \mathcal{Q} = \mathcal{Q}(x) = \bigcup_{i=m}^M \mathcal{Q}^i$, and $\mathcal{R} = \mathcal{R}(x) = \mathcal{D} \cup \mathcal{Q}$.

The assertions of the second theorem are special cases of Theorem 4.4 and Lemma 5.7 in [3].

Theorem 2 (Sebő) Let (G, \mathbf{w}) be a conservative graph. Let $x \in V(G)$, m = m(x) < 0and $D \in \mathcal{D}^m(x)$. Denote by $r \in D$ the endvertex of the edge in $\delta(D) \cap E^-(\mathbf{w})$ and by \mathbf{w}' the weighting $\mathbf{w}|_{G[D]}$. Then

- (s1) if $vu \in E^{-}(\mathbf{w})$, $\lambda_{\mathbf{w}}(x,v) = \lambda_{\mathbf{w}}(x,u) = i$, then v and u are in different elements of \mathcal{Q}^{i} (i.e. in different components of \tilde{G}^{i});
- (s2) $|\delta(R) \cap E^-(\mathbf{w})| = 1$ if $x \notin R \in \mathcal{R}(x)$, $|\delta(R) \cap E^-(\mathbf{w})| = 0$ if $x \in R \in \mathcal{R}(x)$;

(s3) for any $v \in D$, $\lambda_{\mathbf{w}'}(r, v) = 0$.

Let G be a graph and $\mathcal{P} = \{X_1, \ldots, X_k\}$ be a partition of V(G). Denote by $G\langle \mathcal{P} \rangle$ the graph with the vertex set \mathcal{P} and the edge set E(G), which is obtained from G by shrinking every subset $X \in \mathcal{P}$ into a single vertex. For $X \subseteq V(G)$, denote by $\pi(X)$ the partition of V(G) consisting of X and $|V(G) \setminus X|$ singletons.

We will use the following easy consequence of Theorem 2.

Corollary 1 Suppose that the assumptions of Theorem 2 hold. Then

(l1) G[D] is factor-critical;

(12) $(G\langle \pi(N_G(D))\rangle, \mathbf{w})$ is a conservative graph.

Proof. Note first that $E^{-}(\mathbf{w})$ forms in $G[D \setminus \{r\}]$ a perfect matching. Indeed, for any $v \in D$, since $\{v\} \in Q^m$ and m < 0, it follows from (s2) that $|\delta(v) \cap E^{-}(\mathbf{w})| = 1$. Combining this with $|\delta(D) \cap E^{-}(\mathbf{w})| = 1$, we get the statement.

Using this and (s3) of Theorem 2 we have that, for each $v \in D$, there exists an alternating (with respect to $E^- \cup E(G[D])$) path of even length connecting r with v in G[D]. Hence G[D] is factor-critical.

Now let $A = N_G(D)$ and $G' = G\langle \pi(A) \rangle$. Note that by (s1) of Theorem 2 for each $R \in \mathcal{R}$, either $A \subseteq R$ or $A \cap R = \emptyset$. Hence shrinking A into a vertex would not change the set of cuts $\mathcal{M} = \{\delta(R) : R \in \mathcal{R}\}$. Any cut $M \in \mathcal{M}$ contains at most one edge of $E^-(\mathbf{w})$, each edge $e \in E(G')$ belongs to at most two members of \mathcal{M} and each edge $e \in E^-(\mathbf{w})$ belongs to exactly two members of \mathcal{M} . Let us show that this provides the conservativeness of (G', \mathbf{w}) . Consider the edge set C of a cycle in G'. Let M_1, \ldots, M_k be the members of \mathcal{M} meeting C. Then by above, $\sum_{i=1}^k |C \cap M_i \cap E^-(\mathbf{w})| \le k$, $\sum_{i=1}^k |C \cap M_i \cap E^-(\mathbf{w})| = 2|C \cap E^-(\mathbf{w})|$ and $\sum_{i=1}^k |C \cap M_i| \le 2|C|$. Since $\sum_{i=1}^k |C \cap M_i| \ge 2k$, we obtain $|C| \ge 2|C \cap E^-(\mathbf{w})|$.

3 The main result

Let (G, \mathbf{w}) be a conservative graph. Denote by $\Pi(G, \mathbf{w})$ the set of partitions \mathcal{P} of V(G)such that $(G\langle (\mathcal{P})\rangle, \mathbf{w})$ is conservative. Denote by $\Pi^*(G, \mathbf{w})$ the set of roughest partitions in $\Pi(G, \mathbf{w})$. Clearly, $\Pi(G, \mathbf{w}) \supseteq \Pi^*(G, \mathbf{w}) \neq \emptyset$ for any conservative graph (G, \mathbf{w}) . We say that a partition \mathcal{P} is *tree-like* if $G\langle \mathcal{P} \rangle$ has no cycles consisting of more than two edges. Note that if $\mathcal{P} \in \Pi^*(G, \mathbf{w})$ is tree-like then $E^-(\mathbf{w})$ induces a spanning tree of $G\langle (\mathcal{P}) \rangle$. Moreover, it is clear that if $\Pi(G, \mathbf{w})$ contains a tree-like partition then so does $\Pi^*(G, \mathbf{w})$.

In the following theorem Sebő (private communication) proved (b) \Longrightarrow (c) and conjectured (c) \Longrightarrow (a) and (c) \Longrightarrow (b). The equivalence (a) \iff (c) (as well as (b) \iff (c)) means that the class of Seymour graphs belongs to co-NP.

Theorem 3 Let G be a undirected connected graph. The following conditions are equivalent:

- (a) there exist a conservative weighting \mathbf{w} and $0(\mathbf{w})$ -cycles C_1 , C_2 such that the graph $C_1 \cup C_2$ is either an odd K_4 or an odd prism;
- (b) there exist a conservative weighting \mathbf{w} and $0(\mathbf{w})$ -cycles C_1 , C_2 such that the graph $C_1 \cup C_2$ is non-bipartite;
- (c) G is not a Seymour graph;
- (d) there exists a conservative weighting \mathbf{w} such that $\Pi^*(G, \mathbf{w})$ contains no tree-like partition.

Proof. We shall prove $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (a)$.

 $(a) \Longrightarrow (b)$. Obvious.

(b) \Longrightarrow (c). Suppose to the contrary that G is a Seymour graph. Let C be an odd cycle of $H = C_1 \cup C_2$. Set $T = \{v \in V(G) : d_{E^-}(v) \text{ is odd}\}$, where $E^- = E^-(\mathbf{w})$. Let $\{D_1, \ldots, D_\nu\}$ be a collection of edge disjoint T-cuts of G with $\nu = \nu(G, T)$. Since G is a Seymour graph, every edge which is contained in some $0(\mathbf{w})$ -cycle is contained in some cut D_i . Consequently, $E(C) \subseteq \bigcup_{i=1}^{\nu} D_i$. But $|E(C) \cap D_i|$ is even for all $i = 1, \ldots, \nu$. It follows that |E(C)| is even, a contradiction.

 $(\mathbf{c}) \Longrightarrow (\mathbf{d})$. Obvious.

 $(\mathbf{d}) \Longrightarrow (\mathbf{a})$. The proof relies on the following lemma which is to be proved in the remainder of the paper.

Lemma 1 Let G be a connected graph and $X \subseteq V(G)$ be a cut set of G. Suppose that D is the vertex set of a factor-critical component of G - X such that N(D) = X. If $G\langle \pi(X) \rangle - D$ satisfies the condition (a) of Theorem 3 then so does G.

Suppose that the implication does not hold and a graph G is a counterexample with the minimum number of vertices. That is

$$G$$
 satisfies (d) but does not satisfy (a) (2)

and

(d)
$$\Longrightarrow$$
 (a) for each graph H (3)
with $|V(H)| < |V(G)|$.

Obviously,

$$|E^{-}(\mathbf{w})| \ge 2. \tag{4}$$

Claim. Let $X \subseteq V(G)$ and $\pi(N_G(X)) \in \Pi(G, \mathbf{w})$. If X induces a factor-critical subgraph of G then $X \cup N_G(X) = V(G)$.

Assume that $V(G) \setminus (X \cup N_G(X)) \neq \emptyset$ and X has the minimum cardinality among all sets satisfying this property.

Denote H = G[X], $A = N_G(X)$ and $G' = G\langle \pi(A) \rangle - X$.

Note that G' does not satisfy (d) for otherwise by (3) it satisfies (a) and, consequently, by Lemma 1, so does G itself. Hence $\Pi^*(G', \mathbf{w}')$ contains a tree-like partition $\mathcal{P} = \{X_1, \ldots, X_k\}$.

If $E^{-}(\mathbf{w}') = \emptyset$ then for any $v \in V(G) \setminus (A \cup X)$, $(G\langle \pi(N_G(v)) \rangle, \mathbf{w})$ is conservative. By the minimality of |X|, it follows that |X| = 1 which contradicts (4). Let $E^{-}(\mathbf{w}') \neq \emptyset$. In an end vertex X_i of $G'\langle \mathcal{P} \rangle$ not containing A, choose $v \in X_i$ incident to the edge $e \in E^{-} \cap \delta(X_i)$. Then $(G\langle \pi(N_G(v)) \rangle, \mathbf{w})$ is conservative, and we have |X| = 1 again. Hence $\{X_1, \ldots, X_k, X\}$ is in $\Pi(G, \mathbf{w})$ and tree-like, a contradiction.

Let x be a vertex incident to $E^{-}(\mathbf{w})$. Consider $D \in \mathcal{D}^{m}(x)$, where m = m(x). By Corollary 1 and Claim 1, G[D] is factor-critical, $D \cup N_G(D) = V(G)$, and $E^{-}(\mathbf{w})$ forms a perfect matching in $G[\{x\} \cup D]$. Since x was chosen arbitrarily from $T(\mathbf{w})$, we conclude that $G[T(\mathbf{w})]$ is bicritical. By (4) and by Theorem 1, G contains an even subdivision H of either K_4 or triangular prism. But the edges of H can be partitioned into three matchings M_1, M_2 and M_3 so that $M_1 \cup M_2$ and $M_1 \cup M_3$ are hamiltonian cycles in H. Thus G satisfies (a) with $\mathbf{w} = \mathbf{w}_{M_1}$, a contradiction.

4 Preliminary observations

In this section we state several easy observations to be referred to in the proof of Lemma 1.

Proposition 1 Let G be a graph and $F \subseteq E(G)$. If F is a matching G then \mathbf{w}_F is a conservative weighting.

Proposition 2 Let G be a graph and \mathbf{w} be a weighting of G. The weighting \mathbf{w} is conservative if and only if the weighting $\mathbf{w}|_{E(B)}$ is conservative for every block B of G.

Proposition 3 Let G be a graph. If **w** is a conservative weighting of $G\langle \pi(X) \rangle$ for some $X \subseteq V(G)$ then **w** is a conservative weighting of G.

Denote by \mathcal{O}_1 and \mathcal{O}_2 the sets of odd K_4 -s and odd prisms respectively. Let \mathcal{O}_k^e , k = 1, 2, denote the subset of \mathcal{O}_k of the corresponding even subdivisions. Set $\mathcal{O} = \mathcal{O}_1 \cup \mathcal{O}_2$, $\mathcal{O}^e = \mathcal{O}_1^e \cup \mathcal{O}_2^e$.

Proposition 4 If a graph G has a subgraph $H \in \mathcal{O}^e$ then G satisfies the condition (a) of Theorem 3.

Proposition 5 Let $G \in \mathcal{O}^e$ and $f \in E(G)$. Then there exists a perfect matching M such that $f \in M$ and G is the union of two $0(\mathbf{w}_M)$ -cycles. Moreover, if f is incident to a vertex of degree 3, then M and $0(\mathbf{w}_M)$ -cycles can be chosen in such a way that f lies on both the $0(\mathbf{w}_M)$ -cycles.

Proposition 6 Let $G \in \mathcal{O}$ and let e_1, e_2 be adjacent edges of G. Then G has an even cycle passing through e_1 and e_2 .

Proposition 7 Let $G \in \mathcal{O}_2$ and let $u \in V(G)$ be a vertex of degree 3. Then G has three disjoint paths of the same parity connecting u with some vertex $v \in V(G)$. If, in addition, $G \in \mathcal{O}_2^e$ then G has three disjoint paths of odd length connecting u with some vertex $v \in V(G)$.

5 Proof of Lemma 1

Let **w** be a conservative weighting of $\tilde{G} = G\langle \pi(X) \rangle - D$ and let \tilde{C}_1 , \tilde{C}_2 be $0(\mathbf{w})$ -cycles such that $\tilde{H} = \tilde{C}_1 \cup \tilde{C}_2 \in \mathcal{O}$. Let H (respectively, C_k , k = 1, 2) be the subgraph of Gspanned by the edges of \tilde{H} (respectively, \tilde{C}_k). Since $|X \cap V(H)| \leq 1$ implies $H = \tilde{H}$, we may assume that $|X \cap V(H)| = l \in \{2, 3\}$. Let $X \cap V(H) = \{v_1, \ldots, v_l\}$. Let $f_k \in E(G)$, $k = 1, \ldots, l$, be an edge connecting v_k with some $u_i \in D$. Let B be the block of $G\langle \pi(X) \rangle$ containing D. Since G[D] is factor-critical, B has perfect matchings $F_k \subset E(B)$ such that $f_k \in F_k$, $k = 1, \ldots, l$. Let \tilde{S}' be the subgraph of B spanned by $\bigcup_{k=1}^l F_k$ and \tilde{S} be its component containing $X \cap V(H)$. Let S be the subgraph of G spanned by $E(\tilde{S})$.

Case 1: l = 2.

Then S is an even cycle so that S is an even path whose ends are v_1 and v_2 . Let $M = F_1 \cap E(S)$. Set

$$\mathbf{w}^*(e) := \begin{cases} \mathbf{w}(e) & \text{if } e \in E(\tilde{G}), \\ -1 & \text{if } e \in M, \\ +1 & \text{otherwise.} \end{cases}$$
(5)

By Propositions 1 and 2, \mathbf{w}^* is a conservative weighting of $G\langle \pi(X) \rangle$ and, consequently, by Proposition 3 it is that of G. Since S is an even path, $H \cup S$ belongs to \mathcal{O} . Note that $H \cup S = C_1 \cup C_2 \cup S$. We may have that either C_1 , C_2 are both paths or exactly one of them, say C_1 , is a path while C_2 is a cycle. If we have the former then $C_1 \cup S$ and $C_2 \cup S$ are the desired $0(\mathbf{w}^*)$ -cycles, otherwise $C_1 \cup S$ and C_2 are those.

We assume further that l = 3. It follows that exactly one vertex v_i , say v_3 , is incident to an edge which is contained in both cycles \tilde{C}_1 and \tilde{C}_2 . In other words, $X \cap V(C_k) = \{v_k, v_3\}, k = 1, 2$.

Case 2: l = 3 and \tilde{S} is bipartite.

Let us show first that S has three disjoint paths P_k , k = 1, 2, 3 of odd length connecting v_k with some $v \neq v_k$, k = 1, 2, 3. Indeed, let R_k , k = 1, 2, denote the path consisting of edges in $F_k \cup F_3$ and connecting v_k with v_3 . Choose the first vertex v on R_2 which lies on R_1 . Define P_k , k = 1, 3, to be the subpaths of R_1 connecting v with v_k , and P_2 to be the subpath of R_2 connecting v with v_2 . By construction, P_k are pairwise disjoint and

have odd length. Now let $Q = P_1 \cup P_2 \cup P_3$. The matching $M = F_3 \cap E(Q)$ covers all the vertices of Q except v_1 and v_2 . Define \mathbf{w}^* by the equation (5. Again, by Propositions 1, 2 \mathbf{w}^* is a conservative weighting of $G\langle \pi(X) \rangle$, and whence by Proposition 3 it is that of G. Furthermore, we have that $H \cup Q$ belongs to \mathcal{O} being the union of $O(\mathbf{w}^*)$ -cycles $C_1 \cup P_1 \cup P_3$ and $C_2 \cup P_2 \cup P_3$.

Case 3: l = 3 and \tilde{S} is non-bipartite.

Note that \tilde{S} is 1-extendable. By Theorem 1 it follows that \tilde{S} has a subgraph $\tilde{Q} \in \mathcal{O}^{e}$. Let Q be the subgraph of G spanned by $E(\tilde{Q})$. Note that $V(Q) \cap X \subseteq \{v_1, v_2, v_3\}$. If $|V(Q) \cap X| \leq 1$ then $Q = \tilde{Q}$ and the conclusion obviously follows. If $|V(Q) \cap X| = 2$, we obtain the desired conclusion using Propositions 4, 6 and the argument of Case 1. Thus we may assume further that $V(Q) \cap X = \{v_1, v_2, v_3\}$. By Proposition 5 there exists a perfect matching M of \tilde{Q} and $0(\mathbf{w}_{\mathbf{M}})$ -cycles \tilde{D}_1 and \tilde{D}_2 such that $f_3 \in M$, $f_3 \in E(\tilde{D}_1) \cap E(\tilde{D}_2)$ and $\tilde{Q} = \tilde{D}_1 \cup \tilde{D}_2$. Let D_k , k = 1, 2, be the subgraph of G spanned by $E(\tilde{D}_k)$. Note that $V(D_k) \cap X = \{v_k, v_3\}, k = 1, 2$.

Subcase 3.1: $\tilde{Q} \in \mathcal{O}_2^e$.

By Proposition 7 Q contains three disjoint paths P_k , k = 1, 2, 3, having odd length and such that P_k connects v_k with some $v \in V(Q)$, $v \neq v_k$, k = 1, 2, 3. It remains to apply the argument of Case 2 arriving at the same conclusion.

Subcase 3.2: $\tilde{Q} \in \mathcal{O}_1^e, \ \tilde{H} \in \mathcal{O}_2.$

By Proposition 7 H contains three disjoint paths P_k , k = 1, 2, 3, of the same parity and such that P_k connects v_k with some $v \in V(H)$, $v \neq v_k$, k = 1, 2, 3. If P_k are odd, the desired conclusion is obtained by repeating the argument of Case 2. So we may assume that P_k have even length. For k = 1, 2, let M_k be the maximum matching of P_k covering v_k and let M_3 be the maximum matching of P_3 covering v. Now $M' = M \cup M_1 \cup M_2 \cup M_3$ is a matching of G and whence, by Proposition 1, $\mathbf{w}_{M'}$ is a conservative weighting of G. It is straightforward to check that $Q \cup P_1 \cup P_2 \cup P_3 \in \mathcal{O}$ and can be expressed as the union of $0(\mathbf{w}_{M'})$ -cycles $D_1 \cup P_1 \cup P_3$ and $D_2 \cup P_2 \cup P_3$.

Subcase 3.3: $\tilde{Q} \in \mathcal{O}_1^e, \ \tilde{H} \in \mathcal{O}_1$.

Note first that $H \cup Q$ is an odd prism. Define \mathbf{w}^* by the equation (5. By Propositions 1, 2 \mathbf{w}^* is a conservative weighting of $G\langle \pi(X) \rangle$ and thereby by Proposition 3 it is that of G. Finally, $H \cup Q$ is the union of $O(\mathbf{w}^*)$ -cycles $D_1 \cup C_1$ and $D_2 \cup C_2$, as desired. \Box

References

- A. M. H. Gerards, On shortest T-joins and packing T-cuts, J. Comb. Theory B55 (1992) 73–82.
- [2] L. Lovász and M. D. Plummer, Matching Theory. Akadémiai Kiadó, Budapest, 1986.

- [3] A. Sebő, Undirected distances and the postman structure of graphs, J. Comb. Theory B49 (1990) 10–39.
- [4] P. D. Seymour, *The matroids with the max-flow min-cut property*, J. Comb. Theory B23 (1977) 189–222.
- [5] P. D. Seymour, On odd cuts and plane multicommodity flows, Proc. London Math. Soc. Ser. (3) 42 (1981) 178–192.
- [6] Z.Szigeti, On Seymour Graphs, Report No. 93803-OR, Institute for Operations Research, Universität Bonn, 1993.