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Abstract

Following Gerards [1] we say that a connected undirected graph G is a Seymour

graph if the maximum number of edge disjoint T-cuts is equal to the cardinality of a
minimum T-join for every even vertex subset T ⊆ V (G). Several families of graphs
have been shown to be subfamilies of Seymour graphs (Seymour [4][5], Gerards [1],
Szigeti [6]). In this paper we prove a characterization of Seymour graphs which was
conjectured by Sebő and implies the results mentioned above.

1 Introduction

Graphs in this paper are undirected connected and may have loops and multiple edges.
Let G be a graph. For F ⊆ E(G) and x, y ∈ V (G), we write xy ∈ F if some edge of

G with endpoints x and y is in F .
For X ⊆ V (G), the cut δ(X) is the set of edges connecting X and V (G)\X, N(X) =

{v ∈ V (G) \X : v has neighbors in X}. If X = {x} we write δ(x), N(x). For F ⊆ E(G)
and v ∈ V (G), denote dF (v) = |{e ∈ F : e is incident to v}|. A pair (G, T ) where T is
an even subset of V (G) is called a graft.

Let T be an even subset of V (G). If |X ∩ T | is odd the cut δ(X) is called the T-
cut. A set of edges F ⊆ E(G) is a T-join if v ∈ T ⇔ dF (v) is odd. Let ν(G, T ) denote
the maximum number of edge disjoint T-cuts and τ(G, T ) the cardinality of a minimum
T -join in G.

Since every T-join meets every T-cut,

ν(G, T ) ≤ τ(G, T ). (1)

The simplest example of a graft for which (1) holds with strict inequality is (K4, V (K4)).
However, several families of graphs satisfying (1) with equality for every even vertex
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subset T have been found. These are bipartite graphs (Seymour [5]), series-parallel
graphs (Seymour [4]), graphs containing neither an odd K4 nor an odd prism (Gerards
[1]). The last family contains bipartite and series-parallel graphs.

Following Gerards [1], we call a graph G a Seymour graph if (1) holds with equality
for all even subsets T ⊆ V (G).

Recently Szigeti [6] refined the Gerards’ result having proved that a graph is a Seymour
graph if it does not contain neither an odd K4 nor an odd prism which are not Seymour
graphs. Sebő (unpublished) conjectured a necessary and sufficient condition for a graph
to be a Seymour graph. His conjecture is stated in terms of conservative weightings and
implies the Szigeti’s result (and whence other results mentioned above).

Let G be a graph and w : E(G) → {−1, +1} be a ±1 valued weighting defined on
edges of G. The weighting w is called conservative if G has no cycle of negative total
weight (a loop is considered as a special case of cycle). For any F ⊆ E(G), the weighting
wF is defined by the equation:

wF (e) :=

{

−1 if e ∈ F ,
+1 if e 6∈ F .

The following observation (Mei Gu Guan’s lemma [3]) reveals a one-to-one correspon-
dence between conservative weightings and T-joins of minimum cardinality:

F is a T-join of minimum cardinality if and only if wF is a conservative weighting.

A conservative graph is a pair (G,w) in which G is a graph, w is a conservative
weighting of G. For any conservative graph (G,w), denote E−(w) = {e ∈ E(G) :
w(e) = −1} and T (w) = {v ∈ V (G) : dE−(w)(v) is odd}. From now on we assume that
E−(w) 6= ∅.

Given a conservative graph (G,w), a cycle C of G is called a 0(w)-cycle if the total
weight of the edges of C is equal to zero. A graph G is an odd K4 if it is a subdivision
of K4 such that each cycle bounding a face of G has an odd length. A graph G is an odd
prism if it is a subdivision of triangular prism such that each cycle bounding a triangular
face of G has an odd length while each cycle bounding a quadrangular face has an even
length.

Conjecture (Sebő). A graph G is not a Seymour graph if and only if there exist a
conservative weighting w and 0(w)-cycles C1, C2 such that the graph C1 ∪ C2 is either
an odd K4 or an odd prism.

The conjecture implies that the class of Seymour graphs belongs to co-NP. The ’if’
part of the conjecture was shown to be true by Sebő (unpublished). Section 3 of this
paper presents a proof of the ’only if’ part modulo Lemma 1. In the next section we state
basic known results needed in the proof of the conjecture. Sections 4 – 5 are devoted to
the proof of Lemma 1.
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2 Background

In this section we present basic known results to which we will refer further. To do this
some extra notation and definitions are needed.

A graph G is called 1-extendable if each edge of G lies in a perfect matching. A
subdivision of a graph G is said to be even if the number of new vertices inserted in every
edge of G is even. Clearly, any even subdivision of K4 (respectively, of triangular prism)
is an odd K4 (respectively, an odd prism).

The first result is an easy consequence of Theorem 5.4.11 in [2].

Theorem 1 (Lovász) Let G be a 1-extendable non-bipartite graph. Then G contains
an even subdivision of either K4 or triangular prism.

2

Let (G,w) be a conservative graph. For any x, y ∈ V (G), denote by λw(x, y) the
length of a shortest path connecting x and y with respect to the edge length function
w. For x ∈ V (G), let m = m(x) = min{λw(x, v) : v ∈ V (G)}, M = M(x) =
max{λw(x, v) : v ∈ V (G)}, V i = V i(x) = {v ∈ V (G) : λw(x, v) = i}, Gi = Gi(x) =
G[

⋃i
j=m V j], G̃i = Gi −E(G[V i]). Let further Di = Di(x) be the collection of vertex sets

of components of Gi and Qi = Qi(x) be the collection of vertex sets of components of
G̃i. Set D = D(x) =

⋃M
i=m Di, Q = Q(x) =

⋃M
i=m Qi, and R = R(x) = D ∪Q.

The assertions of the second theorem are special cases of Theorem 4.4 and Lemma
5.7 in [3].

Theorem 2 (Sebő) Let (G,w) be a conservative graph. Let x ∈ V (G), m = m(x) < 0
and D ∈ Dm(x). Denote by r ∈ D the endvertex of the edge in δ(D) ∩E−(w) and by w′

the weighting w|G[D]. Then

(s1) if vu ∈ E−(w), λw(x, v) = λw(x, u) = i, then v and u are in different elements of
Qi (i.e. in different components of G̃i);

(s2) |δ(R) ∩ E−(w)| = 1 if x 6∈ R ∈ R(x),
|δ(R) ∩ E−(w)| = 0 if x ∈ R ∈ R(x);

(s3) for any v ∈ D, λw′(r, v) = 0.
2

Let G be a graph and P = {X1, . . . , Xk} be a partition of V (G). Denote by G〈P〉
the graph with the vertex set P and the edge set E(G), which is obtained from G by
shrinking every subset X ∈ P into a single vertex. For X ⊆ V (G), denote by π(X) the
partition of V (G) consisting of X and |V (G) \ X| singletons.

We will use the following easy consequence of Theorem 2.

Corollary 1 Suppose that the assumptions of Theorem 2 hold. Then

(l1) G[D] is factor-critical;
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(l2) (G〈π(NG(D))〉,w) is a conservative graph.

Proof. Note first that E−(w) forms in G[D \ {r}] a perfect matching. Indeed, for
any v ∈ D, since {v} ∈ Qm and m < 0, it follows from (s2) that |δ(v) ∩ E−(w)| = 1.
Combining this with |δ(D) ∩ E−(w)| = 1, we get the statement.

Using this and (s3) of Theorem 2 we have that, for each v ∈ D, there exists an
alternating (with respect to E− ∪ E(G[D])) path of even length connecting r with v in
G[D]. Hence G[D] is factor-critical.

Now let A = NG(D) and G′ = G〈π(A)〉. Note that by (s1) of Theorem 2 for each
R ∈ R, either A ⊆ R or A ∩ R = ∅. Hence shrinking A into a vertex would not
change the set of cuts M = {δ(R) : R ∈ R}. Any cut M ∈ M contains at most
one edge of E−(w), each edge e ∈ E(G′) belongs to at most two members of M and
each edge e ∈ E−(w) belongs to exactly two members of M. Let us show that this
provides the conservativeness of (G′,w). Consider the edge set C of a cycle in G′. Let
M1, . . . ,Mk be the members of M meeting C. Then by above,

∑k
i=1 |C∩Mi∩E−(w)| ≤ k,

∑k
i=1 |C∩Mi∩E−(w)| = 2|C∩E−(w)| and

∑k
i=1 |C∩Mi| ≤ 2|C|. Since

∑k
i=1 |C∩Mi| ≥ 2k,

we obtain |C| ≥ 2|C ∩ E−(w)|.
2

3 The main result

Let (G,w) be a conservative graph. Denote by Π(G,w) the set of partitions P of V (G)
such that (G〈(P)〉,w) is conservative. Denote by Π∗(G,w) the set of roughest partitions
in Π(G,w). Clearly, Π(G,w) ⊇ Π∗(G,w) 6= ∅ for any conservative graph (G,w). We say
that a partition P is tree-like if G〈P〉 has no cycles consisting of more than two edges.
Note that if P ∈ Π∗(G,w) is tree-like then E−(w) induces a spanning tree of G〈(P)〉.
Moreover, it is clear that if Π(G,w) contains a tree-like partition then so does Π∗(G,w).

In the following theorem Sebő (private communication) proved (b)=⇒(c) and conjec-
tured (c)=⇒(a) and (c)=⇒(b). The equivalence (a)⇐⇒(c) (as well as (b)⇐⇒(c)) means
that the class of Seymour graphs belongs to co-NP.

Theorem 3 Let G be a undirected connected graph. The following conditions are equiv-
alent:

(a) there exist a conservative weighting w and 0(w)-cycles C1, C2 such that the graph
C1 ∪ C2 is either an odd K4 or an odd prism;

(b) there exist a conservative weighting w and 0(w)-cycles C1, C2 such that the graph
C1 ∪ C2 is non-bipartite;

(c) G is not a Seymour graph;

(d) there exists a conservative weighting w such that Π∗(G,w) contains no tree-like
partition.
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Proof. We shall prove (a)=⇒(b)=⇒(c)=⇒(d) =⇒(a).

(a)=⇒(b). Obvious.

(b)=⇒(c). Suppose to the contrary that G is a Seymour graph. Let C be an odd
cycle of H = C1 ∪ C2. Set T = {v ∈ V (G) : dE−(v) is odd}, where E− = E−(w). Let
{D1, . . . , Dν} be a collection of edge disjoint T-cuts of G with ν = ν(G, T ). Since G is a
Seymour graph, every edge which is contained in some 0(w)-cycle is contained in some
cut Di. Consequently, E(C) ⊆

⋃ν
i=1 Di. But |E(C) ∩ Di| is even for all i = 1, . . . , ν. It

follows that |E(C)| is even, a contradiction.

(c)=⇒(d). Obvious.

(d)=⇒(a). The proof relies on the following lemma which is to be proved in the remain-
der of the paper.

Lemma 1 Let G be a connected graph and X ⊆ V (G) be a cut set of G. Suppose that
D is the vertex set of a factor-critical component of G − X such that N(D) = X. If
G〈π(X)〉 − D satisfies the condition (a) of Theorem 3 then so does G.

Suppose that the implication does not hold and a graph G is a counterexample with the
minimum number of vertices. That is

G satisfies (d) but does not satisfy (a) (2)

and

(d) =⇒ (a) for each graph H (3)

with |V (H)| < |V (G)|.

Obviously,
|E−(w)| ≥ 2. (4)

Claim. Let X ⊆ V (G) and π(NG(X)) ∈ Π(G,w). If X induces a factor-critical
subgraph of G then X ∪ NG(X) = V (G).
Assume that V (G) \ (X ∪ NG(X)) 6= ∅ and X has the minimum cardinality among all
sets satisfying this property.

Denote H = G[X], A = NG(X) and G′ = G〈π(A)〉 − X.
Note that G′ does not satisfy (d) for otherwise by (3) it satisfies (a) and, consequently,

by Lemma 1, so does G itself. Hence Π∗(G′,w′) contains a tree-like partition P =
{X1, . . . , Xk}.

If E−(w′) = ∅ then for any v ∈ V (G) \ (A ∪ X), (G〈π(NG(v))〉,w) is conservative.
By the minimality of |X|, it follows that |X| = 1 which contradicts (4).
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Let E−(w′) 6= ∅. In an end vertex Xi of G′〈P〉 not containing A, choose v ∈ Xi

incident to the edge e ∈ E− ∩ δ(Xi). Then (G〈π(NG(v))〉,w) is conservative, and we
have |X| = 1 again. Hence {X1, . . . , Xk, X} is in Π(G,w) and tree-like, a contradiction.

Let x be a vertex incident to E−(w). Consider D ∈ Dm(x), where m = m(x). By
Corollary 1 and Claim 1, G[D] is factor-critical, D∪NG(D) = V (G), and E−(w) forms a
perfect matching in G[{x} ∪ D]. Since x was chosen arbitrarily from T (w), we conclude
that G[T (w)] is bicritical. By (4) and by Theorem 1, G contains an even subdivision
H of either K4 or triangular prism. But the edges of H can be partitioned into three
matchings M1,M2 and M3 so that M1 ∪ M2 and M1 ∪ M3 are hamiltonian cycles in H.
Thus G satisfies (a) with w = wM1

, a contradiction.
2

4 Preliminary observations

In this section we state several easy observations to be referred to in the proof of Lemma 1.

Proposition 1 Let G be a graph and F ⊆ E(G). If F is a matching G then wF is a
conservative weighting.

2

Proposition 2 Let G be a graph and w be a weighting of G. The weighting w is con-
servative if and only if the weighting w |E(B) is conservative for every block B of G.

2

Proposition 3 Let G be a graph. If w is a conservative weighting of G〈π(X)〉 for some
X ⊆ V (G) then w is a conservative weighting of G.

2

Denote by O1 and O2 the sets of odd K4-s and odd prisms respectively. Let Oe
k,

k = 1, 2, denote the subset of Ok of the corresponding even subdivisions. Set O = O1∪O2,
Oe = Oe

1 ∪ Oe
2.

Proposition 4 If a graph G has a subgraph H ∈ Oe then G satisfies the condition (a)
of Theorem 3.

2

Proposition 5 Let G ∈ Oe and f ∈ E(G). Then there exists a perfect matching M

such that f ∈ M and G is the union of two 0(wM)-cycles. Moreover, if f is incident to
a vertex of degree 3, then M and 0(wM)-cycles can be chosen in such a way that f lies
on both the 0(wM)-cycles.

2

Proposition 6 Let G ∈ O and let e1, e2 be adjacent edges of G. Then G has an even
cycle passing through e1 and e2.
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2

Proposition 7 Let G ∈ O2 and let u ∈ V (G) be a vertex of degree 3. Then G has
three disjoint paths of the same parity connecting u with some vertex v ∈ V (G). If, in
addition, G ∈ Oe

2 then G has three disjoint paths of odd length connecting u with some
vertex v ∈ V (G).

2

5 Proof of Lemma 1

Let w be a conservative weighting of G̃ = G〈π(X)〉 − D and let C̃1, C̃2 be 0(w)-cycles
such that H̃ = C̃1 ∪ C̃2 ∈ O. Let H (respectively, Ck, k = 1, 2) be the subgraph of G

spanned by the edges of H̃ (respectively, C̃k). Since |X ∩ V (H)| ≤ 1 implies H = H̃, we
may assume that |X ∩V (H)| = l ∈ {2, 3}. Let X ∩V (H) = {v1, . . . , vl}. Let fk ∈ E(G),
k = 1, . . . , l, be an edge connecting vk with some ui ∈ D. Let B be the block of G〈π(X)〉
containing D. Since G[D] is factor-critical, B has perfect matchings Fk ⊂ E(B) such
that fk ∈ Fk, k = 1, . . . , l. Let S̃ ′ be the subgraph of B spanned by

⋃l
k=1 Fk and S̃ be its

component containing X ∩ V (H). Let S be the subgraph of G spanned by E(S̃).

Case 1: l = 2.
Then S̃ is an even cycle so that S is an even path whose ends are v1 and v2. Let
M = F1 ∩ E(S). Set

w∗(e) :=











w(e) if e ∈ E(G̃),
−1 if e ∈ M,

+1 otherwise.
(5)

By Propositions 1 and 2, w∗ is a conservative weighting of G〈π(X)〉 and, consequently,
by Proposition 3 it is that of G. Since S is an even path, H ∪S belongs to O. Note that
H ∪ S = C1 ∪ C2 ∪ S. We may have that either C1, C2 are both paths or exactly one of
them, say C1, is a path while C2 is a cycle. If we have the former then C1 ∪S and C2 ∪S

are the desired 0(w∗)-cycles, otherwise C1 ∪ S and C2 are those.

We assume further that l = 3. It follows that exactly one vertex vi, say v3, is incident
to an edge which is contained in both cycles C̃1 and C̃2. In other words, X ∩ V (Ck) =
{vk, v3}, k = 1, 2.

Case 2: l = 3 and S̃ is bipartite.
Let us show first that S has three disjoint paths Pk, k = 1, 2, 3 of odd length connecting
vk with some v 6= vk, k = 1, 2, 3. Indeed, let Rk, k = 1, 2, denote the path consisting of
edges in Fk ∪ F3 and connecting vk with v3. Choose the first vertex v on R2 which lies
on R1. Define Pk, k = 1, 3, to be the subpaths of R1 connecting v with vk, and P2 to be
the subpath of R2 connecting v with v2 . By construction, Pk are pairwise disjoint and
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have odd length. Now let Q = P1 ∪ P2 ∪ P3. The matching M = F3 ∩ E(Q) covers all
the vertices of Q except v1 and v2. Define w∗ by the equation (5. Again, by Propositions
1, 2 w∗ is a conservative weighting of G〈π(X)〉, and whence by Proposition 3 it is that
of G. Furthermore, we have that H ∪ Q belongs to O being the union of 0(w∗)-cycles
C1 ∪ P1 ∪ P3 and C2 ∪ P2 ∪ P3.

Case 3: l = 3 and S̃ is non-bipartite.
Note that S̃ is 1-extendable. By Theorem 1 it follows that S̃ has a subgraph Q̃ ∈ Oe.
Let Q be the subgraph of G spanned by E(Q̃). Note that V (Q) ∩ X ⊆ {v1, v2, v3}. If
|V (Q)∩X| ≤ 1 then Q = Q̃ and the conclusion obviously follows. If |V (Q)∩X| = 2, we
obtain the desired conclusion using Propositions 4, 6 and the argument of Case 1. Thus we
may assume further that V (Q)∩X = {v1, v2, v3}. By Proposition 5 there exists a perfect
matching M of Q̃ and 0(wM)-cycles D̃1 and D̃2 such that f3 ∈ M , f3 ∈ E(D̃1) ∩ E(D̃2)
and Q̃ = D̃1 ∪ D̃2. Let Dk, k = 1, 2, be the subgraph of G spanned by E(D̃k). Note that
V (Dk) ∩ X = {vk, v3}, k = 1, 2.

Subcase 3.1: Q̃ ∈ Oe
2.

By Proposition 7 Q contains three disjoint paths Pk, k = 1, 2, 3, having odd length and
such that Pk connects vk with some v ∈ V (Q), v 6= vk, k = 1, 2, 3. It remains to apply
the argument of Case 2 arriving at the same conclusion.

Subcase 3.2: Q̃ ∈ Oe
1, H̃ ∈ O2.

By Proposition 7 H contains three disjoint paths Pk, k = 1, 2, 3, of the same parity and
such that Pk connects vk with some v ∈ V (H), v 6= vk, k = 1, 2, 3. If Pk are odd, the
desired conclusion is obtained by repeating the argument of Case 2. So we may assume
that Pk have even length. For k = 1, 2, let Mk be the maximum matching of Pk covering
vk and let M3 be the maximum matching of P3 covering v. Now M ′ = M ∪M1∪M2∪M3

is a matching of G and whence, by Proposition 1, wM ′ is a conservative weighting of G.
It is straightforward to check that Q ∪ P1 ∪ P2 ∪ P3 ∈ O and can be expressed as the
union of 0(wM ′)-cycles D1 ∪ P1 ∪ P3 and D2 ∪ P2 ∪ P3.

Subcase 3.3: Q̃ ∈ Oe
1, H̃ ∈ O1.

Note first that H ∪ Q is an odd prism. Define w∗ by the equation (5. By Propositions
1, 2 w∗ is a conservative weighting of G〈π(X)〉 and thereby by Proposition 3 it is that of
G. Finally, H ∪ Q is the union of 0(w∗)-cycles D1 ∪ C1 and D2 ∪ C2, as desired. 2
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