A Characterization of Seymour Graphs

A. A. Ageev, A. V. Kostochka* and Z. Szigeti ${ }^{\dagger}$

Abstract

Following Gerards [1] we say that a connected undirected graph G is a Seymour graph if the maximum number of edge disjoint T-cuts is equal to the cardinality of a minimum T-join for every even vertex subset $T \subseteq V(G)$. Several families of graphs have been shown to be subfamilies of Seymour graphs (Seymour [4][5], Gerards [1], Szigeti [6]). In this paper we prove a characterization of Seymour graphs which was conjectured by Sebő and implies the results mentioned above.

1 Introduction

Graphs in this paper are undirected connected and may have loops and multiple edges.
Let G be a graph. For $F \subseteq E(G)$ and $x, y \in V(G)$, we write $x y \in F$ if some edge of G with endpoints x and y is in F.

For $X \subseteq V(G)$, the cut $\delta(X)$ is the set of edges connecting X and $V(G) \backslash X, N(X)=$ $\{v \in V(G) \backslash X: v$ has neighbors in $X\}$. If $X=\{x\}$ we write $\delta(x), N(x)$. For $F \subseteq E(G)$ and $v \in V(G)$, denote $d_{F}(v)=\mid\{e \in F: e$ is incident to $v\} \mid$. A pair (G, T) where T is an even subset of $V(G)$ is called a graft.

Let T be an even subset of $V(G)$. If $|X \cap T|$ is odd the cut $\delta(X)$ is called the T cut. A set of edges $F \subseteq E(G)$ is a T-join if $v \in T \Leftrightarrow d_{F}(v)$ is odd. Let $\nu(G, T)$ denote the maximum number of edge disjoint T-cuts and $\tau(G, T)$ the cardinality of a minimum T-join in G.

Since every T-join meets every T-cut,

$$
\begin{equation*}
\nu(G, T) \leq \tau(G, T) \tag{1}
\end{equation*}
$$

The simplest example of a graft for which (1) holds with strict inequality is $\left(K_{4}, V\left(K_{4}\right)\right)$. However, several families of graphs satisfying (1) with equality for every even vertex

[^0]subset T have been found. These are bipartite graphs (Seymour [5]), series-parallel graphs (Seymour [4]), graphs containing neither an odd K_{4} nor an odd prism (Gerards [1]). The last family contains bipartite and series-parallel graphs.

Following Gerards [1], we call a graph G a Seymour graph if (1) holds with equality for all even subsets $T \subseteq V(G)$.

Recently Szigeti [6] refined the Gerards' result having proved that a graph is a Seymour graph if it does not contain neither an odd K_{4} nor an odd prism which are not Seymour graphs. Sebő (unpublished) conjectured a necessary and sufficient condition for a graph to be a Seymour graph. His conjecture is stated in terms of conservative weightings and implies the Szigeti's result (and whence other results mentioned above).

Let G be a graph and $\mathbf{w}: E(G) \rightarrow\{-1,+1\}$ be a ± 1 valued weighting defined on edges of G. The weighting \mathbf{w} is called conservative if G has no cycle of negative total weight (a loop is considered as a special case of cycle). For any $F \subseteq E(G)$, the weighting \mathbf{w}_{F} is defined by the equation:

$$
\mathbf{w}_{F}(e):= \begin{cases}-1 & \text { if } e \in F, \\ +1 & \text { if } e \notin F .\end{cases}
$$

The following observation (Mei Gu Guan's lemma [3]) reveals a one-to-one correspondence between conservative weightings and T -joins of minimum cardinality:
F is a T-join of minimum cardinality if and only if \mathbf{w}_{F} is a conservative weighting.
A conservative graph is a pair (G, \mathbf{w}) in which G is a graph, \mathbf{w} is a conservative weighting of G. For any conservative graph (G, \mathbf{w}), denote $E^{-}(\mathbf{w})=\{e \in E(G)$: $\mathbf{w}(e)=-1\}$ and $T(\mathbf{w})=\left\{v \in V(G): d_{E^{-}(\mathbf{w})}(v)\right.$ is odd $\}$. From now on we assume that $E^{-}(\mathbf{w}) \neq \emptyset$.

Given a conservative graph (G, \mathbf{w}), a cycle C of G is called a $0(\mathbf{w})$-cycle if the total weight of the edges of C is equal to zero. A graph G is an odd K_{4} if it is a subdivision of K_{4} such that each cycle bounding a face of G has an odd length. A graph G is an odd prism if it is a subdivision of triangular prism such that each cycle bounding a triangular face of G has an odd length while each cycle bounding a quadrangular face has an even length.

Conjecture (Sebö). A graph G is not a Seymour graph if and only if there exist a conservative weighting \mathbf{w} and $0(\mathbf{w})$-cycles C_{1}, C_{2} such that the graph $C_{1} \cup C_{2}$ is either an odd K_{4} or an odd prism.

The conjecture implies that the class of Seymour graphs belongs to co-NP. The 'if' part of the conjecture was shown to be true by Sebő (unpublished). Section 3 of this paper presents a proof of the 'only if' part modulo Lemma 1. In the next section we state basic known results needed in the proof of the conjecture. Sections $4-5$ are devoted to the proof of Lemma 1.

2 Background

In this section we present basic known results to which we will refer further. To do this some extra notation and definitions are needed.

A graph G is called 1-extendable if each edge of G lies in a perfect matching. A subdivision of a graph G is said to be even if the number of new vertices inserted in every edge of G is even. Clearly, any even subdivision of K_{4} (respectively, of triangular prism) is an odd K_{4} (respectively, an odd prism).

The first result is an easy consequence of Theorem 5.4.11 in [2].
Theorem 1 (Lovász) Let G be a 1-extendable non-bipartite graph. Then G contains an even subdivision of either K_{4} or triangular prism.

Let (G, \mathbf{w}) be a conservative graph. For any $x, y \in V(G)$, denote by $\lambda_{\mathbf{w}}(x, y)$ the length of a shortest path connecting x and y with respect to the edge length function \mathbf{w}. For $x \in V(G)$, let $m=m(x)=\min \left\{\lambda_{\mathbf{w}}(x, v): v \in V(G)\right\}, M=M(x)=$ $\max \left\{\lambda_{\mathbf{w}}(x, v): v \in V(G)\right\}, V^{i}=V^{i}(x)=\left\{v \in V(G): \lambda_{\mathbf{w}}(x, v)=i\right\}, G^{i}=G^{i}(x)=$ $G\left[\bigcup_{j=m}^{i} V^{j}\right], \tilde{G}^{i}=G^{i}-E\left(G\left[V^{i}\right]\right)$. Let further $\mathcal{D}^{i}=\mathcal{D}^{i}(x)$ be the collection of vertex sets of components of G^{i} and $\mathcal{Q}^{i}=\mathcal{Q}^{i}(x)$ be the collection of vertex sets of components of \tilde{G}^{i}. Set $\mathcal{D}=\mathcal{D}(x)=\bigcup_{i=m}^{M} \mathcal{D}^{i}, \mathcal{Q}=\mathcal{Q}(x)=\bigcup_{i=m}^{M} \mathcal{Q}^{i}$, and $\mathcal{R}=\mathcal{R}(x)=\mathcal{D} \cup \mathcal{Q}$.

The assertions of the second theorem are special cases of Theorem 4.4 and Lemma 5.7 in [3].

Theorem 2 (Sebö) Let (G, \mathbf{w}) be a conservative graph. Let $x \in V(G), m=m(x)<0$ and $D \in \mathcal{D}^{m}(x)$. Denote by $r \in D$ the endvertex of the edge in $\delta(D) \cap E^{-}(\mathbf{w})$ and by \mathbf{w}^{\prime} the weighting $\left.\mathbf{w}\right|_{G[D]}$. Then
(s1) if $v u \in E^{-}(\mathbf{w}), \lambda_{\mathbf{w}}(x, v)=\lambda_{\mathbf{w}}(x, u)=i$, then v and u are in different elements of \mathcal{Q}^{i} (i.e. in different components of $\left.\tilde{G}^{i}\right)$;
(s2) $\left|\delta(R) \cap E^{-}(\mathbf{w})\right|=1$ if $x \notin R \in \mathcal{R}(x)$,
$\left|\delta(R) \cap E^{-}(\mathbf{w})\right|=0$ if $x \in R \in \mathcal{R}(x)$;
(s3) for any $v \in D, \lambda_{\mathbf{w}^{\prime}}(r, v)=0$.

Let G be a graph and $\mathcal{P}=\left\{X_{1}, \ldots, X_{k}\right\}$ be a partition of $V(G)$. Denote by $G\langle\mathcal{P}\rangle$ the graph with the vertex set \mathcal{P} and the edge set $E(G)$, which is obtained from G by shrinking every subset $X \in \mathcal{P}$ into a single vertex. For $X \subseteq V(G)$, denote by $\pi(X)$ the partition of $V(G)$ consisting of X and $|V(G) \backslash X|$ singletons.

We will use the following easy consequence of Theorem 2.
Corollary 1 Suppose that the assumptions of Theorem 2 hold. Then
(11) $G[D]$ is factor-critical;
(12) $\left(G\left\langle\pi\left(N_{G}(D)\right)\right\rangle, \mathbf{w}\right)$ is a conservative graph.

Proof. Note first that $E^{-}(\mathbf{w})$ forms in $G[D \backslash\{r\}]$ a perfect matching. Indeed, for any $v \in D$, since $\{v\} \in \mathcal{Q}^{m}$ and $m<0$, it follows from (s2) that $\left|\delta(v) \cap E^{-}(\mathbf{w})\right|=1$. Combining this with $\left|\delta(D) \cap E^{-}(\mathbf{w})\right|=1$, we get the statement.

Using this and (s3) of Theorem 2 we have that, for each $v \in D$, there exists an alternating (with respect to $E^{-} \cup E(G[D])$) path of even length connecting r with v in $G[D]$. Hence $G[D]$ is factor-critical.

Now let $A=N_{G}(D)$ and $G^{\prime}=G\langle\pi(A)\rangle$. Note that by (s1) of Theorem 2 for each $R \in \mathcal{R}$, either $A \subseteq R$ or $A \cap R=\emptyset$. Hence shrinking A into a vertex would not change the set of cuts $\mathcal{M}=\{\delta(R): R \in \mathcal{R}\}$. Any cut $M \in \mathcal{M}$ contains at most one edge of $E^{-}(\mathbf{w})$, each edge $e \in E\left(G^{\prime}\right)$ belongs to at most two members of \mathcal{M} and each edge $e \in E^{-}(\mathbf{w})$ belongs to exactly two members of \mathcal{M}. Let us show that this provides the conservativeness of $\left(G^{\prime}, \mathbf{w}\right)$. Consider the edge set C of a cycle in G^{\prime}. Let M_{1}, \ldots, M_{k} be the members of \mathcal{M} meeting C. Then by above, $\sum_{i=1}^{k}\left|C \cap M_{i} \cap E^{-}(\mathbf{w})\right| \leq k$, $\sum_{i=1}^{k}\left|C \cap M_{i} \cap E^{-}(\mathbf{w})\right|=2\left|C \cap E^{-}(\mathbf{w})\right|$ and $\sum_{i=1}^{k}\left|C \cap M_{i}\right| \leq 2|C|$. Since $\sum_{i=1}^{k}\left|C \cap M_{i}\right| \geq 2 k$, we obtain $|C| \geq 2\left|C \cap E^{-}(\mathbf{w})\right|$.

3 The main result

Let (G, \mathbf{w}) be a conservative graph. Denote by $\Pi(G, \mathbf{w})$ the set of partitions \mathcal{P} of $V(G)$ such that $(G\langle(\mathcal{P})\rangle, \mathbf{w})$ is conservative. Denote by $\Pi^{*}(G, \mathbf{w})$ the set of roughest partitions in $\Pi(G, \mathbf{w})$. Clearly, $\Pi(G, \mathbf{w}) \supseteq \Pi^{*}(G, \mathbf{w}) \neq \emptyset$ for any conservative graph (G, \mathbf{w}). We say that a partition \mathcal{P} is tree-like if $G\langle\mathcal{P}\rangle$ has no cycles consisting of more than two edges. Note that if $\mathcal{P} \in \Pi^{*}(G, \mathbf{w})$ is tree-like then $E^{-}(\mathbf{w})$ induces a spanning tree of $G\langle(\mathcal{P})\rangle$. Moreover, it is clear that if $\Pi(G, \mathbf{w})$ contains a tree-like partition then so does $\Pi^{*}(G, \mathbf{w})$.

In the following theorem Sebő (private communication) proved $(\mathrm{b}) \Longrightarrow$ (c) and conjectured $(\mathrm{c}) \Longrightarrow(\mathrm{a})$ and $(\mathrm{c}) \Longrightarrow(\mathrm{b})$. The equivalence $(\mathrm{a}) \Longleftrightarrow(\mathrm{c})$ (as well as $(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$) means that the class of Seymour graphs belongs to co-NP.

Theorem 3 Let G be a undirected connected graph. The following conditions are equivalent:
(a) there exist a conservative weighting \mathbf{w} and $0(\mathbf{w})$-cycles C_{1}, C_{2} such that the graph $C_{1} \cup C_{2}$ is either an odd K_{4} or an odd prism;
(b) there exist a conservative weighting \mathbf{w} and $0(\mathbf{w})$-cycles C_{1}, C_{2} such that the graph $C_{1} \cup C_{2}$ is non-bipartite;
(c) G is not a Seymour graph;
(d) there exists a conservative weighting \mathbf{w} such that $\Pi^{*}(G, \mathbf{w})$ contains no tree-like partition.

Proof. We shall prove $(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{d}) \Longrightarrow(\mathrm{a})$.
$(\mathrm{a}) \Longrightarrow(\mathrm{b})$. Obvious.
$(\mathbf{b}) \Longrightarrow(\mathbf{c})$. Suppose to the contrary that G is a Seymour graph. Let C be an odd cycle of $H=C_{1} \cup C_{2}$. Set $T=\left\{v \in V(G): d_{E^{-}}(v)\right.$ is odd $\}$, where $E^{-}=E^{-}(\mathbf{w})$. Let $\left\{D_{1}, \ldots, D_{\nu}\right\}$ be a collection of edge disjoint T-cuts of G with $\nu=\nu(G, T)$. Since G is a Seymour graph, every edge which is contained in some $0(\mathbf{w})$-cycle is contained in some cut D_{i}. Consequently, $E(C) \subseteq \bigcup_{i=1}^{\nu} D_{i}$. But $\left|E(C) \cap D_{i}\right|$ is even for all $i=1, \ldots, \nu$. It follows that $|E(C)|$ is even, a contradiction.
$(\mathrm{c}) \Longrightarrow(\mathrm{d})$. Obvious.
$(\mathrm{d}) \Longrightarrow(\mathrm{a})$. The proof relies on the following lemma which is to be proved in the remainder of the paper.

Lemma 1 Let G be a connected graph and $X \subseteq V(G)$ be a cut set of G. Suppose that D is the vertex set of a factor-critical component of $G-X$ such that $N(D)=X$. If $G\langle\pi(X)\rangle-D$ satisfies the condition (a) of Theorem 3 then so does G.

Suppose that the implication does not hold and a graph G is a counterexample with the minimum number of vertices. That is

$$
\begin{equation*}
G \text { satisfies (d) but does not satisfy (a) } \tag{2}
\end{equation*}
$$

and

$$
\begin{array}{ll}
(\mathrm{d}) \Longrightarrow(\mathrm{a}) & \text { for each graph } H \tag{3}\\
& \text { with }|V(H)|<|V(G)| .
\end{array}
$$

Obviously,

$$
\begin{equation*}
\left|E^{-}(\mathbf{w})\right| \geq 2 \tag{4}
\end{equation*}
$$

Claim. Let $X \subseteq V(G)$ and $\pi\left(N_{G}(X)\right) \in \Pi(G, \mathbf{w})$. If X induces a factor-critical subgraph of G then $X \cup N_{G}(X)=V(G)$.
Assume that $V(G) \backslash\left(X \cup N_{G}(X)\right) \neq \emptyset$ and X has the minimum cardinality among all sets satisfying this property.

Denote $H=G[X], A=N_{G}(X)$ and $G^{\prime}=G\langle\pi(A)\rangle-X$.
Note that G^{\prime} does not satisfy (d) for otherwise by (3) it satisfies (a) and, consequently, by Lemma 1, so does G itself. Hence $\Pi^{*}\left(G^{\prime}, \mathbf{w}^{\prime}\right)$ contains a tree-like partition $\mathcal{P}=$ $\left\{X_{1}, \ldots, X_{k}\right\}$.

If $E^{-}\left(\mathbf{w}^{\prime}\right)=\emptyset$ then for any $v \in V(G) \backslash(A \cup X),\left(G\left\langle\pi\left(N_{G}(v)\right)\right\rangle\right.$, w) is conservative. By the minimality of $|X|$, it follows that $|X|=1$ which contradicts (4).

Let $E^{-}\left(\mathbf{w}^{\prime}\right) \neq \emptyset$. In an end vertex X_{i} of $G^{\prime}\langle\mathcal{P}\rangle$ not containing A, choose $v \in X_{i}$ incident to the edge $e \in E^{-} \cap \delta\left(X_{i}\right)$. Then $\left(G\left\langle\pi\left(N_{G}(v)\right)\right\rangle, \mathbf{w}\right)$ is conservative, and we have $|X|=1$ again. Hence $\left\{X_{1}, \ldots, X_{k}, X\right\}$ is in $\Pi(G, \mathbf{w})$ and tree-like, a contradiction.

Let x be a vertex incident to $E^{-}(\mathbf{w})$. Consider $D \in \mathcal{D}^{m}(x)$, where $m=m(x)$. By Corollary 1 and Claim 1, $G[D]$ is factor-critical, $D \cup N_{G}(D)=V(G)$, and $E^{-}(\mathbf{w})$ forms a perfect matching in $G[\{x\} \cup D]$. Since x was chosen arbitrarily from $T(\mathbf{w})$, we conclude that $G[T(\mathbf{w})]$ is bicritical. By (4) and by Theorem $1, G$ contains an even subdivision H of either K_{4} or triangular prism. But the edges of H can be partitioned into three matchings M_{1}, M_{2} and M_{3} so that $M_{1} \cup M_{2}$ and $M_{1} \cup M_{3}$ are hamiltonian cycles in H. Thus G satisfies (a) with $\mathbf{w}=\mathbf{w}_{M_{1}}$, a contradiction.

4 Preliminary observations

In this section we state several easy observations to be referred to in the proof of Lemma 1.
Proposition 1 Let G be a graph and $F \subseteq E(G)$. If F is a matching G then \mathbf{w}_{F} is a conservative weighting.

Proposition 2 Let G be a graph and \mathbf{w} be a weighting of G. The weighting \mathbf{w} is conservative if and only if the weighting $\left.\mathbf{w}\right|_{E(B)}$ is conservative for every block B of G.

Proposition 3 Let G be a graph. If \mathbf{w} is a conservative weighting of $G\langle\pi(X)\rangle$ for some $X \subseteq V(G)$ then \mathbf{w} is a conservative weighting of G.

Denote by \mathcal{O}_{1} and \mathcal{O}_{2} the sets of odd K_{4}-s and odd prisms respectively. Let \mathcal{O}_{k}^{e}, $k=1,2$, denote the subset of \mathcal{O}_{k} of the corresponding even subdivisions. Set $\mathcal{O}=\mathcal{O}_{1} \cup \mathcal{O}_{2}$, $\mathcal{O}^{e}=\mathcal{O}_{1}^{e} \cup \mathcal{O}_{2}^{e}$.

Proposition 4 If a graph G has a subgraph $H \in \mathcal{O}^{e}$ then G satisfies the condition (a) of Theorem 3.

Proposition 5 Let $G \in \mathcal{O}^{e}$ and $f \in E(G)$. Then there exists a perfect matching M such that $f \in M$ and G is the union of two $0\left(\mathbf{w}_{M}\right)$-cycles. Moreover, if f is incident to a vertex of degree 3, then M and $0\left(\mathbf{w}_{M}\right)$-cycles can be chosen in such a way that f lies on both the $0\left(\mathbf{w}_{M}\right)$-cycles.

Proposition 6 Let $G \in \mathcal{O}$ and let e_{1}, e_{2} be adjacent edges of G. Then G has an even cycle passing through e_{1} and e_{2}.

Proposition 7 Let $G \in \mathcal{O}_{2}$ and let $u \in V(G)$ be a vertex of degree 3. Then G has three disjoint paths of the same parity connecting u with some vertex $v \in V(G)$. If, in addition, $G \in \mathcal{O}_{2}^{e}$ then G has three disjoint paths of odd length connecting u with some vertex $v \in V(G)$.

5 Proof of Lemma 1

Let w be a conservative weighting of $\tilde{G}=G\langle\pi(X)\rangle-D$ and let $\tilde{C}_{1}, \tilde{C}_{2}$ be $0(\mathbf{w})$-cycles such that $\tilde{H}=\tilde{C}_{1} \cup \tilde{C}_{2} \in \mathcal{O}$. Let H (respectively, $\left.C_{k}, k=1,2\right)$ be the subgraph of G spanned by the edges of \tilde{H} (respectively, \tilde{C}_{k}). Since $|X \cap V(H)| \leq 1$ implies $H=\tilde{H}$, we may assume that $|X \cap V(H)|=l \in\{2,3\}$. Let $X \cap V(H)=\left\{v_{1}, \ldots, v_{l}\right\}$. Let $f_{k} \in E(G)$, $k=1, \ldots, l$, be an edge connecting v_{k} with some $u_{i} \in D$. Let B be the block of $G\langle\pi(X)\rangle$ containing D. Since $G[D]$ is factor-critical, B has perfect matchings $F_{k} \subset E(B)$ such that $f_{k} \in F_{k}, k=1, \ldots, l$. Let \tilde{S}^{\prime} be the subgraph of B spanned by $\bigcup_{k=1}^{l} F_{k}$ and \tilde{S} be its component containing $X \cap V(H)$. Let S be the subgraph of G spanned by $E(\tilde{S})$.

Case 1: $l=2$.
Then \tilde{S} is an even cycle so that S is an even path whose ends are v_{1} and v_{2}. Let $M=F_{1} \cap E(S)$. Set

$$
\mathbf{w}^{*}(e):= \begin{cases}\mathbf{w}(e) & \text { if } e \in E(\tilde{G}), \tag{5}\\ -1 & \text { if } e \in M \\ +1 & \text { otherwise }\end{cases}
$$

By Propositions 1 and 2, \mathbf{w}^{*} is a conservative weighting of $G\langle\pi(X)\rangle$ and, consequently, by Proposition 3 it is that of G. Since S is an even path, $H \cup S$ belongs to \mathcal{O}. Note that $H \cup S=C_{1} \cup C_{2} \cup S$. We may have that either C_{1}, C_{2} are both paths or exactly one of them, say C_{1}, is a path while C_{2} is a cycle. If we have the former then $C_{1} \cup S$ and $C_{2} \cup S$ are the desired $0\left(\mathbf{w}^{*}\right)$-cycles, otherwise $C_{1} \cup S$ and C_{2} are those.

We assume further that $l=3$. It follows that exactly one vertex v_{i}, say v_{3}, is incident to an edge which is contained in both cycles \tilde{C}_{1} and \tilde{C}_{2}. In other words, $X \cap V\left(C_{k}\right)=$ $\left\{v_{k}, v_{3}\right\}, k=1,2$.

Case 2: $l=3$ and \tilde{S} is bipartite.
Let us show first that S has three disjoint paths $P_{k}, k=1,2,3$ of odd length connecting v_{k} with some $v \neq v_{k}, k=1,2,3$. Indeed, let $R_{k}, k=1,2$, denote the path consisting of edges in $F_{k} \cup F_{3}$ and connecting v_{k} with v_{3}. Choose the first vertex v on R_{2} which lies on R_{1}. Define $P_{k}, k=1,3$, to be the subpaths of R_{1} connecting v with v_{k}, and P_{2} to be the subpath of R_{2} connecting v with v_{2}. By construction, P_{k} are pairwise disjoint and
have odd length. Now let $Q=P_{1} \cup P_{2} \cup P_{3}$. The matching $M=F_{3} \cap E(Q)$ covers all the vertices of Q except v_{1} and v_{2}. Define \mathbf{w}^{*} by the equation (5. Again, by Propositions $1,2 \mathbf{w}^{*}$ is a conservative weighting of $G\langle\pi(X)\rangle$, and whence by Proposition 3 it is that of G. Furthermore, we have that $H \cup Q$ belongs to \mathcal{O} being the union of $0\left(\mathbf{w}^{*}\right)$-cycles $C_{1} \cup P_{1} \cup P_{3}$ and $C_{2} \cup P_{2} \cup P_{3}$.

Case 3: $l=3$ and \tilde{S} is non-bipartite.
Note that \tilde{S} is 1-extendable. By Theorem 1 it follows that \tilde{S} has a subgraph $\tilde{Q} \in \mathcal{O}^{e}$. Let Q be the subgraph of G spanned by $E(\tilde{Q})$. Note that $V(Q) \cap X \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$. If $|V(Q) \cap X| \leq 1$ then $Q=\tilde{Q}$ and the conclusion obviously follows. If $|V(Q) \cap X|=2$, we obtain the desired conclusion using Propositions 4, 6 and the argument of Case 1. Thus we may assume further that $V(Q) \cap X=\left\{v_{1}, v_{2}, v_{3}\right\}$. By Proposition 5 there exists a perfect matching M of \tilde{Q} and $0\left(\mathbf{w}_{\mathbf{M}}\right)$-cycles \tilde{D}_{1} and \tilde{D}_{2} such that $f_{3} \in M, f_{3} \in E\left(\tilde{D}_{1}\right) \cap E\left(\tilde{D}_{2}\right)$ and $\tilde{Q}=\tilde{D}_{1} \cup \tilde{D}_{2}$. Let $D_{k}, k=1,2$, be the subgraph of G spanned by $E\left(\tilde{D}_{k}\right)$. Note that $V\left(D_{k}\right) \cap X=\left\{v_{k}, v_{3}\right\}, k=1,2$.

Subcase 3.1: $\tilde{Q} \in \mathcal{O}_{2}^{e}$.
By Proposition $7 Q$ contains three disjoint paths $P_{k}, k=1,2,3$, having odd length and such that P_{k} connects v_{k} with some $v \in V(Q), v \neq v_{k}, k=1,2,3$. It remains to apply the argument of Case 2 arriving at the same conclusion.

Subcase 3.2: $\tilde{Q} \in \mathcal{O}_{1}^{e}, \tilde{H} \in \mathcal{O}_{2}$.
By Proposition $7 H$ contains three disjoint paths $P_{k}, k=1,2,3$, of the same parity and such that P_{k} connects v_{k} with some $v \in V(H), v \neq v_{k}, k=1,2,3$. If P_{k} are odd, the desired conclusion is obtained by repeating the argument of Case 2. So we may assume that P_{k} have even length. For $k=1,2$, let M_{k} be the maximum matching of P_{k} covering v_{k} and let M_{3} be the maximum matching of P_{3} covering v. Now $M^{\prime}=M \cup M_{1} \cup M_{2} \cup M_{3}$ is a matching of G and whence, by Proposition 1, $\mathbf{w}_{M^{\prime}}$ is a conservative weighting of G. It is straightforward to check that $Q \cup P_{1} \cup P_{2} \cup P_{3} \in \mathcal{O}$ and can be expressed as the union of $0\left(\mathbf{w}_{M^{\prime}}\right)$-cycles $D_{1} \cup P_{1} \cup P_{3}$ and $D_{2} \cup P_{2} \cup P_{3}$.

Subcase 3.3: $\tilde{Q} \in \mathcal{O}_{1}^{e}, \tilde{H} \in \mathcal{O}_{1}$.
Note first that $H \cup Q$ is an odd prism. Define \mathbf{w}^{*} by the equation (5. By Propositions $1,2 \mathbf{w}^{*}$ is a conservative weighting of $G\langle\pi(X)\rangle$ and thereby by Proposition 3 it is that of G. Finally, $H \cup Q$ is the union of $0\left(\mathbf{w}^{*}\right)$-cycles $D_{1} \cup C_{1}$ and $D_{2} \cup C_{2}$, as desired.

References

[1] A. M. H. Gerards, On shortest T-joins and packing T-cuts, J. Comb. Theory B55 (1992) 73-82.
[2] L. Lovász and M. D. Plummer, Matching Theory. Akadémiai Kiadó, Budapest, 1986.
[3] A. Sebő, Undirected distances and the postman structure of graphs, J. Comb. Theory B49 (1990) 10-39.
[4] P. D. Seymour, The matroids with the max-flow min-cut property, J. Comb. Theory B23 (1977) 189-222.
[5] P. D. Seymour, On odd cuts and plane multicommodity flows, Proc. London Math. Soc. Ser. (3) 42 (1981) 178-192.
[6] Z.Szigeti, On Seymour Graphs, Report No. 93803-OR, Institute for Operations Research, Universität Bonn, 1993.

[^0]: *Research was partially supported by the Russian Foundation for Fundamental Research, grant 93-011-1486. The second author completed his part of the work when visiting KAM, Charles University.
 ${ }^{\dagger}$ Research was partially supported by the Hungarian National Foundation for Scientific Research, grants OTKA 2118 and 4271.

