On packing time-respecting arborescences

Romain Chapoullié and Zoltán Szigeti, Ensimag and GSCOP, Grenoble

Abstract

We present a slight generalization of the result of Kamiyama and Kawase [7] on packing time-respecting arborescences in acyclic pre-flow temporal networks. Our main contribution is to provide the first results on packing time-respecting arborescences in non-acyclic temporal networks. As negative results, we prove the NP-completeness of the decision problem of the existence of 2 arc-disjoint spanning time-respecting arborescences and of a related problem proposed in this paper.

1 Introduction

Temporal networks were introduced to model the exchange of information in a network or the spread of a disease in a population. We are given a directed graph D and a time label function τ on the arcs of D, the pair (D, τ) is called a temporal network. Intuitively, for an arc a of D, $\tau(a)$ is the time when the end-vertices of a communicate, that is when the tail of a can transmit a piece of information to the head of a. Then the information can propagate through a path P if it is time-respecting, meaning that the time labels of the arcs of P in the order they are passed are non-decreasing. For a nice introduction to temporal networks, see [8].

Problems about packing arborescences in temporal networks were investigated in [7]. An arborescence is called time-respecting if all the directed paths it contains are time-respecting. The main result of [7] provides a packing of time-respecting arborescences, each vertex belonging to many of them, if the network is pre-flow and acyclic. Here pre-flow means intuitively that each vertex different from the root has at least as many arcs entering as leaving, while acyclic means that no directed cycle exists. Kamiyama and Kawase [7] presented examples to show that these conditions can not be dropped.

Two questions naturally arise from these results: Must all kinds of directed cycles be forbidden? Does high time-respecting root-connectivity imply the existence of 2 arc-disjoint spanning timerespecting arborescences in a non-pre-flow temporal network?

Let us now present our contributions that give an answer to those questions.
We first propose a generalized version of the result of [7] with a simplified proof in Theorem 2.
Our main result, Theorem 4, is about packing time-respecting arborescences in pre-flow temporal networks that may contain directed cycles. The condition in Theorem 4 is that the arcs in the same strongly connected component must have the same τ-value. If this condition holds then our intuition would be to use regular arborescences in the strongly connected components and then to try to extend them to obtain a packing of time-respecting arborescences in the temporal network. This idea is a step in the right direction, however the exact process used in the proof is a bit more complex, see Section 4.

By the famous result of Edmonds [3], we know that k-root-connectivity implies the existence of a packing of k spanning s-arborescences. The authors of [8] show that for any positive integer k, time-respecting k-root-connectivity does not imply the existence of 2 arc-disjoint spanning timerespecting arborescences in a temporal network. To explain this construction (or more precisely, a slightly modified version of it), we point out and recall in Section 5 the close relation between packings of spanning time-respecting arborescences, packings of Steiner arborescences and proper

2-colorings of hypergraphs. We remark in Theorem 12 that the decision problem, whether there exist 2 arc-disjoint spanning time-respecting arborescences, is NP-complete.

We show in Theorem 11 that time-respecting $(n-1)$-root-connectivity implies the existence of a packing of 2 spanning time-respecting s-arborescences in an arbitrary temporal network on n vertices. This result becomes more interesting if we note that the examples of Figure 1 show that time-respecting ($n-3$)-root-connectivity is not enough.

Finally, in Theorem 13, we show that in an acyclic temporal network (D, τ), it is NP-complete to decide whether there exists a spanning arborescence whose directed paths consist of arcs of the same τ-value.

2 Definitions

Let $\boldsymbol{D}=(V \cup s, A)$ be a directed graph with a special vertex \boldsymbol{s}, called root, such that no arc enters s. The set of arcs entering, leaving a vertex set X of D is denoted by $\rho_{\boldsymbol{D}}(\boldsymbol{X}), \boldsymbol{\delta}_{\boldsymbol{D}}(\boldsymbol{X})$, respectively. Sometimes we use $\rho_{A}(X)$ for $\rho_{D}(X)$ and similarly $\delta_{A}(X)$ for $\delta_{D}(X)$. We denote $\left|\rho_{D}(X)\right|$ and $\left|\delta_{D}(X)\right|$ by $\boldsymbol{d}_{\boldsymbol{D}}^{-}(\boldsymbol{X})$ and $\boldsymbol{d}_{\boldsymbol{D}}^{+}(\boldsymbol{X})$, respectively. We call the directed graph D acyclic if D contains no directed cycle. If $d_{D}^{-}(v)=d_{D}^{+}(v)$ for all $v \in V$, then D is called Eulerian. We say that D is pre-flow if $d_{D}^{-}(v) \geq d_{D}^{+}(v)$ for all $v \in V$. A subgraph $F=\left(V^{\prime} \cup s, A^{\prime}\right)$ of D is called an s-arborescence if F is acyclic and $d_{F}^{-}(v)=1$ for all $v \in V^{\prime}$. We say that F is spanning if $V^{\prime}=V$. For $U \subseteq V, F$ is called a Steiner s-arborescence or an (s, U)-arborescence if F is an s-arborescence and it contains all the vertices in U. A packing of arborescences means a set of arc-disjoint arborescences. For $v \in V$, a path from s to v is called an (s, v)-path and $\boldsymbol{\lambda}_{\boldsymbol{D}}(s, \boldsymbol{v})$ denotes the maximum number of arc-disjoint (s, v)-paths in D. For some $k \in \mathbb{N}$, we say that D is k-root-connected if $\lambda_{D}(s, v) \geq k$ for all $v \in V$. For some $U \subseteq V$ and $k \in \mathbb{N}$, we say that D is Steiner k-root-connected if $\lambda_{D}(s, v) \geq k$ for all $v \in U$. We call a directed graph $D^{\prime}=\left(V \cup\{s, t\}, A^{\prime}\right)$ almost Eulerian if $d_{D^{\prime}}^{-}(v)=d_{D^{\prime}}^{+}(v)$ for all $v \in V$ and $d_{D^{\prime}}^{-}(s)=0=d_{D^{\prime}}^{+}(t)$.

For a function $\boldsymbol{\tau}: A \rightarrow \mathbb{N}, \boldsymbol{N}=(D, \tau)$ is called a temporal network. For $i \in \mathbb{N}$, let $\boldsymbol{\rho}_{\boldsymbol{N}}^{\boldsymbol{i}}(\boldsymbol{v}):=\{a \in$ $\left.\rho_{D}(v): \tau(a) \leq i\right\}$ and $\boldsymbol{\delta}_{\boldsymbol{N}}^{\boldsymbol{i}}(\boldsymbol{v}):=\left\{a \in \delta_{D}(v): \tau(a) \leq i\right\}$. We call the temporal network N acyclic if D is acyclic. We say that N is pre-flow if $\left|\rho_{N}^{i}(v)\right| \geq\left|\delta_{N}^{i}(v)\right|$ for all $i \in \mathbb{N}$ and for all $v \in V$. Note that if a temporal network (D, τ) is pre-flow, then the directed graph D is pre-flow. We say that (D, τ) is consistent if arcs of different τ-values cannot belong to the same strongly connected component of D. In this case in each strongly connected component Q of D that contains at least one arc, each arc has the same τ-value, that we denote by $\boldsymbol{\tau}(\boldsymbol{Q})$. A directed path P of D, consisting of the arcs a_{1}, \ldots, a_{ℓ} in this order, is called time-respecting or τ-respecting if $\tau\left(a_{i}\right) \leq \tau\left(a_{i+1}\right)$ for $1 \leq i \leq \ell-1$. An s-arborescence F of D is called time-respecting or τ-respecting if for every vertex v of F, the unique (s, v)-path in F is τ-respecting. For $v \in V, \boldsymbol{\lambda}_{N}(s, \boldsymbol{v})$ denotes the maximum number of arc-disjoint τ-respecting (s, v)-paths in D. We say that N is time-respecting k-root-connected if $\lambda_{N}(s, v) \geq k$ for all $v \in V$. If $N^{\prime}=\left(D^{\prime}, \tau^{\prime}\right)$ is a temporal network where $D^{\prime}=\left(V \cup\{s, t\}, A^{\prime}\right)$ is almost Eulerian, then for a vertex $v \in V$, we call a bijection μ_{v}^{\prime} from $\delta_{D^{\prime}}(v)$ to $\rho_{D^{\prime}}(v) \tau^{\prime}$-respecting if $\tau^{\prime}\left(\mu_{v}^{\prime}(f)\right) \leq \tau^{\prime}(f)$ for all $f \in \delta_{D^{\prime}}(v)$.

A hypergraph $\mathcal{H}=(V, \mathcal{E})$ is defined by its vertex set V and its hyperedge set \mathcal{E} where a hyperedge is a subset of V. For some $r \in \mathbb{N}$, the hypergraph \mathcal{H} is called r-uniform if each hyperedge in \mathcal{E} is of size r and r-regular if each vertex in V belongs to exactly r hyperedges. A 2-coloring of the vertex set V is called proper if each hyperedge in \mathcal{E} contains vertices of both colors, in other words no monochromatic hyperedge exists in \mathcal{E}. We call $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ an exact cover of \mathcal{H} if each vertex in V belongs to exactly one hyperedge in \mathcal{E}^{\prime}.

3 Packing time-respecting arborescences in acyclic pre-flow temporal networks

The aim of this section is to generalize the following result of Kamiyama and Kawase [7] on packing time-respecting arborescences in acyclic pre-flow temporal networks.

Theorem $1([7])$ Let $N=((V \cup s, A), \tau)$ be an acyclic pre-flow temporal network and $k \in \mathbb{N}$. There exists a packing of $k \tau$-respecting s-arborescences such that each vertex v in V belongs to $\min \left\{k, \lambda_{N}(s, v)\right\}$ of them.

Note that Theorem 1 implies that in a time-respecting k-root-connected acyclic pre-flow temporal network there exists a packing of k spanning time-respecting s-arborescences.

We now present our first result, a slight extension of Theorem 1.
Theorem 2 Let $N=((V \cup s, A), \tau)$ be an acyclic temporal network and $k \in \mathbb{N}$ such that

$$
\begin{equation*}
\min \left\{k,\left|\rho_{N}^{i}(v)\right|\right\} \geq \min \left\{k,\left|\delta_{N}^{i}(v)\right|\right\} \quad \text { for all } i \in \mathbb{N}, \text { for all } v \in V \tag{1}
\end{equation*}
$$

There exists a packing of $k \tau$-respecting s-arborescences such that each vertex v in V belongs to $\min \left\{k, d_{A}^{-}(v)\right\}$ of them.

We will partially follow the proof of [7] but we will point out that Lemmas 3 and 4 in [7] are not needed to prove Theorem 2. Hence the proof of Theorem 2 is simpler than that of Theorem 1. The following algorithm is a slightly modified version of the algorithm of Kamiyama and Kawase [7]. Its input is an acyclic temporal network $N=((V \cup s, A), \tau)$ and $k \in \mathbb{N}$ such that (1) is satisfied. Its output is a packing of τ-respecting s-arborescences T_{1}, \ldots, T_{k} such that each vertex v in V belongs to $\min \left\{k, d_{A}^{-}(v)\right\}$ of them. For every $v \in V$, let $\boldsymbol{I}(\boldsymbol{v})$ be a set of arcs of smallest τ-values entering v of size $\min \left\{k, d_{A}^{-}(v)\right\}$. The algorithm will use arcs only in $\bigcup_{v \in V} I(v)$. The algorithm heavily relies on the fact that the network is acyclic. It is well-known that a directed graph D is acyclic if and only if a topological ordering v_{1}, \ldots, v_{n} of its vertex set exists, that is if $v_{i} v_{j}$ is an arc of D then $i>j$. Since no arc enters s, we may suppose that in a topological ordering $v_{n}=s$.

```
Algorithm "Packing Time-Respecting Arborescences"
    Let \(\boldsymbol{v}_{\boldsymbol{n}}=s, \ldots, \boldsymbol{v}_{\mathbf{1}}\) be a topological ordering of \(V \cup s\).
    Let \(\boldsymbol{A}_{\boldsymbol{i}}=\emptyset\) for all \(1 \leq i \leq k\).
    For \(j=1\) to \(n-1\), let
        \(\boldsymbol{I}=\left\{1 \leq i \leq k: \delta_{A_{i}}\left(v_{j}\right) \neq \emptyset\right\}\),
        \(\boldsymbol{a}_{\boldsymbol{i}}\) be an arc in \(\delta_{A_{i}}\left(v_{j}\right)\) of minimum \(\tau\)-value for all \(i \in I\),
        \(\left\{\overline{\boldsymbol{a}}_{\mathbf{1}}, \ldots, \overline{\boldsymbol{a}}_{|\boldsymbol{I}|}\right\}\) be an ordering of \(\left\{a_{i}: i \in I\right\}\) such that \(\tau\left(\bar{a}_{1}\right) \leq \cdots \leq \tau\left(\bar{a}_{|I|}\right)\),
        \(\boldsymbol{\pi}: I \rightarrow\{1, \ldots,|I|\}\) be the bijection such that \(a_{i}=\bar{a}_{\pi(i)}\) for all \(i \in I\),
        \(\boldsymbol{J}\) be a subset of \(\{1, \ldots, k\} \backslash I\) of size \(\left|I\left(v_{j}\right)\right|-|I|\),
        \(\boldsymbol{\sigma}: J \rightarrow\{1, \ldots,|J|\}\) be a bijection,
        \(\left\{\boldsymbol{e}_{\mathbf{1}}, \ldots, \boldsymbol{e}_{|\boldsymbol{I}|}, \boldsymbol{f}_{\mathbf{1}}, \ldots, \boldsymbol{f}_{|\boldsymbol{J}|}\right\}\) be an ordering of \(I\left(v_{j}\right)\) such that
            \(\tau\left(e_{1}\right) \leq \cdots \leq \tau\left(e_{|I|}\right) \leq \tau\left(f_{1}\right) \leq \cdots \leq \tau\left(f_{|J|}\right)\),
        \(\boldsymbol{A}_{\boldsymbol{i}}=A_{i} \cup e_{\pi(i)}\) for all \(i \in I\),
        \(\boldsymbol{A}_{\boldsymbol{i}}=A_{i} \cup f_{\sigma(i)}\) for all \(i \in J\).
    Let \(\boldsymbol{T}_{\boldsymbol{i}}=\left(V_{i}, A_{i}\right)\) where \(\boldsymbol{V}_{\boldsymbol{i}}\) is the vertex set of the arc set \(A_{i}\) for all \(1 \leq i \leq k\).
    Stop.
```

Theorem 3 Given an acyclic temporal network $N=((V \cup s, A), \tau)$ and $k \in \mathbb{N}$ such that (1) is satisfied, Algorithm Packing Time-Respecting Arborescences outputs a packing of $k \tau$ respecting s-arborescences such that each vertex v in V belongs to $\min \left\{k, d_{A}^{-}(v)\right\}$ of them.

Proof For all $1 \leq j \leq n-1$, in the $j^{t h}$ iteration of the algorithm, by the definition of I, (1) and the definition of $I\left(v_{j}\right)$, we have $|I| \leq \min \left\{k, d_{A}^{+}\left(v_{j}\right)\right\} \leq \min \left\{k, d_{A}^{-}\left(v_{j}\right)\right\}=\left|I\left(v_{j}\right)\right|$. This implies that J exists. By construction, the digraphs T_{1}, \ldots, T_{k} are pairwise arc-disjoint and the in-degree of each vertex $v_{j} \in V_{i}-s$ is 1 in T_{i}. Then, since N is acyclic, T_{i} is an s-arborescence for all $1 \leq i \leq k$. Moreover, $\left|\left\{1 \leq i \leq k: v_{j} \in V_{i}\right\}\right|=|I|+|J|=\left|I\left(v_{j}\right)\right|=\min \left\{k, d_{A}^{-}\left(v_{j}\right)\right\}$ for all $1 \leq j \leq n-1$. To see that T_{i} is time-respecting for all $1 \leq i \leq k$, let v_{j} be a vertex in $V_{i}-s$ and $a \in \delta_{A_{i}}\left(v_{j}\right)$. Then $e_{\pi(i)} \in \rho_{A_{i}}\left(v_{j}\right)$. Suppose on the contrary that $\tau\left(e_{\pi(i)}\right)>\tau(a)$. Since $\tau(g) \geq \tau\left(e_{\pi(i)}\right)>\tau(a)$ for all $g \in \rho_{A}\left(v_{j}\right) \backslash\left\{e_{1}, \ldots, e_{\pi(i)-1}\right\}$, we have $\left|\rho_{N}^{\tau(a)}\left(v_{j}\right)\right| \leq\left|\left\{e_{1}, \ldots, e_{\pi(i)-1}\right\}\right|=\pi(i)-1$. Since $\tau(a) \geq \tau\left(a_{i}\right)=\tau\left(\bar{a}_{\pi(i)}\right) \geq \tau\left(\bar{a}_{\ell}\right)$ for all $1 \leq \ell \leq \pi(i)$ and $\pi(i) \leq|I| \leq k$, we have $\pi(i)=$
$\left|\left\{\bar{a}_{1}, \ldots, \bar{a}_{\pi(i)}\right\}\right| \leq \min \left\{\left|\delta_{N}^{\tau(a)}\left(v_{j}\right)\right|, k\right\}$. Thus $\left|\rho_{N}^{\tau(a)}\left(v_{j}\right)\right|<\min \left\{\left|\delta_{N}^{\tau(a)}\left(v_{j}\right)\right|, k\right\}$ that contradicts (1). This contradiction completes the proof.

Note that Theorem 3 implies Theorem 2. Note also that Theorem 2 implies Theorem 1. Indeed, if N is pre-flow, then (1) is satisfied, so, by Theorem 2 , there exists a packing of $k \tau$-respecting s arborescences such that each vertex v in V belongs to exactly $\min \left\{k, d_{A}^{-}(v)\right\}$ of them. This implies that $\min \left\{k, \lambda_{N}(s, v)\right\}=\min \left\{k, d_{A}^{-}(v)\right\}$ and hence Theorem 1 follows.

4 Packing time-respecting arborescences in non-acyclic pre-flow temporal networks

In [7], Kamiyama and Kawase provide an example of 7 vertices and 12 arcs that shows that in Theorem 1 one can not delete the condition that D is acyclic. Here we provide a smaller example with 5 vertices and 7 arcs, see the first temporal network in Figure 1. Note that this temporal network contains a directed cycle whose arcs are not of the same τ-values and hence the temporal network is not consistent.

Figure 1: Three temporal networks N where the τ-value of an arc is presented on the arc. The first two are non-acyclic pre-flow, the second one is consistent. The third one is acyclic but not pre-flow. They contain no 2 arc-disjoint τ-respecting s-arborescences such that each vertex v belongs to $\min \left\{2, \lambda_{N}(s, v)\right\}$ of them.

The second temporal network in Figure 1 is another example that shows that in Theorem 1 one can not delete the condition that D is acyclic. Here the temporal network contains one directed cycle C and all the arcs of C are of the same τ-values and hence the temporal network is consistent. Note that in this example there exists a packing of three τ-respecting s-arborescences such that each vertex v belongs to exactly $\lambda_{N}(s, v)$ of them.

Kamiyama and Kawase [7] also provide an example of 7 vertices and 12 arcs that shows that in Theorem 1 one can not delete the condition that D is pre-flow. Here we provide a smaller example with 5 vertices and 8 arcs, see the third temporal network in Figure 1.

We now present the main result of this paper on packing of time-respecting arborescences in consistent pre-flow temporal networks where only the natural upper bound is given on the number of arborescences.

Theorem 4 Let $N=(D=(V \cup s, A), \tau)$ be a consistent pre-flow temporal network. There exists a packing of $d_{D}^{+}(s) \tau$-respecting s-arborescences, each vertex v in V belonging to $\lambda_{N}(s, v)$ of them.

To prove Theorem 4, we need an easy observation on almost Eulerian acyclic pre-flow temporal networks. A similar result has already been presented in [7].

Proposition 1 If $N=(D=(V \cup\{s, t\}, A), \tau)$ is an almost Eulerian acyclic temporal network and μ_{v} is a τ-respecting bijection from $\delta_{D}(v)$ to $\rho_{D}(v)$ for all $v \in V$, then D decomposes into $d_{D}^{+}(s)$ τ-respecting (s, t)-paths such that each vertex $v \in V$ belongs to $d_{D}^{-}(v)$ of them.

Proof We prove the claim by induction on $d_{D}^{+}(s)$. If $d_{D}^{+}(s)=0$, then, since D is almost Eulerian and acyclic, we have $d_{D}^{-}(v)=0$ for all $v \in V$ and we are done. Otherwise, there exists an arc leaving s. Then, using the bijections μ_{v}^{-1} and the facts that D is acyclic and μ_{v} is a τ-respecting,
we find a τ-respecting directed (s, t)-path P. By deleting the arcs of P and applying the induction, the claim follows.

We also need the following result of Bang-Jensen, Frank, Jackson [2].
Theorem 5 ([2]) Let $D=(V \cup s, A)$ be a pre-flow directed graph. There exists a packing of s-arborescences, each vertex $v \in V$ belonging to $\lambda_{D}(s, v)$ of them.

We are ready to prove our main result.
Proof (of Theorem 4) First we transform the instance into another one $\boldsymbol{N}^{\prime}=\left(D^{\prime}, \tau^{\prime}\right)$ as follows. The directed graph $\boldsymbol{D}^{\prime}=\left(V \cup\{s, t\}, A \cup A^{\prime}\right)$ is obtained from D by adding a new vertex \boldsymbol{t} and $d_{D}^{-}(v)-d_{D}^{+}(v)$ parallel arcs from v to t for all $v \in V$ and we define $\boldsymbol{\tau}^{\prime}(a)$ to be equal to $\tau(a)$ if $a \in A$ and to M if $a \in A^{\prime}$, where $\boldsymbol{M}=\max \{\tau(a): a \in A\}$. Since N is pre-flow, so is D, that is $d_{D}^{-}(v)-d_{D}^{+}(v) \geq 0$ for all $v \in V$ and hence the construction is correct. This way we get an instance which remains consistent ($\{t\}$ is a new strongly connected component) and pre-flow (by the definition of $M)$ and D^{\prime} is almost Eulerian.

For each vertex $v \in V$, let us fix orderings of $\rho_{D^{\prime}}(v)$ and $\delta_{D^{\prime}}(v)$ such that $\tau^{\prime}\left(e_{1}\right) \leq \cdots \leq$ $\tau^{\prime}\left(e_{d_{D^{\prime}}^{-}(v)}\right)$ and $\tau^{\prime}\left(f_{1}\right) \leq \cdots \leq \tau^{\prime}\left(f_{d_{D^{\prime}}^{+}(v)}\right)$, respectively. Then $\mu_{v}^{\prime}\left(f_{j}\right)=e_{j}$ for all $1 \leq j \leq d_{D^{\prime}}^{+}(v)$ is a τ^{\prime}-respecting bijection for all $v \in V$. Indeed, if there exists j such that $\tau^{\prime}\left(e_{j}\right)=\tau^{\prime}\left(\mu_{v}^{\prime}\left(f_{j}\right)\right)>$ $\tau^{\prime}\left(f_{j}\right)=$: i, then $\left|\rho_{N^{\prime}}^{i}(v)\right| \leq j-1<j \leq\left|\delta_{N^{\prime}}^{i}(v)\right|$ that contradicts the fact that N^{\prime} is pre-flow.

To reduce the problem to an easy acyclic problem that can be treated by Proposition 1 and some problems that can be treated by Theorem 5 , let us denote the strongly connected components of D^{\prime} by $\boldsymbol{Q}_{1}^{\prime}, \ldots, \boldsymbol{Q}_{\ell}^{\prime}$. Let \boldsymbol{U}_{j} denote the vertex set of Q_{j}^{\prime} for all $1 \leq j \leq \ell$. Then the directed graph $\boldsymbol{D}^{\prime \prime}$ obtained from D^{\prime} by contracting each Q_{j}^{\prime} into a vertex $\boldsymbol{q}_{j}^{\prime \prime}$ is acyclic. By changing the indices if it is necessary, we may suppose that $q_{\ell}^{\prime \prime}=s, \ldots, q_{1}^{\prime \prime}=t$ is a topological ordering of the vertices of $D^{\prime \prime}$. Let $\boldsymbol{N}^{\prime \prime}=\left(D^{\prime \prime}, \tau^{\prime \prime}\right)$ be the temporal network where $\boldsymbol{\tau}^{\prime \prime}(a)=\tau^{\prime}(a)$ for all $a \in A\left(D^{\prime \prime}\right)$. Note that since D^{\prime} is almost Eulerian, so is $D^{\prime \prime}$. Indeed, we have $d_{D^{\prime \prime}}^{-}\left(q_{j}^{\prime \prime}\right)-d_{D^{\prime \prime}}^{+}\left(q_{j}^{\prime \prime}\right)=d_{D^{\prime}}^{-}\left(U_{j}\right)-d_{D^{\prime}}^{+}\left(U_{j}\right)=$ $\sum_{v \in U_{j}}\left(d_{D^{\prime}}^{-}(v)-d_{D^{\prime}}^{+}(v)\right)=0$ for all $2 \leq j \leq \ell-1$. Note also that $d_{D}^{+}(s)=d_{D^{\prime}}^{+}(s)=d_{D^{\prime \prime}}^{+}(s)$.

To define a convenient $\tau^{\prime \prime}$-respecting bijection $\mu_{j}^{\prime \prime}$ from $\delta_{D^{\prime \prime}}\left(q_{j}^{\prime \prime}\right)=\delta_{D^{\prime}}\left(U_{j}\right)$ to $\rho_{D^{\prime \prime}}\left(q_{j}^{\prime \prime}\right)=\rho_{D^{\prime}}\left(U_{j}\right)$ for all $2 \leq j \leq \ell-1$, let us fix such a \boldsymbol{j} and let us define the following sets:

$$
\begin{aligned}
\boldsymbol{R}_{j}^{\mathbf{1}} & =\left\{v w \in \delta_{D^{\prime}}\left(U_{j}\right): \tau^{\prime}\left(\mu_{v}^{\prime}(v w)\right)>\tau^{\prime}\left(Q_{j}^{\prime}\right)\right\} \\
\boldsymbol{R}_{j}^{2} & =\left\{v w \in \delta_{D^{\prime}}\left(U_{j}\right): \tau^{\prime}(v w)<\tau^{\prime}\left(Q_{j}^{\prime}\right)\right\} \\
\boldsymbol{R}_{j}^{3} & =\delta_{D^{\prime}}\left(U_{j}\right) \backslash\left(R_{j}^{1} \cup R_{j}^{2}\right) \\
\boldsymbol{S}_{\boldsymbol{j}}^{1} & =\left\{\mu_{v}^{\prime}(v w): v w \in R_{j}^{1}\right\} \\
\boldsymbol{S}_{\boldsymbol{j}}^{\mathbf{2}} & =\left\{\mu_{v}^{\prime}(v w): v w \in R_{j}^{2}\right\} \text { and } \\
\boldsymbol{S}_{j}^{\mathbf{3}} & =\rho_{D^{\prime}}\left(U_{j}\right) \backslash\left(S_{j}^{1} \cup S_{j}^{2}\right)
\end{aligned}
$$

Claim $1\left\{R_{j}^{1}, R_{j}^{2}, R_{j}^{3}\right\}$ is a partition of $\delta_{D^{\prime}}\left(U_{j}\right)$ and $\left\{S_{j}^{1}, S_{j}^{2}, S_{j}^{3}\right\}$ is a partition of $\rho_{D^{\prime}}\left(U_{j}\right)$.
Proof If $v w \in R_{j}^{1}, v^{\prime} w^{\prime} \in R_{j}^{2}, u v=\mu_{v}^{\prime}(v w) \in S_{j}^{1}$ and $u^{\prime} v^{\prime}=\mu_{v^{\prime}}^{\prime}\left(v^{\prime} w^{\prime}\right) \in S_{j}^{2}$, then, since μ_{v}^{\prime} and $\mu_{v^{\prime}}^{\prime}$ are τ^{\prime}-respecting bijections, we have $\tau^{\prime}(v w) \geq \tau^{\prime}\left(\mu_{v}^{\prime}(v w)\right)=\tau^{\prime}(u v)>\tau^{\prime}\left(Q_{j}^{\prime}\right)>\tau^{\prime}\left(v^{\prime} w^{\prime}\right)$ $\geq \tau^{\prime}\left(\mu_{v}^{\prime}\left(v^{\prime} w^{\prime}\right)\right)=\tau^{\prime}\left(u^{\prime} v^{\prime}\right)$. Thus $v w \neq v^{\prime} w^{\prime}$ and $u v \neq u^{\prime} v^{\prime}$, so $R_{j}^{1} \cap R_{j}^{2}=\emptyset$ and $S_{j}^{1} \cap S_{j}^{2}=\emptyset$. By the definition of R_{j}^{1} and R_{j}^{2}, we have $R_{j}^{1} \cup R_{j}^{2} \subseteq \delta_{D^{\prime}}\left(U_{j}\right)$. If $v w \in R_{j}^{1}$, then $\tau^{\prime}\left(\mu_{v}^{\prime}(v w)\right)>\tau^{\prime}\left(Q_{j}^{\prime}\right)$. If $v w \in R_{j}^{2}$, then, since μ_{v}^{\prime} is a τ^{\prime}-respecting bijection, we get $\tau^{\prime}\left(\mu_{v}^{\prime}(v w)\right) \leq \tau^{\prime}(v w)<\tau^{\prime}\left(Q_{j}^{\prime}\right)$. Then, using that each arc in Q_{j}^{\prime} has τ^{\prime}-value $\tau^{\prime}\left(Q_{j}^{\prime}\right)$, we have $S_{j}^{1} \cup S_{j}^{2} \subseteq \rho_{D^{\prime}}\left(U_{j}\right)$. By the definition of R_{j}^{3} and S_{j}^{3}, Claim 1 follows.

We now start to define $\mu_{j}^{\prime \prime}$. For $v w \in R_{j}^{1} \cup R_{j}^{2}$, let $\mu_{j}^{\prime \prime}(v w)=\mu_{v}^{\prime}(v w)$. Since each μ_{v}^{\prime} is τ^{\prime} respecting, we have $\tau^{\prime \prime}(v w)=\tau^{\prime}(v w) \geq \tau^{\prime}\left(\mu_{v}^{\prime}(v w)\right)=\tau^{\prime \prime}\left(\mu_{v}^{\prime \prime}(v w)\right)$. Note that for all $x y \in R_{j}^{3}$ and for all $u v \in S_{j}^{3}, \tau^{\prime}(x y) \geq \tau^{\prime}\left(Q_{j}^{\prime}\right) \geq \tau^{\prime}(u v)$. However, we cannot take an arbitrary bijection from R_{j}^{3} to S_{j}^{3} because we have to guarantee that the vertices in Q_{j}^{\prime} also belong to the required number of arborescences. In order to do this, let us define the temporal network $\boldsymbol{N}_{\boldsymbol{j}}^{\prime}=\left(D_{j}^{\prime}, \tau_{j}^{\prime}\right)$ where the directed graph $\boldsymbol{D}_{\boldsymbol{j}}^{\prime}$ is obtained from D^{\prime} by contracting $\bigcup_{i>j} U_{i}$ into a vertex $\boldsymbol{s}_{\boldsymbol{j}}$, contracting $\bigcup_{i<j} U_{i}$ into a vertex $\boldsymbol{t}_{\boldsymbol{j}}$ and deleting the arcs from s_{j} to t_{j} and $\boldsymbol{\tau}_{\boldsymbol{j}}^{\prime}(a)=\tau^{\prime}(a)$ for all $a \in A\left(D_{j}^{\prime}\right)$.

Claim $2 N_{j}^{\prime}$ satisfies the following.
(a) D_{j}^{\prime} is almost Eulerian,
(b) $\lambda_{D_{j}^{\prime}}\left(s_{j}, t_{j}\right)=d_{D_{j}^{\prime}}^{-}\left(t_{j}\right)$,
(c) $\lambda_{N_{j}^{\prime}}\left(s_{j}, v\right) \geq \lambda_{N^{\prime}}(s, v)$ for all $v \in U_{j}$.

Proof (a) Since D^{\prime} is almost Eulerian, so is D_{j}^{\prime}. Indeed, we have $d_{D_{j}^{\prime}}^{-}(v)=d_{D^{\prime}}^{-}(v)=d_{D^{\prime}}^{+}(v)=d_{D_{j}^{\prime}}^{+}(v)$ for all $v \in U_{j}$.
(b) By (a) and $d_{D_{j}^{\prime}}^{-}\left(s_{j}\right)=0=d_{D_{j}^{\prime}}^{+}\left(t_{j}\right)$, (b) easily follows. Indeed, let $\boldsymbol{r}_{\boldsymbol{j}}=d_{D_{j}^{\prime}}^{-}\left(t_{j}\right)$ and let us define \boldsymbol{D}_{j}^{*} by adding r_{j} arcs $\left\{\boldsymbol{h}_{\mathbf{1}}, \ldots, \boldsymbol{h}_{r_{j}}\right\}$ from t_{j} to s_{j} in D_{j}^{\prime}. Then, by (a), D_{j}^{*} is Eulerian. Thus it decomposes into directed cycles. Let $\boldsymbol{C}_{\mathbf{1}}, \ldots, \boldsymbol{C}_{\boldsymbol{r}_{\boldsymbol{j}}}$ be the arc-disjoint directed cycles that contain the $\operatorname{arcs} h_{1}, \ldots, h_{r_{j}}$. Then $\boldsymbol{P}_{\mathbf{1}}=C_{1}-h_{1}, \ldots, \boldsymbol{P}_{\boldsymbol{r}_{\boldsymbol{j}}}=C_{r_{j}}-h_{r_{j}}$ are arc-disjoint directed $\left(s_{j}, t_{j}\right)$-paths. Hence $r_{j} \leq \lambda_{D_{j}^{\prime}}\left(s_{j}, t_{j}\right) \leq r_{j}$, and we have (b).
(c) For all $v \in U_{j}$, any τ^{\prime}-respecting (s, v)-path in N^{\prime} provides a τ_{j}^{\prime}-respecting $\left(s_{j}, v\right)$-path in N_{j}^{\prime}, and (c) follows.

To be able to use normal arborescences (not time-respecting ones), we have to modify D_{j}^{\prime}. No τ-respecting directed path in D may contain an arc in S_{j}^{1} and an arc in Q_{j}^{\prime}, hence the corresponding arcs in R_{j}^{1} and S_{j}^{1} will be deleted from D_{j}^{\prime}. A τ-respecting s-arborescence in D may contain an $\operatorname{arc} \mu_{v}^{\prime}(v w)$ in $S_{j}^{2}\left(\right.$ where $\left.v w \in R_{j}^{2}\right)$ and an arc in Q_{j}^{\prime}, but this arborescence must contain $v w$. To guarantee this property we use a trick: we replace the corresponding two arcs in R_{j}^{2} and S_{j}^{2} in D_{j}^{\prime} by two convenient arcs. More precisely, let $\boldsymbol{H}_{\boldsymbol{j}}$ be obtained from D_{j}^{\prime} by deleting $s_{j} v$ and $v t_{j}$ that correspond to $\mu_{v}^{\prime}(v w)$ and $v w$ for all $v w \in R_{j}^{1}$ and replacing $s_{j} v$ and $v t_{j}$ that correspond to $\mu_{v}^{\prime}(v w)$ and $v w$ for all $v w \in R_{j}^{2}$ by $\boldsymbol{e}_{\boldsymbol{v} \boldsymbol{w}}=s_{j} t_{j}$ and $\boldsymbol{f}_{\boldsymbol{v} \boldsymbol{w}}=t_{j} v$. Let $\boldsymbol{E}_{\boldsymbol{j}}=\left\{e_{v w}: v w \in R_{j}^{2}\right\}$ and $\boldsymbol{F}_{\boldsymbol{j}}$ $=\left\{f_{v w}: v w \in R_{j}^{2}\right\}$.

Claim $3 H_{j}$ satisfies the following.
(a) H_{j} is pre-flow,
(b) $\lambda_{H_{j}}\left(s_{j}, t_{j}\right)=d_{H_{j}}^{-}\left(t_{j}\right)$,
(c) $\lambda_{H_{j}}\left(s_{j}, v\right) \geq \lambda_{N_{j}^{\prime}}\left(s_{j}, v\right)-d_{S_{j}^{1}}^{-}(v)$ for all $v \in U_{j}$.

Proof (a) By Claim 2(a), D_{j}^{\prime} is almost Eulerian. Then, by $\delta_{D_{j}^{\prime}}\left(t_{j}\right)=\emptyset, D_{j}^{\prime}$ is pre-flow. By deleting from D_{j}^{\prime} the $\operatorname{arcs} s_{j} v$ and $v t_{j}$ that correspond to $\mu_{v}^{\prime}(v w)$ and $v w$ for all $v w \in R_{j}^{1}$, we decreased the in-degree and the out-degree of each vertex by the same value so the directed graph obtained this way remained pre-flow. By replacing $s_{j} v$ and $v t_{j}$ that correspond to $\mu_{v}^{\prime}(v w)$ and $v w$ for all $v w \in R_{j}^{2}$ by $s_{j} t_{j}$ and $t_{j} v$, we may decrease the out-degrees of the vertices in Q_{j}^{\prime} but the in-degrees remained unchanged. Further, $d_{H_{j}}^{+}\left(t_{j}\right)=d_{D_{j}^{\prime}}^{+}\left(t_{j}\right)+\left|F_{j}\right|=\left|E_{j}\right| \leq d_{H_{j}}^{-}\left(t_{j}\right)$. It follows that H_{j} is pre-flow.
(b) Note that for all $t_{j} \in X \subseteq U_{j} \cup t_{j}, d_{H_{j}}^{-}(X)=d_{D_{j}^{\prime}}^{-}(X)-\left|R_{j}^{1}\right|$. Then, by Claim 2(b), we have $d_{H_{j}}^{-}\left(t_{j}\right) \geq \lambda_{H_{j}}\left(s_{j}, t_{j}\right) \geq \lambda_{D_{j}^{\prime}}\left(s_{j}, t_{j}\right)-\left|R_{j}^{1}\right|=d_{D_{j}^{\prime}}^{-}\left(t_{j}\right)-\left|R_{j}^{1}\right|=d_{H_{j}}^{-}\left(t_{j}\right)$ and (b) follows.
(c) On the one hand, by deleting the arcs corresponding to $\rho_{S_{j}^{1}}(v)$, we destroyed at most $d_{S_{j}^{1}}^{-}(v)$ τ_{j}^{\prime}-respecting $\left(s_{j}, v\right)$-paths in N_{j}^{\prime} and we did not destroy a τ_{j}^{\prime}-respecting $\left(s_{j}, u\right)$-path in N_{j}^{\prime} for $u \in U_{j} \backslash v$ because each arc in Q_{j}^{\prime} has τ_{j}^{\prime}-value $\tau_{j}^{\prime}\left(Q_{j}^{\prime}\right)$ and each arc in $\rho_{S_{j}^{1}}(v)$ has τ_{j}^{\prime}-value strictly larger than $\tau_{j}^{\prime}\left(Q_{j}^{\prime}\right)$. On the other hand, if a τ_{j}^{\prime}-respecting $\left(s_{j}, u\right)$-path P contains $s_{j} v$ (corresponding to $\mu_{v}^{\prime}(v w)$ for some $\left.v w \in R_{j}^{2}\right)$ in N_{j}^{\prime} then $P-s_{j} v+e_{v w}+f_{v w}$ is a directed $\left(s_{j}, u\right)$-path in H_{j}. These arguments imply (c).

By Claim 3(a) and Theorem 5 , there exists a packing \mathcal{B}_{j} of s_{j}-arborescences $\boldsymbol{T}_{\boldsymbol{j}}^{\boldsymbol{i}}$ in H_{j}, each vertex $v \in U_{j} \cup t_{j}$ belonging to $\lambda_{H_{j}}\left(s_{j}, v\right)$ of them. Let us choose such a packing $\mathcal{B}_{\boldsymbol{j}}$ that minimizes the size of the set $\boldsymbol{F}_{\mathcal{B}_{j}}$ of the $\operatorname{arcs} f_{v w} \in F_{j}$ such that an arborescence $\boldsymbol{T}_{\boldsymbol{j}}^{\boldsymbol{f}}{ }^{\boldsymbol{w}}$ in \mathcal{B}_{j} contains $f_{v w}$ but not $e_{v w}$.

Claim $4 \mathcal{B}_{j}$ satisfies the following.
(a) $d_{H_{j}}^{+}\left(s_{j}\right)=\left|\mathcal{B}_{j}\right|=d_{H_{j}}^{-}\left(t_{j}\right)$,
(b) $F_{\mathcal{B}_{j}}=\emptyset$,
(c) $\left\{T_{j}^{i}-s_{j}-t_{j}: T_{j}^{i} \in \mathcal{B}_{j}\right\}$ is a packing of arborescences in Q_{j}^{\prime}, each vertex $v \in U_{j}$ belonging to $\lambda_{H_{j}}\left(s_{j}, v\right)$ of them.

Proof (a) By Claim 3(b), t_{j} belongs to $\lambda_{H_{j}}\left(s_{j}, t_{j}\right)=d_{H_{j}}^{-}\left(t_{j}\right)$ of the s_{j}-arborescences in \mathcal{B}_{j}. Thus each arc entering t_{j} belongs to some s_{j}-arborescence in \mathcal{B}_{j} and $d_{H_{j}}^{-}\left(t_{j}\right) \leq\left|\mathcal{B}_{j}\right|$. Moreover, by construction and since D_{j}^{\prime} is almost Eulerian, we have $d_{H_{j}}^{-}\left(t_{j}\right)=d_{D_{j}^{\prime}}^{-}\left(t_{j}\right)-\left|R_{j}^{1}\right|=d_{D_{j}^{\prime}}^{+}\left(s_{j}\right)-\left|S_{j}^{1}\right|=$ $d_{H_{j}}^{+}\left(s_{j}\right) \geq\left|\mathcal{B}_{j}\right|$, and (a) follows.
(b) Suppose that $F_{\mathcal{B}_{j}} \neq \emptyset$. Let $\boldsymbol{E}_{\mathcal{B}_{j}}=\left\{e_{v w}: f_{v w} \in F_{\mathcal{B}_{j}}\right\}$. By (a), every $e_{v w} \in E_{\mathcal{B}_{j}}$ is contained in an s_{j}-arborescence $\boldsymbol{T}_{\boldsymbol{j}}^{\boldsymbol{e}_{v w}}$ in \mathcal{B}_{j}.

First suppose that for some $\boldsymbol{e}_{\boldsymbol{v w}} \in E_{\mathcal{B}_{j}}, T_{j}^{e_{v w}}$ contains only the arc $e_{v w}$. Note that $T_{j}^{f_{v w}}-f_{v w}$ consists of an s_{j}-arborescence T_{j}^{\prime} and a v-arborescence $T_{j}^{\prime \prime}$. Let \mathcal{B}_{j}^{\prime} be obtained from \mathcal{B}_{j} by replacing $T_{j}^{f_{v w}}$ by T_{j}^{\prime} and $T_{j}^{e_{v w}}$ by $e_{v w}+f_{v w}+T_{j}^{\prime \prime}$. Then \mathcal{B}_{j}^{\prime} is a packing of s_{j}-arborescences in H_{j} such that each vertex $v \in U_{j} \cup t_{j}$ belongs to $\lambda_{H_{j}}\left(s_{j}, v\right)$ of them. Moreover, $f_{v w}$ and $e_{v w}$ belong to the same s_{j}-arborescence in \mathcal{B}_{j}^{\prime}, that is $\left|F_{\mathcal{B}_{j}^{\prime}}\right|<\left|F_{\mathcal{B}_{j}}\right|$ and we have a contradiction.

We may hence suppose that for every $e_{v w} \in E_{\mathcal{B}_{j}}, T_{j}^{e_{v w}}$ contains another arc, so by (a), contains an arc in $F_{\mathcal{B}_{j}}$. Let \mathcal{B}_{j}^{\prime} be the set of those s_{j}-arborescences in \mathcal{B}_{j} that contain an arc of $F_{\mathcal{B}_{j}}$. Then $\left|F_{\mathcal{B}_{j}}\right|=\left|E_{\mathcal{B}_{j}}\right| \leq\left|\mathcal{B}_{j}^{\prime}\right| \leq\left|F_{\mathcal{B}_{j}}\right|$. Hence we have equality everywhere. It follows that every s_{j}-arborescences in \mathcal{B}_{j}^{\prime} contains exactly one arc from both $F_{\mathcal{B}_{j}}$ and $E_{\mathcal{B}_{j}}$. Then for every $f_{v w} \in F_{\mathcal{B}_{j}}$, $T_{j}^{f f_{v w}}$ contains an arc $e_{v^{\prime} w^{\prime}} \in E_{\mathcal{B}_{j}}$. Let $\mathcal{B}_{j}^{\prime \prime}$ be obtained from \mathcal{B}_{j} by replacing $e_{v^{\prime} w^{\prime}}$ by $e_{v w} \in E_{\mathcal{B}_{j}}$ in $T_{j}^{f_{v w}}$ for every $f_{v w} \in F_{\mathcal{B}_{j}}$. Then $\mathcal{B}_{j}^{\prime \prime}$ is a packing of s_{j}-arborescences in H_{j} such that each vertex $v \in U_{j} \cup t_{j}$ belongs to $\lambda_{H_{j}}\left(s_{j}, v\right)$ of them. Moreover, $F_{\mathcal{B}_{j}^{\prime \prime}}=\emptyset$ and we have a contradiction.
(c) follows from the definition of \mathcal{B}_{j}, (a) and (b).

We now finish the definition of $\mu_{j}^{\prime \prime}$. Let $v w \in R_{j}^{3}$. Then $v w$ corresponds in H_{j} to an arc $\boldsymbol{g}_{\boldsymbol{v w}}=v t_{j}$ entering t_{j}. By Claim 4(a), $g_{v w}$ belongs to an s_{j}-arborescence $\boldsymbol{T}_{j}^{\boldsymbol{g}_{\boldsymbol{v}}}$ in \mathcal{B}_{j}. Let us define $\boldsymbol{\mu}_{j}^{\prime \prime}(v w) \in S_{j}^{3}$ to be the arc $x q_{j}^{\prime \prime}$ of $D^{\prime \prime}$ that corresponds to the arc $s_{j} u$ in H_{j} of the unique $\left(s_{j}, t_{j}\right)$-path of $T_{j}^{g_{v w}}$. Then $\tau_{j}^{\prime \prime}(v w)=\tau_{j}^{\prime}(v w) \geq \tau_{j}^{\prime}\left(Q_{j}^{\prime}\right) \geq \tau_{j}^{\prime}\left(x q_{j}^{\prime \prime}\right)=\tau_{j}^{\prime \prime}\left(\mu_{j}^{\prime \prime}(v w)\right)$ for all $v w \in R_{j}^{3}$.

By the definition of $\mu_{j}^{\prime \prime}$ and Claim 1, we have a $\tau^{\prime \prime}$-respecting bijection $\mu_{j}^{\prime \prime}$ from $\delta_{D^{\prime \prime}}\left(q_{j}^{\prime \prime}\right)$ to $\rho_{D^{\prime \prime}}\left(q_{j}^{\prime \prime}\right)$ for all $2 \leq j \leq \ell-1$. Recall that $D^{\prime \prime}$ is acyclic and almost Eulerian. Then, by Proposition 1 and $d_{D}^{+}(s)=d_{D^{\prime \prime}}^{+}(s), D^{\prime \prime}$ decomposes into $\tau^{\prime \prime}$-respecting (s, t)-paths $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{d}_{D}^{+}(s)}$ such that each vertex $q_{j}^{\prime \prime} \neq s$ belongs to $d_{D^{\prime \prime}}^{-\prime}\left(q_{j}^{\prime \prime}\right)$ of them. These paths can be extended, using from Claim 4(c) the arborescences $T_{j}^{i}-s_{j}-t_{j}$ in Q_{j}^{\prime} for $1 \leq i \leq d_{H_{j}}^{+}\left(s_{j}\right)$ and $2 \leq j \leq \ell-1$, to get s-arborescences in D^{\prime} such that each vertex $v \in V$ belongs to $\lambda_{H_{j}}\left(s_{j}, v\right)+d_{S_{j}^{1}}^{-}(v) \geq \lambda_{N_{j}^{\prime}}\left(s_{j}, v\right) \geq \lambda_{N^{\prime}}(s, v)$ of them, by Claims 3(b) and 2(c). Since the directed paths $P_{1}, \ldots, P_{d_{D}^{+}(s)}$ are $\tau^{\prime \prime}$-respecting, that is τ^{\prime}-respecting and D^{\prime} is consistent, the arborescences constructed are τ^{\prime}-respecting. Hence N^{\prime} has a packing of τ^{\prime}-respecting s-arborescences $\boldsymbol{T}_{1}^{\prime}, \ldots, \boldsymbol{T}_{d_{D}^{+}(s)}^{\prime}$ such that each vertex v of D^{\prime} distinct from s and t belongs to $\lambda_{N^{\prime}}(s, v)=\lambda_{N}(s, v)$ of them, and hence $\left\{\boldsymbol{T}_{\mathbf{1}}=T_{1}^{\prime}-t, \ldots, \boldsymbol{T}_{\boldsymbol{d}_{D}^{+}(s)}=T_{d_{D}^{+}(s)}^{\prime}-t\right\}$ is a packing of τ-respecting s-arborescences such that each vertex v of D distinct from s belongs to $\lambda_{N}(s, v)$ of them.

5 Arc-disjoint spanning time-respecting arborescences

Edmonds' arborescence packing theorem [3] states that k-root-connectivity from s implies the existence of a packing of k spanning s-arborescences. The following observation of [8] shows that the natural extension of Edmonds theorem for $k=1$ is true for temporal networks.

Theorem $6([8])$ Any τ-respecting root-connected temporal network $N=((V \cup s, A), \tau)$ contains a spanning τ-respecting s-arborescence.

The authors of [8] show that high time-respecting root-connectivity of a temporal network does not imply the existence of 2 arc-disjoint spanning time-respecting arborescences.

Theorem $7([8])$ For all $k \in \mathbb{N}^{+}$, there exist temporal networks $N=((V \cup s, A), \tau)$ such that $\lambda_{N}(s, v) \geq k$ for all $v \in V$ and no packing of 2 spanning τ-respecting s-arborescences exists in N.

Their construction contains directed cycles but it can be easily modified to get an acyclic example. This acyclic example for $k=2$ is presented in Figure 2 in [7].

We now relate the spanning time-respecting arborescence packing problem to known problems, namely the Steiner arborescence packing problem and the hypergraph proper 2-coloring problem. To do that we explain how the above mentioned modified construction can be obtained in 3 steps. First, take a k-uniform hypergraph without proper 2 -coloring. Then construct a directed graph that is Steiner k-root-connected without 2 arc-disjoint Steiner arborescences. Finally, construct an acyclic temporal network that is time-respecting k-root-connected without 2 arc-disjoint spanning time-respecting arborescences.

There exist many constructions for k-uniform hypergraphs without proper 2 -coloring, see [1], [8] and Exercice 13.45 (b) of [9]. We mention that, by a result of Erdős [4], all examples contain exponentially many hyperedges in k.

Theorem 8 [4] Any k-uniform hypergraph without a proper 2 -coloring contains at least 2^{k-1} hyperedges.

We now show that starting from an arbitrary k-uniform hypergraph $\mathcal{H}_{k}=\left(V_{k}, \mathcal{E}_{k}\right)$ without proper 2-coloring how to construct an acyclic directed graph D_{k} and a vertex set U_{k} such that $\lambda_{D_{k}}(s, u)=k$ for all $u \in U_{k}$ and there exists no packing of two (s, U_{k}) -arborescences in D_{k}. Let $\boldsymbol{G}_{\boldsymbol{k}}$ $:=\left(V_{k}, U_{k} ; E_{k}\right)$ be the bipartite incidence graph of the hypergraph \mathcal{H}_{k}, where the elements of $\boldsymbol{U}_{\boldsymbol{k}}$ correspond to the hyperedges in \mathcal{E}_{k}. Let $\boldsymbol{D}_{\boldsymbol{k}}=\left(V_{k} \cup U_{k} \cup s, A_{k}\right)$ be obtained from G_{k} by adding a vertex s and an arc $s v$ for all $v \in V_{k}$ and directing each edge of E_{k} from V_{k} to U_{k}. By construction D_{k} is acyclic. Since \mathcal{H}_{k} is k-uniform, we have $\lambda_{D_{k}}(s, u)=k$ for all $u \in U_{k}$.

Theorem $9 D_{k}$ has no packing of two $\left(s, U_{k}\right)$-arborescences.
Proof Suppose that there exists a packing of $2\left(s, U_{k}\right)$-arborescences F_{1} and F_{2} in D_{k}. Using this packing, we can define a 2 -coloring of V_{k} : let $v \in V_{k}$ be colored by 1 if $s v \in A\left(F_{1}\right)$ and by 2 otherwise. Since each vertex in U_{k} belongs to both F_{1} and F_{2}, no hyperedge of \mathcal{E}_{k} is monochromatic, that is the above defined 2 -coloring of \mathcal{H}_{k} is proper. This contradicts the fact that \mathcal{H}_{k} has no proper 2-coloring.

As a next step, we show that starting from the acyclic directed graph D_{k} and the vertex set U_{k}, how to construct a temporal network N_{k} such that $\lambda_{N_{k}}(s, v)=k$ for all vertices v and no packing of 2 spanning time-respecting s-arborescences exists in N. Let us define $\boldsymbol{N}_{\boldsymbol{k}}:=\left(D_{k}^{*}, \tau_{k}^{*}\right)$ as follows: $\boldsymbol{D}_{\boldsymbol{k}}^{*}$ is obtained from D_{k} by adding the set of arcs $\boldsymbol{A}_{\boldsymbol{k}}^{*}$ consisting of $k-1$ parallel arcs from s to all $v \in V_{k}$ and we define $\tau_{\boldsymbol{k}}^{*}(a)=1$ if $a \in A_{k}$ and 2 if $a \in A_{k}^{*}$. Note that since D_{k} is acyclic, so is D_{k}^{*}. Then a spanning s-arborescence F^{*} of D_{k}^{*} is τ_{k}^{*}-respecting if and only if $F^{*}-A_{k}^{*}$ is an $\left(s, U_{k}\right)$-arborescence in D_{k}. Thus a packing of 2 spanning τ_{k}^{*}-respecting s-arborescences in D_{k}^{*} would provide a packing of $2\left(s, U_{k}\right)$-arborescences in D_{k}. Hence, the following result is an immediate consequence of Theorem 9 .

Theorem 10 For all $k \in \mathbb{N}^{+}$, there exist acyclic temporal networks $N=((V \cup s, A), \tau)$ such that $\lambda_{N}(s, v) \geq k$ for all $v \in V$ and no packing of 2 spanning τ-respecting s-arborescences exists in N.

These examples of acyclic temporal networks that are time-respecting k-root-connected without 2 arc-disjoint spanning time-respecting arborescences contain, by Theorem 8 , exponentially many vertices in k. In other words, $k \leq \log (n)$ where n is the number of vertices. In the light of this
fact, it is natural to ask whether there exist 2 arc-disjoint spanning time-respecting arborescences in a temporal network if k is linear in n. The examples of Figure 1 show that time-respecting $(n-3)$-root-connectivity does not imply the existence of 2 arc-disjoint spanning time-respecting arborescences. We propose the first steps in this direction. We first remark that n-root-connectivity is enough.

Claim 5 Let $N=((V \cup s, A), \tau)$ be a temporal network on $n \geq 1$ vertices such that $\lambda_{N}(s, v) \geq n$ for all $v \in V$. Then there exists a packing of 2 spanning τ-respecting s-arborescences in N.

Proof Since $\lambda_{N}(s, v) \geq n \geq 1$ for all $v \in V$, there exists, by Theorem 6 , a spanning τ-respecting s-arborescence \boldsymbol{F} in N. Further, there exist n arc-disjoint τ-respecting (s, v)-paths $\boldsymbol{P}_{\mathbf{1}}^{\boldsymbol{v}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}^{\boldsymbol{v}}$ for all $v \in V$. By deleting the arcs of F, we can destroy at most $|A(F)|$ of the (s, v)-paths $P_{1}^{v}, \ldots, P_{n}^{v}$ for all $v \in V$. Since $|A(F)|=n-1$, this implies that $\lambda_{N-A(F)}(s, v) \geq n-(n-1)=1$ for all $v \in V$. Then, there exists, by Theorem 6 , a spanning τ-respecting s-arborescence \boldsymbol{F}^{\prime} in $N-A(F)$, and we are done.

With some effort we can improve the previous result by 1.
Theorem 11 Let $N=((V \cup s, A), \tau)$ be a temporal network on $n \geq 2$ vertices such that $\lambda_{N}(s, v) \geq$ $n-1$ for all $v \in V$. Then there exists a packing of 2 spanning τ-respecting s-arborescences in N.

Proof Since $\lambda_{N}(s, v) \geq n-1 \geq 1$ for all $v \in V$, there exists, by Theorem 6 , a spanning τ respecting s-arborescence \boldsymbol{F} in N. Let $\boldsymbol{F}(\boldsymbol{v})$ be the unique arc of F entering v for all $v \in V$. Note that $A(F)=\{F(v): v \in V\}$. If $\lambda_{N-A(F)}(s, v) \geq 1$ for all $v \in V$ then there exists, by Theorem 6 , a spanning τ-respecting s-arborescence in $N-A(F)$, and we are done.

Otherwise, $\lambda_{N-A(F)}(s, u)=0$ for some $\boldsymbol{u} \in V$. By assumption, there exist $n-1$ arc-disjoint τ-respecting (s, u)-paths $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}-\boldsymbol{1}}$. Then, since $|V|=n-1$, there exists a bijection $\boldsymbol{\pi}$ from V to $\{1, \ldots, n-1\}$ such that $F(v)$ is contained in $P_{\pi(v)}$ for all $v \in V$. It follows that no arc leaves u in F. Let $\boldsymbol{w} \in V-u$ be a vertex for which $\tau(F(w))$ is maximum. Let the last arc of $P_{\pi(w)}$ be denoted by $\boldsymbol{x u}$. Then, since $F(u)$ is the last arc of the path $P_{\pi(u)}$ and the paths are arc-disjoint, $F(u) \neq x u$. By the choice of w and since $P_{\pi(w)}$ is τ-respecting, we have $\tau(F(x)) \leq \tau(F(w)) \leq \tau(x u)$. We obtain that $\boldsymbol{F}^{\prime}:=F-F(u)+x u \neq F$ is also a spanning τ-respecting s-arborescence in N.

By assumption and $|A(F)-F(u)|=n-2$, we have $\lambda_{N-(A(F)-F(u))}(s, v) \geq(n-1)-(n-2)=1$ for all $v \in V$. Then, by Theorem 6, there exists a spanning τ-respecting s-arborescence $\boldsymbol{F}^{\prime \prime}$ in $N-(A(F)-F(u))$. Since $F^{\prime \prime}$ contains a unique arc entering u, it does not contain either $F(u)$ or $x u$. Thus, $F^{\prime \prime}$ is arc-disjoint from either F or F^{\prime}, and we are done.

We conjecture that the following is true.
Conjecture 1 Let $N=((V \cup s, A), \tau)$ be an acyclic temporal network on $n \geq 4$ vertices such that $\lambda_{N}(s, v) \geq \frac{n}{2}$ for all $v \in V$. Then a packing of 2 spanning τ-respecting s-arborescences exists in N.

The third example presented in Figure 1 is of 5 vertices, acyclic, time-respecting 2-rootconnected and has no packing of 2 spanning τ-respecting s-arborescences. It follows that timerespecting $\frac{2 n}{5}$-root-connectivity is not enough to have a packing of 2 spanning time-respecting s-arborescences in acyclic temporal networks.

6 Complexity results

Lovász [10] proved that the problem of 2-colorings of k-uniform hypergraphs is NP-complete. This implies that the problem of packing 2 Steiner arborescences is also NP-complete. An easier way to see this is to use the NP-complete problem of two arc-disjoint directed paths in a directed graph D, one from r to t and the other from t to r. (See [6].) Construct D^{\prime} from D by adding a new vertex s and the two arcs $s r$ and st. Then D has an (r, t)-path and a (t, r)-path that are arc-disjoint if and only if D^{\prime} has a packing of $2(s,\{r, t\})$-arborescences. This with the construction presented in the previous section finally imply the following.

Theorem 12 The problem of packing k spanning time-respecting arborescences is NP-complete even for $k=2$.

Let us check what happens if we replace the inequality with equality in the definition of timerespecting directed paths and we consider the values of τ as colors. Then we get monochromatic directed paths. We may hence study the following problem MoChPaSpAr:

Problem 1 Given a directed graph $D=(Z \cup s, A)$ and a coloring c of the arcs, decide whether there exists a spanning s-arborescence containing only monochromatic directed paths.

We show that this decision problem is difficult. We will reduce the exact cover in 3 -regular 3 -uniform hypergraphs problem (RXC3) to our problem. In RXC3, we are given a 3-regular 3uniform hypergraph $\mathcal{H}=(V, \mathcal{E})$, and the problem consists of determining whether there exists a subset \mathcal{E}^{\prime} of \mathcal{E} such that each vertex in V occurs in exactly one hyperedge in \mathcal{E}^{\prime}. Gonzalez proved in [5] that RXC3 is NP-complete.

Theorem 13 The problem MoChPASpAR is NP-complete even for acyclic directed graphs and for two colors.

Proof It is clear that MoChPaSpAr is in NP. Let us take an instance of RXC3, that is let \mathcal{H} be a 3 -regular 3 -uniform hypergraph. We construct a polynomial size instance (D, c) of MoChPaSpAr such that \mathcal{H} has an exact cover if and only if (D, c) has a spanning s-arborescence containing only monochromatic directed paths. Since \mathcal{H} is a 3 -regular 3 -uniform hypergraph, the number of vertices of \mathcal{H} and the number of hyperedges of \mathcal{H} coincide. Let us denote the vertices of \mathcal{H} by $V=\left\{v_{1}, \ldots, v_{h}\right\}$ and the hyperedges of \mathcal{H} by $\mathcal{E}=\left\{H_{1}, \ldots, H_{h}\right\}$.

Let $\boldsymbol{D}=(Z \cup s, A)$ be the directed graph where $\boldsymbol{Z}=U \cup V \cup W$ and $\boldsymbol{A}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ with $\boldsymbol{U}=\left\{u_{1}, \ldots, u_{h}\right\}, \boldsymbol{W}=\left\{w_{i, j}: H_{i} \cap H_{j} \neq \emptyset\right\}, \boldsymbol{A}_{\mathbf{1}}=\left\{e_{i}^{1}=s u_{i}: 1 \leq i \leq h\right\}, \boldsymbol{A}_{\mathbf{2}}=\left\{e_{i}^{2}=s u_{i}\right.$: $1 \leq i \leq h\}, \boldsymbol{A}_{\mathbf{3}}=\left\{u_{i} v_{j}: u_{i} \in U, v_{j} \in V, v_{j} \in H_{i}\right\}$ and $\boldsymbol{A}_{\mathbf{4}}=\left\{u_{i} w_{i, j}, u_{j} w_{i, j}: u_{i}, u_{j} \in U, w_{i, j} \in W\right\}$. Let $\boldsymbol{c}(a)$ be equal to black if $a \in A_{1} \cup A_{3}$ and grey if $a \in A_{2} \cup A_{4}$. Note that D is acyclic and c uses only two colors. For an example see Figure 2.

Figure 2: A 3-regular 3-uniform hypergraph and the constructed colored directed graph for it.

The size of D is polynomial in h. Indeed, since \mathcal{H} is a 3-regular 3-uniform hypergraph, $|W| \leq$ $\frac{1}{2} \cdot 3 \cdot 2 \cdot h$, so $|Z \cup s|=|U|+|V|+|W|+1 \leq h+h+3 h+1=5 h+1$ and $|A|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right| \leq$ $h+h+3 h+2 \cdot 3 h=11 h$.

Suppose first that \mathcal{H} has an exact cover \mathcal{H}^{\prime}. Let \boldsymbol{Z}^{\prime} be the set of vertices of D that can be reached from s by a black directed path starting with an arc $s u_{i}$ with $H_{i} \in \mathcal{H}^{\prime}$ and $Z^{\prime \prime}$ by a grey directed path starting with an arc $s u_{i}$ with $H_{i} \notin \mathcal{H}^{\prime}$. Since \mathcal{H}^{\prime} is a cover, we have $Z^{\prime}=V \cup\left\{u_{i}: H_{i} \in \mathcal{H}^{\prime}\right\}$. Since the hyperedges in \mathcal{H}^{\prime} are disjoint, we have $Z^{\prime \prime}=\left\{u_{i}: H_{i} \notin \mathcal{H}^{\prime}\right\} \cup W$. Since $Z^{\prime} \cap Z^{\prime \prime}=s$, the desired spanning s-arborescence containing only monochromatic directed paths exists. In the example of Figure 2, $\mathcal{H}^{\prime}=\left\{H_{1}, H_{6}\right\}, Z^{\prime}=V \cup\left\{u_{1}, u_{6}\right\}, Z^{\prime \prime}=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\} \cup W$ and the arborescence is represented by bold arcs.

Now suppose that (D, c) has a spanning s-arborescence \boldsymbol{F} containing only monochromatic directed paths. Let $\mathcal{H}^{\prime}=\left\{H_{j}: u_{j} \in U, v_{i} \in V, u_{j} v_{i} \in F\right\}$. Since F is a spanning s-arborescence, each vertex v_{i} has exactly one black arc $u_{j} v_{i}$ in F entering. This implies that \mathcal{H}^{\prime} covers V. Let $H_{j}, H_{k}(j<k)$ be hyperedges in \mathcal{H}^{\prime}. If $w_{j, k} \in W$, then, since the directed paths are monochromatic in $F, s u_{j}$ and $s u_{k}$ are black and hence $u_{j} w_{j, k}$ and $u_{k} w_{j, k}$ are not contained in F that contradicts the fact that F is a spanning s-arborescence. Thus H_{j} and H_{k} are disjoint. It follows that \mathcal{H}^{\prime} is an exact cover.

References

[1] H.L. Abbot, L. Moser, On a combinatorial problem of Erdős and Hajnal, Canad. Math. Bull 7 (1964) 177-181.
[2] J. Bang-Jensen, A. Frank, B. Jackson, Preserving and augmenting local edge-connectivity in mixed graphs, SIAM J. Disc. Math. Vol. 8 No. 2 (1995) 155-178.
[3] J. Edmonds, Edge-disjoint branchings, in: B. Rustin (ed.), Combinatorial Algorithms, Academic Press, New York (1973) 91-96.
[4] P. Erdős, On a combinatorial problem, Nordisk Math. Tidski. 2 (1963) 5-10.
[5] T. F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theoretical Compute Science 38 (1985) 293-306.
[6] S. Fortune, J. E. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem, Theor. Comput. Sci. 10 (1980) 111-121.
[7] N. Kamiyama, Y. Kawase, On packing arborescences in temporal networks, Information Processing Letters 115 (2015) 321-325.
[8] D. Kempe, J. Kleinberg, A. Kumar, Connectivity and inference problems for temporal networks, J.Comput. Syst. Sci. 64 (4) (2002) 820-842.
[9] L. Lovász, Combinatorial Problems and Exercices, North Holland, 1993.
[10] L. Lovász, Coverings and colorings of hypergraphs, Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing, (1973) 3-12.

