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Abstract

We present a slight generalization of the result of Kamiyama and Kawase [7] on packing
time-respecting arborescences in acyclic pre-flow temporal networks. Our main contribution is
to provide the first results on packing time-respecting arborescences in non-acyclic temporal
networks. As negative results, we prove the NP-completeness of the decision problem of the
existence of 2 arc-disjoint spanning time-respecting arborescences and of a related problem
proposed in this paper.

1 Introduction

Temporal networks were introduced to model the exchange of information in a network or the
spread of a disease in a population. We are given a directed graph D and a time label function
τ on the arcs of D, the pair (D, τ) is called a temporal network. Intuitively, for an arc a of D,
τ(a) is the time when the end-vertices of a communicate, that is when the tail of a can transmit a
piece of information to the head of a. Then the information can propagate through a path P if it
is time-respecting, meaning that the time labels of the arcs of P in the order they are passed are
non-decreasing. For a nice introduction to temporal networks, see [8].

Problems about packing arborescences in temporal networks were investigated in [7]. An ar-
borescence is called time-respecting if all the directed paths it contains are time-respecting. The
main result of [7] provides a packing of time-respecting arborescences, each vertex belonging to
many of them, if the network is pre-flow and acyclic. Here pre-flow means intuitively that each
vertex different from the root has at least as many arcs entering as leaving, while acyclic means
that no directed cycle exists. Kamiyama and Kawase [7] presented examples to show that these
conditions can not be dropped.

Two questions naturally arise from these results: Must all kinds of directed cycles be forbidden?
Does high time-respecting root-connectivity imply the existence of 2 arc-disjoint spanning time-
respecting arborescences in a non-pre-flow temporal network?

Let us now present our contributions that give an answer to those questions.

We first propose a generalized version of the result of [7] with a simplified proof in Theorem 2.

Our main result, Theorem 4, is about packing time-respecting arborescences in pre-flow tempo-
ral networks that may contain directed cycles. The condition in Theorem 4 is that the arcs in the
same strongly connected component must have the same τ -value. If this condition holds then our
intuition would be to use regular arborescences in the strongly connected components and then to
try to extend them to obtain a packing of time-respecting arborescences in the temporal network.
This idea is a step in the right direction, however the exact process used in the proof is a bit more
complex, see Section 4.

By the famous result of Edmonds [3], we know that k-root-connectivity implies the existence of
a packing of k spanning s-arborescences. The authors of [8] show that for any positive integer k,
time-respecting k-root-connectivity does not imply the existence of 2 arc-disjoint spanning time-
respecting arborescences in a temporal network. To explain this construction (or more precisely,
a slightly modified version of it), we point out and recall in Section 5 the close relation between
packings of spanning time-respecting arborescences, packings of Steiner arborescences and proper
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2-colorings of hypergraphs. We remark in Theorem 12 that the decision problem, whether there
exist 2 arc-disjoint spanning time-respecting arborescences, is NP-complete.

We show in Theorem 11 that time-respecting (n − 1)-root-connectivity implies the existence
of a packing of 2 spanning time-respecting s-arborescences in an arbitrary temporal network on n
vertices. This result becomes more interesting if we note that the examples of Figure 1 show that
time-respecting (n− 3)-root-connectivity is not enough.

Finally, in Theorem 13, we show that in an acyclic temporal network (D, τ), it is NP-complete
to decide whether there exists a spanning arborescence whose directed paths consist of arcs of the
same τ -value.

2 Definitions

Let D = (V ∪ s,A) be a directed graph with a special vertex s, called root, such that no arc enters
s. The set of arcs entering, leaving a vertex set X of D is denoted by ρD(X), δD(X), respectively.
Sometimes we use ρA(X) for ρD(X) and similarly δA(X) for δD(X). We denote |ρD(X)| and
|δD(X)| by d−D(X) and d+D(X), respectively. We call the directed graph D acyclic if D contains
no directed cycle. If d−D(v) = d+D(v) for all v ∈ V , then D is called Eulerian. We say that D is
pre-flow if d−D(v) ≥ d+D(v) for all v ∈ V . A subgraph F = (V ′∪s,A′) of D is called an s-arborescence
if F is acyclic and d−F (v) = 1 for all v ∈ V ′. We say that F is spanning if V ′ = V. For U ⊆ V , F is
called a Steiner s-arborescence or an (s, U)-arborescence if F is an s-arborescence and it contains
all the vertices in U. A packing of arborescences means a set of arc-disjoint arborescences. For
v ∈ V, a path from s to v is called an (s, v)-path and λD(s, v) denotes the maximum number of
arc-disjoint (s, v)-paths in D. For some k ∈ N, we say that D is k-root-connected if λD(s, v) ≥ k for
all v ∈ V. For some U ⊆ V and k ∈ N, we say that D is Steiner k-root-connected if λD(s, v) ≥ k for
all v ∈ U. We call a directed graph D′ = (V ∪ {s, t}, A′) almost Eulerian if d−D′(v) = d+D′(v) for all
v ∈ V and d−D′(s) = 0 = d+D′(t).

For a function τ : A→ N, N = (D, τ) is called a temporal network. For i ∈ N, let ρiN(v):= {a ∈
ρD(v) : τ(a) ≤ i} and δiN(v):= {a ∈ δD(v) : τ(a) ≤ i}. We call the temporal network N acyclic if
D is acyclic. We say that N is pre-flow if |ρiN (v)| ≥ |δiN (v)| for all i ∈ N and for all v ∈ V. Note that
if a temporal network (D, τ) is pre-flow, then the directed graph D is pre-flow. We say that (D, τ)
is consistent if arcs of different τ -values cannot belong to the same strongly connected component
of D. In this case in each strongly connected component Q of D that contains at least one arc, each
arc has the same τ -value, that we denote by τ (Q). A directed path P of D, consisting of the arcs
a1, . . . , a` in this order, is called time-respecting or τ -respecting if τ(ai) ≤ τ(ai+1) for 1 ≤ i ≤ `− 1.
An s-arborescence F of D is called time-respecting or τ -respecting if for every vertex v of F , the
unique (s, v)-path in F is τ -respecting. For v ∈ V, λN(s, v) denotes the maximum number of
arc-disjoint τ -respecting (s, v)-paths in D. We say that N is time-respecting k-root-connected if
λN (s, v) ≥ k for all v ∈ V. If N ′ = (D′, τ ′) is a temporal network where D′ = (V ∪ {s, t}, A′) is
almost Eulerian, then for a vertex v ∈ V, we call a bijection µ′v from δD′(v) to ρD′(v) τ ′-respecting
if τ ′(µ′v(f)) ≤ τ ′(f) for all f ∈ δD′(v).

A hypergraph H = (V, E) is defined by its vertex set V and its hyperedge set E where a
hyperedge is a subset of V. For some r ∈ N, the hypergraph H is called r-uniform if each hyperedge
in E is of size r and r-regular if each vertex in V belongs to exactly r hyperedges. A 2-coloring of
the vertex set V is called proper if each hyperedge in E contains vertices of both colors, in other
words no monochromatic hyperedge exists in E . We call E ′ ⊆ E an exact cover of H if each vertex
in V belongs to exactly one hyperedge in E ′.

3 Packing time-respecting arborescences in acyclic pre-flow tem-
poral networks

The aim of this section is to generalize the following result of Kamiyama and Kawase [7] on packing
time-respecting arborescences in acyclic pre-flow temporal networks.
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Theorem 1 ([7]) Let N = ((V ∪ s,A), τ) be an acyclic pre-flow temporal network and k ∈ N.
There exists a packing of k τ -respecting s-arborescences such that each vertex v in V belongs to
min{k, λN (s, v)} of them.

Note that Theorem 1 implies that in a time-respecting k-root-connected acyclic pre-flow tem-
poral network there exists a packing of k spanning time-respecting s-arborescences.

We now present our first result, a slight extension of Theorem 1.

Theorem 2 Let N = ((V ∪ s,A), τ) be an acyclic temporal network and k ∈ N such that

min{k, |ρiN (v)|} ≥ min{k, |δiN (v)|} for all i ∈ N, for all v ∈ V. (1)

There exists a packing of k τ -respecting s-arborescences such that each vertex v in V belongs to
min{k, d−A(v)} of them.

We will partially follow the proof of [7] but we will point out that Lemmas 3 and 4 in [7] are not
needed to prove Theorem 2. Hence the proof of Theorem 2 is simpler than that of Theorem 1. The
following algorithm is a slightly modified version of the algorithm of Kamiyama and Kawase [7].
Its input is an acyclic temporal network N = ((V ∪s,A), τ) and k ∈ N such that (1) is satisfied. Its
output is a packing of τ -respecting s-arborescences T1, . . . , Tk such that each vertex v in V belongs
to min{k, d−A(v)} of them. For every v ∈ V, let I(v) be a set of arcs of smallest τ -values entering v
of size min{k, d−A(v)}. The algorithm will use arcs only in

⋃
v∈V I(v). The algorithm heavily relies

on the fact that the network is acyclic. It is well-known that a directed graph D is acyclic if and
only if a topological ordering v1, . . . , vn of its vertex set exists, that is if vivj is an arc of D then
i > j. Since no arc enters s, we may suppose that in a topological ordering vn = s.

Algorithm ”Packing Time-Respecting Arborescences”

Let vn = s, . . . , v1 be a topological ordering of V ∪ s.
Let Ai = ∅ for all 1 ≤ i ≤ k.
For j = 1 to n− 1, let

I = {1 ≤ i ≤ k : δAi(vj) 6= ∅},
ai be an arc in δAi(vj) of minimum τ -value for all i ∈ I,
{ā1, . . . ,ā|I|} be an ordering of {ai : i ∈ I} such that τ(ā1) ≤ · · · ≤ τ(ā|I|),
π : I → {1, . . . , |I|} be the bijection such that ai = āπ(i) for all i ∈ I,
J be a subset of {1, . . . , k} \ I of size |I(vj)| − |I|,
σ : J → {1, . . . , |J |} be a bijection,
{e1, . . . , e|I|, f1, . . . , f|J|} be an ordering of I(vj) such that

τ(e1) ≤ · · · ≤ τ(e|I|) ≤ τ(f1) ≤ · · · ≤ τ(f|J |),
Ai = Ai ∪ eπ(i) for all i ∈ I,
Ai = Ai ∪ fσ(i) for all i ∈ J.

Let Ti = (Vi, Ai) where Vi is the vertex set of the arc set Ai for all 1 ≤ i ≤ k.
Stop.

Theorem 3 Given an acyclic temporal network N = ((V ∪ s,A), τ) and k ∈ N such that (1)
is satisfied, Algorithm Packing Time-Respecting Arborescences outputs a packing of k τ -
respecting s-arborescences such that each vertex v in V belongs to min{k, d−A(v)} of them.

Proof For all 1 ≤ j ≤ n − 1, in the jth iteration of the algorithm, by the definition of I, (1) and
the definition of I(vj), we have |I| ≤ min{k, d+A(vj)} ≤ min{k, d−A(vj)} = |I(vj)|. This implies that
J exists. By construction, the digraphs T1, . . . , Tk are pairwise arc-disjoint and the in-degree of
each vertex vj ∈ Vi− s is 1 in Ti. Then, since N is acyclic, Ti is an s-arborescence for all 1 ≤ i ≤ k.
Moreover, |{1 ≤ i ≤ k : vj ∈ Vi}| = |I| + |J | = |I(vj)| = min{k, d−A(vj)} for all 1 ≤ j ≤ n − 1.
To see that Ti is time-respecting for all 1 ≤ i ≤ k, let vj be a vertex in Vi − s and a ∈ δAi(vj).
Then eπ(i) ∈ ρAi(vj). Suppose on the contrary that τ(eπ(i)) > τ(a). Since τ(g) ≥ τ(eπ(i)) > τ(a)

for all g ∈ ρA(vj) \ {e1, . . . , eπ(i)−1}, we have |ρτ(a)N (vj)| ≤ |{e1, . . . , eπ(i)−1}| = π(i) − 1. Since
τ(a) ≥ τ(ai) = τ(āπ(i)) ≥ τ(ā`) for all 1 ≤ ` ≤ π(i) and π(i) ≤ |I| ≤ k, we have π(i) =
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|{ā1, . . . , āπ(i)}| ≤ min{|δτ(a)N (vj)|, k}. Thus |ρτ(a)N (vj)| < min{|δτ(a)N (vj)|, k} that contradicts (1).
This contradiction completes the proof.

Note that Theorem 3 implies Theorem 2. Note also that Theorem 2 implies Theorem 1. Indeed,
if N is pre-flow, then (1) is satisfied, so, by Theorem 2, there exists a packing of k τ -respecting s-
arborescences such that each vertex v in V belongs to exactly min{k, d−A(v)} of them. This implies
that min{k, λN (s, v)} = min{k, d−A(v)} and hence Theorem 1 follows.

4 Packing time-respecting arborescences in non-acyclic pre-flow
temporal networks

In [7], Kamiyama and Kawase provide an example of 7 vertices and 12 arcs that shows that in
Theorem 1 one can not delete the condition that D is acyclic. Here we provide a smaller example
with 5 vertices and 7 arcs, see the first temporal network in Figure 1. Note that this temporal
network contains a directed cycle whose arcs are not of the same τ -values and hence the temporal
network is not consistent.
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Figure 1: Three temporal networks N where the τ -value of an arc is presented on the arc. The first
two are non-acyclic pre-flow, the second one is consistent. The third one is acyclic but not pre-flow.
They contain no 2 arc-disjoint τ -respecting s-arborescences such that each vertex v belongs to
min{2, λN (s, v)} of them.

The second temporal network in Figure 1 is another example that shows that in Theorem 1 one
can not delete the condition that D is acyclic. Here the temporal network contains one directed
cycle C and all the arcs of C are of the same τ -values and hence the temporal network is consistent.
Note that in this example there exists a packing of three τ -respecting s-arborescences such that
each vertex v belongs to exactly λN (s, v) of them.

Kamiyama and Kawase [7] also provide an example of 7 vertices and 12 arcs that shows that in
Theorem 1 one can not delete the condition that D is pre-flow. Here we provide a smaller example
with 5 vertices and 8 arcs, see the third temporal network in Figure 1.

We now present the main result of this paper on packing of time-respecting arborescences in
consistent pre-flow temporal networks where only the natural upper bound is given on the number
of arborescences.

Theorem 4 Let N = (D = (V ∪ s,A), τ) be a consistent pre-flow temporal network. There exists
a packing of d+D(s) τ -respecting s-arborescences, each vertex v in V belonging to λN (s, v) of them.

To prove Theorem 4, we need an easy observation on almost Eulerian acyclic pre-flow temporal
networks. A similar result has already been presented in [7].

Proposition 1 If N = (D = (V ∪ {s, t}, A), τ) is an almost Eulerian acyclic temporal network
and µv is a τ -respecting bijection from δD(v) to ρD(v) for all v ∈ V , then D decomposes into d+D(s)
τ -respecting (s, t)-paths such that each vertex v ∈ V belongs to d−D(v) of them.

Proof We prove the claim by induction on d+D(s). If d+D(s) = 0, then, since D is almost Eulerian
and acyclic, we have d−D(v) = 0 for all v ∈ V and we are done. Otherwise, there exists an arc
leaving s. Then, using the bijections µ−1v and the facts that D is acyclic and µv is a τ -respecting,

4



we find a τ -respecting directed (s, t)-path P. By deleting the arcs of P and applying the induction,
the claim follows.

We also need the following result of Bang-Jensen, Frank, Jackson [2].

Theorem 5 ([2]) Let D = (V ∪ s,A) be a pre-flow directed graph. There exists a packing of
s-arborescences, each vertex v ∈ V belonging to λD(s, v) of them.

We are ready to prove our main result.

Proof (of Theorem 4) First we transform the instance into another one N ′ = (D′, τ ′) as follows.
The directed graph D′ = (V ∪ {s, t}, A ∪ A′) is obtained from D by adding a new vertex t and
d−D(v) − d+D(v) parallel arcs from v to t for all v ∈ V and we define τ ′(a) to be equal to τ(a) if
a ∈ A and to M if a ∈ A′, where M = max{τ(a) : a ∈ A}. Since N is pre-flow, so is D, that
is d−D(v) − d+D(v) ≥ 0 for all v ∈ V and hence the construction is correct. This way we get an
instance which remains consistent ({t} is a new strongly connected component) and pre-flow (by
the definition of M) and D′ is almost Eulerian.

For each vertex v ∈ V , let us fix orderings of ρD′(v) and δD′(v) such that τ ′(e1) ≤ · · · ≤
τ ′(ed−

D′ (v)
) and τ ′(f1) ≤ · · · ≤ τ ′(fd+

D′ (v)
), respectively. Then µ′v(fj) = ej for all 1 ≤ j ≤ d+D′(v)

is a τ ′-respecting bijection for all v ∈ V. Indeed, if there exists j such that τ ′(ej) = τ ′(µ′v(fj)) >
τ ′(fj) =: i, then |ρiN ′(v)| ≤ j − 1 < j ≤ |δiN ′(v)| that contradicts the fact that N ′ is pre-flow.

To reduce the problem to an easy acyclic problem that can be treated by Proposition 1 and
some problems that can be treated by Theorem 5, let us denote the strongly connected components
of D′ by Q′1, . . . , Q

′
`. Let Uj denote the vertex set of Q′j for all 1 ≤ j ≤ `. Then the directed graph

D′′ obtained from D′ by contracting each Q′j into a vertex q′′j is acyclic. By changing the indices
if it is necessary, we may suppose that q′′` = s, . . . , q′′1 = t is a topological ordering of the vertices of
D′′. Let N ′′ = (D′′, τ ′′) be the temporal network where τ ′′(a) = τ ′(a) for all a ∈ A(D′′). Note that
since D′ is almost Eulerian, so is D′′. Indeed, we have d−D′′(q

′′
j ) − d+D′′(q

′′
j ) = d−D′(Uj) − d

+
D′(Uj) =∑

v∈Uj
(d−D′(v)− d+D′(v)) = 0 for all 2 ≤ j ≤ `− 1. Note also that d+D(s) = d+D′(s) = d+D′′(s).

To define a convenient τ ′′-respecting bijection µ′′j from δD′′(q
′′
j ) = δD′(Uj) to ρD′′(q

′′
j ) = ρD′(Uj)

for all 2 ≤ j ≤ `− 1, let us fix such a j and let us define the following sets:

R1
j = {vw ∈ δD′(Uj) : τ ′(µ′v(vw)) > τ ′(Q′j)},

R2
j = {vw ∈ δD′(Uj) : τ ′(vw) < τ ′(Q′j)},

R3
j = δD′(Uj) \ (R1

j ∪R2
j ),

S1
j = {µ′v(vw) : vw ∈ R1

j},
S2
j = {µ′v(vw) : vw ∈ R2

j} and

S3
j = ρD′(Uj) \ (S1

j ∪ S2
j ).

Claim 1 {R1
j , R

2
j , R

3
j} is a partition of δD′(Uj) and {S1

j , S
2
j , S

3
j } is a partition of ρD′(Uj).

Proof If vw ∈ R1
j , v

′w′ ∈ R2
j , uv = µ′v(vw) ∈ S1

j and u′v′ = µ′v′(v
′w′) ∈ S2

j , then, since µ′v
and µ′v′ are τ ′-respecting bijections, we have τ ′(vw) ≥ τ ′(µ′v(vw)) = τ ′(uv) > τ ′(Q′j) > τ ′(v′w′)

≥ τ ′(µ′v(v
′w′)) = τ ′(u′v′). Thus vw 6= v′w′ and uv 6= u′v′, so R1

j ∩ R2
j = ∅ and S1

j ∩ S2
j = ∅. By

the definition of R1
j and R2

j , we have R1
j ∪R2

j ⊆ δD′(Uj). If vw ∈ R1
j , then τ ′(µ′v(vw)) > τ ′(Q′j). If

vw ∈ R2
j , then, since µ′v is a τ ′-respecting bijection, we get τ ′(µ′v(vw)) ≤ τ ′(vw) < τ ′(Q′j). Then,

using that each arc in Q′j has τ ′-value τ ′(Q′j), we have S1
j ∪ S2

j ⊆ ρD′(Uj). By the definition of R3
j

and S3
j , Claim 1 follows.

We now start to define µ′′j . For vw ∈ R1
j ∪ R2

j , let µ′′j (vw) = µ′v(vw). Since each µ′v is τ ′-

respecting, we have τ ′′(vw) = τ ′(vw) ≥ τ ′(µ′v(vw)) = τ ′′(µ′′v(vw)). Note that for all xy ∈ R3
j and

for all uv ∈ S3
j , τ ′(xy) ≥ τ ′(Q′j) ≥ τ ′(uv). However, we cannot take an arbitrary bijection from

R3
j to S3

j because we have to guarantee that the vertices in Q′j also belong to the required number
of arborescences. In order to do this, let us define the temporal network N ′j = (D′j , τ

′
j) where the

directed graph D′j is obtained from D′ by contracting
⋃
i>j Ui into a vertex sj , contracting

⋃
i<j Ui

into a vertex tj and deleting the arcs from sj to tj and τ ′j(a) = τ ′(a) for all a ∈ A(D′j).
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Claim 2 N ′j satisfies the following.

(a) D′j is almost Eulerian,

(b) λD′j (sj , tj) = d−
D′j

(tj),

(c) λN ′j (sj , v) ≥ λN ′(s, v) for all v ∈ Uj .

Proof (a) SinceD′ is almost Eulerian, so isD′j . Indeed, we have d−
D′j

(v) = d−D′(v) = d+D′(v) = d+
D′j

(v)

for all v ∈ Uj .
(b) By (a) and d−

D′j
(sj) = 0 = d+

D′j
(tj), (b) easily follows. Indeed, let rj = d−

D′j
(tj) and let us

define D∗j by adding rj arcs {h1, . . . ,hrj} from tj to sj in D′j . Then, by (a), D∗j is Eulerian. Thus
it decomposes into directed cycles. Let C1, . . . , Crj be the arc-disjoint directed cycles that contain
the arcs h1, . . . , hrj . Then P1 = C1−h1, . . . , Prj = Crj−hrj are arc-disjoint directed (sj , tj)-paths.
Hence rj ≤ λD′j (sj , tj) ≤ rj , and we have (b).

(c) For all v ∈ Uj , any τ ′-respecting (s, v)-path in N ′ provides a τ ′j-respecting (sj , v)-path in
N ′j , and (c) follows.

To be able to use normal arborescences (not time-respecting ones), we have to modify D′j . No

τ -respecting directed path in D may contain an arc in S1
j and an arc in Q′j , hence the corresponding

arcs in R1
j and S1

j will be deleted from D′j . A τ -respecting s-arborescence in D may contain an

arc µ′v(vw) in S2
j (where vw ∈ R2

j ) and an arc in Q′j , but this arborescence must contain vw. To

guarantee this property we use a trick: we replace the corresponding two arcs in R2
j and S2

j in
D′j by two convenient arcs. More precisely, let Hj be obtained from D′j by deleting sjv and vtj
that correspond to µ′v(vw) and vw for all vw ∈ R1

j and replacing sjv and vtj that correspond to

µ′v(vw) and vw for all vw ∈ R2
j by evw = sjtj and fvw = tjv. Let Ej = {evw : vw ∈ R2

j} and Fj

= {fvw : vw ∈ R2
j}.

Claim 3 Hj satisfies the following.

(a) Hj is pre-flow,

(b) λHj (sj , tj) = d−Hj
(tj),

(c) λHj (sj , v) ≥ λN ′j (sj , v)− d−
S1
j
(v) for all v ∈ Uj.

Proof (a) By Claim 2(a), D′j is almost Eulerian. Then, by δD′j (tj) = ∅, D′j is pre-flow. By deleting

from D′j the arcs sjv and vtj that correspond to µ′v(vw) and vw for all vw ∈ R1
j , we decreased the

in-degree and the out-degree of each vertex by the same value so the directed graph obtained this
way remained pre-flow. By replacing sjv and vtj that correspond to µ′v(vw) and vw for all vw ∈ R2

j

by sjtj and tjv, we may decrease the out-degrees of the vertices in Q′j but the in-degrees remained

unchanged. Further, d+Hj
(tj) = d+

D′j
(tj) + |Fj | = |Ej | ≤ d−Hj

(tj). It follows that Hj is pre-flow.

(b) Note that for all tj ∈ X ⊆ Uj ∪ tj , d−Hj
(X) = d−

D′j
(X)− |R1

j |. Then, by Claim 2(b), we have

d−Hj
(tj) ≥ λHj (sj , tj) ≥ λD′j (sj , tj)− |R

1
j | = d−

D′j
(tj)− |R1

j | = d−Hj
(tj) and (b) follows.

(c) On the one hand, by deleting the arcs corresponding to ρS1
j
(v), we destroyed at most d−

S1
j
(v)

τ ′j-respecting (sj , v)-paths in N ′j and we did not destroy a τ ′j-respecting (sj , u)-path in N ′j for
u ∈ Uj \ v because each arc in Q′j has τ ′j-value τ ′j(Q

′
j) and each arc in ρS1

j
(v) has τ ′j-value strictly

larger than τ ′j(Q
′
j). On the other hand, if a τ ′j-respecting (sj , u)-path P contains sjv (corresponding

to µ′v(vw) for some vw ∈ R2
j ) in N ′j then P − sjv+ evw + fvw is a directed (sj , u)-path in Hj . These

arguments imply (c).

By Claim 3(a) and Theorem 5, there exists a packing Bj of sj-arborescences T i
j in Hj , each

vertex v ∈ Uj ∪ tj belonging to λHj (sj , v) of them. Let us choose such a packing Bj that minimizes

the size of the set FBj of the arcs fvw ∈ Fj such that an arborescence T fvw

j in Bj contains fvw but
not evw.

6



Claim 4 Bj satisfies the following.

(a) d+Hj
(sj) = |Bj | = d−Hj

(tj),

(b) FBj = ∅,

(c) {T ij − sj − tj : T ij ∈ Bj} is a packing of arborescences in Q′j, each vertex v ∈ Uj belonging to
λHj (sj , v) of them.

Proof (a) By Claim 3(b), tj belongs to λHj (sj , tj) = d−Hj
(tj) of the sj-arborescences in Bj . Thus

each arc entering tj belongs to some sj-arborescence in Bj and d−Hj
(tj) ≤ |Bj |. Moreover, by

construction and since D′j is almost Eulerian, we have d−Hj
(tj) = d−

D′j
(tj)− |R1

j | = d+
D′j

(sj)− |S1
j | =

d+Hj
(sj) ≥ |Bj |, and (a) follows.

(b) Suppose that FBj 6= ∅. Let EBj = {evw : fvw ∈ FBj}. By (a), every evw ∈ EBj is contained
in an sj-arborescence T evw

j in Bj .
First suppose that for some evw ∈ EBj , T

evw
j contains only the arc evw. Note that T fvwj − fvw

consists of an sj-arborescence T ′j and a v-arborescence T ′′j . Let B′j be obtained from Bj by replacing

T fvwj by T ′j and T evwj by evw + fvw + T ′′j . Then B′j is a packing of sj-arborescences in Hj such that
each vertex v ∈ Uj ∪ tj belongs to λHj (sj , v) of them. Moreover, fvw and evw belong to the same
sj-arborescence in B′j , that is |FB′j | < |FBj | and we have a contradiction.

We may hence suppose that for every evw ∈ EBj , T
evw
j contains another arc, so by (a), contains

an arc in FBj . Let B′j be the set of those sj-arborescences in Bj that contain an arc of FBj .
Then |FBj | = |EBj | ≤ |B′j | ≤ |FBj |. Hence we have equality everywhere. It follows that every
sj-arborescences in B′j contains exactly one arc from both FBj and EBj . Then for every fvw ∈ FBj ,
T fvwj contains an arc ev′w′ ∈ EBj . Let B′′j be obtained from Bj by replacing ev′w′ by evw ∈ EBj in

T fvwj for every fvw ∈ FBj . Then B′′j is a packing of sj-arborescences in Hj such that each vertex
v ∈ Uj ∪ tj belongs to λHj (sj , v) of them. Moreover, FB′′j = ∅ and we have a contradiction.

(c) follows from the definition of Bj , (a) and (b).

We now finish the definition of µ′′j . Let vw ∈ R3
j . Then vw corresponds in Hj to an arc

gvw = vtj entering tj . By Claim 4(a), gvw belongs to an sj-arborescence T gvw
j in Bj . Let us

define µ′′j (vw) ∈ S3
j to be the arc xq′′j of D′′ that corresponds to the arc sju in Hj of the unique

(sj , tj)-path of T gvwj . Then τ ′′j (vw) = τ ′j(vw) ≥ τ ′j(Q′j) ≥ τ ′j(xq′′j ) = τ ′′j (µ′′j (vw)) for all vw ∈ R3
j .

By the definition of µ′′j and Claim 1, we have a τ ′′-respecting bijection µ′′j from δD′′(q
′′
j ) to

ρD′′(q
′′
j ) for all 2 ≤ j ≤ `−1. Recall that D′′ is acyclic and almost Eulerian. Then, by Proposition 1

and d+D(s) = d+D′′(s), D
′′ decomposes into τ ′′-respecting (s, t)-paths P1, . . . , Pd

+
D(s)

such that each

vertex q′′j 6= s belongs to d−D′′(q
′′
j ) of them. These paths can be extended, using from Claim 4(c) the

arborescences T ij − sj − tj in Q′j for 1 ≤ i ≤ d+Hj
(sj) and 2 ≤ j ≤ ` − 1, to get s-arborescences in

D′ such that each vertex v ∈ V belongs to λHj (sj , v) + d−
S1
j
(v) ≥ λN ′j (sj , v) ≥ λN ′(s, v) of them, by

Claims 3(b) and 2(c). Since the directed paths P1, . . . , Pd+D(s) are τ ′′-respecting, that is τ ′-respecting

and D′ is consistent, the arborescences constructed are τ ′-respecting. Hence N ′ has a packing of
τ ′-respecting s-arborescences T ′1, . . . , T

′
d
+
D(s)

such that each vertex v of D′ distinct from s and t

belongs to λN ′(s, v) = λN (s, v) of them, and hence {T1 = T ′1 − t, . . . , Td+
D(s)

= T ′
d+D(s)

− t} is a

packing of τ -respecting s-arborescences such that each vertex v of D distinct from s belongs to
λN (s, v) of them.

5 Arc-disjoint spanning time-respecting arborescences

Edmonds’ arborescence packing theorem [3] states that k-root-connectivity from s implies the
existence of a packing of k spanning s-arborescences. The following observation of [8] shows that
the natural extension of Edmonds theorem for k = 1 is true for temporal networks.
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Theorem 6 ([8]) Any τ -respecting root-connected temporal network N = ((V ∪ s,A), τ) contains
a spanning τ -respecting s-arborescence.

The authors of [8] show that high time-respecting root-connectivity of a temporal network does
not imply the existence of 2 arc-disjoint spanning time-respecting arborescences.

Theorem 7 ([8]) For all k ∈ N+, there exist temporal networks N = ((V ∪ s,A), τ) such that
λN (s, v) ≥ k for all v ∈ V and no packing of 2 spanning τ -respecting s-arborescences exists in N.

Their construction contains directed cycles but it can be easily modified to get an acyclic
example. This acyclic example for k = 2 is presented in Figure 2 in [7].

We now relate the spanning time-respecting arborescence packing problem to known problems,
namely the Steiner arborescence packing problem and the hypergraph proper 2-coloring problem.
To do that we explain how the above mentioned modified construction can be obtained in 3 steps.
First, take a k-uniform hypergraph without proper 2-coloring. Then construct a directed graph
that is Steiner k-root-connected without 2 arc-disjoint Steiner arborescences. Finally, construct an
acyclic temporal network that is time-respecting k-root-connected without 2 arc-disjoint spanning
time-respecting arborescences.

There exist many constructions for k-uniform hypergraphs without proper 2-coloring, see [1],
[8] and Exercice 13.45(b) of [9]. We mention that, by a result of Erdős [4], all examples contain
exponentially many hyperedges in k.

Theorem 8 [4] Any k-uniform hypergraph without a proper 2-coloring contains at least 2k−1 hy-
peredges.

We now show that starting from an arbitrary k-uniform hypergraph Hk = (Vk, Ek) without
proper 2-coloring how to construct an acyclic directed graph Dk and a vertex set Uk such that
λDk

(s, u) = k for all u ∈ Uk and there exists no packing of two (s, Uk)-arborescences in Dk. Let Gk

:= (Vk, Uk;Ek) be the bipartite incidence graph of the hypergraph Hk, where the elements of Uk

correspond to the hyperedges in Ek. Let Dk = (Vk ∪ Uk ∪ s,Ak) be obtained from Gk by adding a
vertex s and an arc sv for all v ∈ Vk and directing each edge of Ek from Vk to Uk. By construction
Dk is acyclic. Since Hk is k-uniform, we have λDk

(s, u) = k for all u ∈ Uk.

Theorem 9 Dk has no packing of two (s, Uk)-arborescences.

Proof Suppose that there exists a packing of 2 (s, Uk)-arborescences F1 and F2 in Dk. Using
this packing, we can define a 2-coloring of Vk: let v ∈ Vk be colored by 1 if sv ∈ A(F1) and by 2
otherwise. Since each vertex in Uk belongs to both F1 and F2, no hyperedge of Ek is monochromatic,
that is the above defined 2-coloring of Hk is proper. This contradicts the fact that Hk has no proper
2-coloring.

As a next step, we show that starting from the acyclic directed graph Dk and the vertex set
Uk, how to construct a temporal network Nk such that λNk

(s, v) = k for all vertices v and no
packing of 2 spanning time-respecting s-arborescences exists in N. Let us define Nk := (D∗k, τ

∗
k )

as follows: D∗k is obtained from Dk by adding the set of arcs A∗k consisting of k − 1 parallel arcs
from s to all v ∈ Vk and we define τ ∗k (a) = 1 if a ∈ Ak and 2 if a ∈ A∗k. Note that since Dk is
acyclic, so is D∗k. Then a spanning s-arborescence F ∗ of D∗k is τ∗k -respecting if and only if F ∗ −A∗k
is an (s, Uk)-arborescence in Dk. Thus a packing of 2 spanning τ∗k -respecting s-arborescences in
D∗k would provide a packing of 2 (s, Uk)-arborescences in Dk. Hence, the following result is an
immediate consequence of Theorem 9.

Theorem 10 For all k ∈ N+, there exist acyclic temporal networks N = ((V ∪ s,A), τ) such that
λN (s, v) ≥ k for all v ∈ V and no packing of 2 spanning τ -respecting s-arborescences exists in N.

These examples of acyclic temporal networks that are time-respecting k-root-connected without
2 arc-disjoint spanning time-respecting arborescences contain, by Theorem 8, exponentially many
vertices in k. In other words, k ≤ log(n) where n is the number of vertices. In the light of this
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fact, it is natural to ask whether there exist 2 arc-disjoint spanning time-respecting arborescences
in a temporal network if k is linear in n. The examples of Figure 1 show that time-respecting
(n − 3)-root-connectivity does not imply the existence of 2 arc-disjoint spanning time-respecting
arborescences. We propose the first steps in this direction. We first remark that n-root-connectivity
is enough.

Claim 5 Let N = ((V ∪ s,A), τ) be a temporal network on n ≥ 1 vertices such that λN (s, v) ≥ n
for all v ∈ V . Then there exists a packing of 2 spanning τ -respecting s-arborescences in N.

Proof Since λN (s, v) ≥ n ≥ 1 for all v ∈ V , there exists, by Theorem 6, a spanning τ -respecting
s-arborescence F in N. Further, there exist n arc-disjoint τ -respecting (s, v)-paths P v

1 , . . . , P
v
n for

all v ∈ V . By deleting the arcs of F , we can destroy at most |A(F )| of the (s, v)-paths P v1 , . . . , P
v
n

for all v ∈ V. Since |A(F )| = n− 1, this implies that λN−A(F )(s, v) ≥ n− (n− 1) = 1 for all v ∈ V.
Then, there exists, by Theorem 6, a spanning τ -respecting s-arborescence F ′ in N −A(F ), and we
are done.

With some effort we can improve the previous result by 1.

Theorem 11 Let N = ((V ∪s,A), τ) be a temporal network on n ≥ 2 vertices such that λN (s, v) ≥
n− 1 for all v ∈ V . Then there exists a packing of 2 spanning τ -respecting s-arborescences in N.

Proof Since λN (s, v) ≥ n − 1 ≥ 1 for all v ∈ V , there exists, by Theorem 6, a spanning τ -
respecting s-arborescence F in N. Let F (v) be the unique arc of F entering v for all v ∈ V. Note
that A(F ) = {F (v) : v ∈ V }. If λN−A(F )(s, v) ≥ 1 for all v ∈ V then there exists, by Theorem 6, a
spanning τ -respecting s-arborescence in N −A(F ), and we are done.

Otherwise, λN−A(F )(s, u) = 0 for some u ∈ V. By assumption, there exist n − 1 arc-disjoint
τ -respecting (s, u)-paths P1, . . . , Pn−1. Then, since |V | = n− 1, there exists a bijection π from V
to {1, . . . , n−1} such that F (v) is contained in Pπ(v) for all v ∈ V. It follows that no arc leaves u in
F. Let w ∈ V −u be a vertex for which τ(F (w)) is maximum. Let the last arc of Pπ(w) be denoted
by xu. Then, since F (u) is the last arc of the path Pπ(u) and the paths are arc-disjoint, F (u) 6= xu.
By the choice of w and since Pπ(w) is τ -respecting, we have τ(F (x)) ≤ τ(F (w)) ≤ τ(xu). We obtain
that F ′ := F − F (u) + xu 6= F is also a spanning τ -respecting s-arborescence in N.

By assumption and |A(F )−F (u)| = n−2, we have λN−(A(F )−F (u))(s, v) ≥ (n−1)− (n−2) = 1
for all v ∈ V. Then, by Theorem 6, there exists a spanning τ -respecting s-arborescence F ′′ in
N − (A(F )− F (u)). Since F ′′ contains a unique arc entering u, it does not contain either F (u) or
xu. Thus, F ′′ is arc-disjoint from either F or F ′, and we are done.

We conjecture that the following is true.

Conjecture 1 Let N = ((V ∪ s,A), τ) be an acyclic temporal network on n ≥ 4 vertices such that
λN (s, v) ≥ n

2 for all v ∈ V . Then a packing of 2 spanning τ -respecting s-arborescences exists in N.

The third example presented in Figure 1 is of 5 vertices, acyclic, time-respecting 2-root-
connected and has no packing of 2 spanning τ -respecting s-arborescences. It follows that time-
respecting 2n

5 -root-connectivity is not enough to have a packing of 2 spanning time-respecting
s-arborescences in acyclic temporal networks.

6 Complexity results

Lovász [10] proved that the problem of 2-colorings of k-uniform hypergraphs is NP-complete. This
implies that the problem of packing 2 Steiner arborescences is also NP-complete. An easier way to
see this is to use the NP-complete problem of two arc-disjoint directed paths in a directed graph D,
one from r to t and the other from t to r. (See [6].) Construct D′ from D by adding a new vertex s
and the two arcs sr and st. Then D has an (r, t)-path and a (t, r)-path that are arc-disjoint if and
only if D′ has a packing of 2 (s, {r, t})-arborescences. This with the construction presented in the
previous section finally imply the following.
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Theorem 12 The problem of packing k spanning time-respecting arborescences is NP-complete
even for k = 2.

Let us check what happens if we replace the inequality with equality in the definition of time-
respecting directed paths and we consider the values of τ as colors. Then we get monochromatic
directed paths. We may hence study the following problem MoChPaSpAr:

Problem 1 Given a directed graph D = (Z ∪ s,A) and a coloring c of the arcs, decide whether
there exists a spanning s-arborescence containing only monochromatic directed paths.

We show that this decision problem is difficult. We will reduce the exact cover in 3-regular
3-uniform hypergraphs problem (RXC3) to our problem. In RXC3, we are given a 3-regular 3-
uniform hypergraph H = (V, E), and the problem consists of determining whether there exists a
subset E ′ of E such that each vertex in V occurs in exactly one hyperedge in E ′. Gonzalez proved
in [5] that RXC3 is NP-complete.

Theorem 13 The problem MoChPaSpAr is NP-complete even for acyclic directed graphs and
for two colors.

Proof It is clear that MoChPaSpAr is in NP. Let us take an instance of RXC3, that is let H be a
3-regular 3-uniform hypergraph. We construct a polynomial size instance (D, c) of MoChPaSpAr
such that H has an exact cover if and only if (D, c) has a spanning s-arborescence containing
only monochromatic directed paths. Since H is a 3-regular 3-uniform hypergraph, the number of
vertices of H and the number of hyperedges of H coincide. Let us denote the vertices of H by
V = {v1, . . . , vh} and the hyperedges of H by E = {H1, . . . ,Hh}.

Let D = (Z ∪ s,A) be the directed graph where Z = U ∪ V ∪W and A = A1 ∪ A2 ∪ A3 ∪ A4

with U = {u1, . . . , uh}, W = {wi,j : Hi ∩Hj 6= ∅}, A1 = {e1i = sui : 1 ≤ i ≤ h}, A2 = {e2i = sui :
1 ≤ i ≤ h}, A3 = {uivj : ui ∈ U, vj ∈ V, vj ∈ Hi} and A4 = {uiwi,j , ujwi,j : ui, uj ∈ U,wi,j ∈ W}.
Let c(a) be equal to black if a ∈ A1 ∪ A3 and grey if a ∈ A2 ∪ A4. Note that D is acyclic and c
uses only two colors. For an example see Figure 2.

v1

v2

v3

v4

v5

v6

H5

H2

H1

H6

H3

H4

s

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6

w1,2 w1,3 w1,4 w1,5 w2,3 w2,4 w2,5 w2,6 w3,4 w3,5 w3,6 w4,6w4,5 w5,6

Figure 2: A 3-regular 3-uniform hypergraph and the constructed colored directed graph for it.

The size of D is polynomial in h. Indeed, since H is a 3-regular 3-uniform hypergraph, |W | ≤
1
2 ·3·2·h, so |Z∪s| = |U |+|V |+|W |+1 ≤ h+h+3h+1 = 5h+1 and |A| = |A1|+|A2|+|A3|+|A4| ≤
h+ h+ 3h+ 2 · 3h = 11h.

Suppose first thatH has an exact cover H′. LetZ′ be the set of vertices ofD that can be reached
from s by a black directed path starting with an arc sui withHi ∈ H′ andZ′′ by a grey directed path
starting with an arc sui with Hi /∈ H′. Since H′ is a cover, we have Z ′ = V ∪ {ui : Hi ∈ H′}. Since
the hyperedges in H′ are disjoint, we have Z ′′ = {ui : Hi /∈ H′} ∪W. Since Z ′ ∩Z ′′ = s, the desired
spanning s-arborescence containing only monochromatic directed paths exists. In the example of
Figure 2, H′ = {H1, H6}, Z ′ = V ∪ {u1, u6}, Z ′′ = {u2, u3, u4, u5} ∪W and the arborescence is
represented by bold arcs.
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Now suppose that (D, c) has a spanning s-arborescence F containing only monochromatic
directed paths. Let H′ = {Hj : uj ∈ U, vi ∈ V, ujvi ∈ F}. Since F is a spanning s-arborescence,
each vertex vi has exactly one black arc ujvi in F entering. This implies that H′ covers V. Let
Hj , Hk (j < k) be hyperedges in H′. If wj,k ∈W , then, since the directed paths are monochromatic
in F , suj and suk are black and hence ujwj,k and ukwj,k are not contained in F that contradicts
the fact that F is a spanning s-arborescence. Thus Hj and Hk are disjoint. It follows that H′ is
an exact cover.
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