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A.Frank described in [1] an algorithm to determine the minimum number of edges in a graph G whose

contraction leaves a factor-critical graph and he asked if there was an algorithm for the weighted version of

the problem. We prove that the minimal critical–making edge–sets form the bases of a matroid and hence the

matroid greedy algorithm gives rise to the desired algorithm.

1. Introduction

Given a connected graph G, what is the minimum number of edges whose contraction
leaves a factor-critical graph? A.Frank [1] noticed that for 2-edge–connected graphs this
value equals the minimum number ϕ(G) of even ears in ear–decompositions of G, and
he proved a minimax formula for ϕ(G). In the same paper he proposed the problem of
describing the structure of the edge–sets above. The aim of this note is to prove that
minimal critical–making sets form the bases of a matroid. We refer the reader to [3] for
basic concepts of matroids.

For a connected graph G, an edge–set is called critical–making if its contraction leaves
a factor–critical graph. A graph G is factor–critical if for every v ∈ V (G) G − v has
a perfect matching. Since factor–critical graphs are 2-edge–connected, every cut edge of
G is contained in any critical–making edge–set. Thus we may assume that G is 2-edge–
connected.

Let G = (V,E) be an undirected, 2-edge–connected graph. An ear–decomposition of G
is a sequence G0, G1, ..., Gn = G of subgraphs of G where G0 is a vertex and each Gi arises
from Gi−1 by adding a path Pi for which the two end–vertices (they are not necessarily
distinct) belong to Gi−1 while the inner vertices of Pi do not. This means the graph G can
be written in the following form: G = P1 + P2 + ... + Pn where the paths Pi are called the
ears of this decomposition. An ear is odd (resp. even) if its length is odd (resp. even). Let
us consider an ear–decomposition of G which has as few even ears as possible. Let ϕ(G)
denote this minimum number of even ears.

The contraction of an edge e of a graph G is defined in the usual way. We will denote
the contracted graph by G/e. Note that the contraction of an edge can produce parallel
edges. By the contraction of an edge–set F of G we mean the graph G′ = G/F arising
from G by contracting each edge of F. When we contract an edge-set then we will always
assume (without loss of generality) that this edge-set is circuit-free, that is, it is a forest.
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By contracting a connected subgraph H of G we mean the contraction of a spanning tree
of H.

The subdivision of an edge–set F of a graph G means that we subdivide each edge e
of F by a new vertex. The resulting graph is denoted by G × F . The following lemma
gives the relation between contraction and subdivision.

Lemma 1.1. Let G be a 2–edge–connected graph and let k be a positive integer. Then the
following are equivalent:

a.) the minimum number of edges whose contraction leaves a factor–critical graph is k,
b.) the minimum number of edges whose subdivision leaves a factor–critical graph is k,
c.) the minimum number of even ears in an ear–decomposition of G is k, i.e. ϕ(G) = k.

The proof of this lemma is given in Section 2 and it implies that ϕ(G/F ) = ϕ(G×F )
for any forest F. In the view of this fact we shall use the subdivision of an edge–set rather
than the contraction. (It is easier to deal with subdivision than with contraction.) We
would like to emphasize that Lemma 1.1 is not completely trivial. It is not true that
the ear–decomposition of G/e can always be extended to an ear–decomposition of G. (see
Figure 1.) For more details see [6, Lemma 9.2].

Clearly, the subdivision of any edge in a graph either decreases or increases ϕ(G) by
one. Thus ϕ(G × F ) ≥ ϕ(G) − |F | for any edge–set of G. An edge–set F of a graph G
is called ear–extreme if ϕ(G × F ) = ϕ(G) − |F |. Note that every ear–extreme edge–set is
a forest. Our purpose is to prove that the ear–extreme edge–sets form the independent
sets of a matroid. Clearly, the ear–extreme edge–sets of maximum size and the critical–
making sets of minimum size are the same. Furthermore, by Lemma 3.1 and Theorem 3.4
it follows that the maximal ear–extreme edge–sets and the minimal critical–making sets
are the same, as well.

The properties of ear–decompositions of graphs are closely related to matching theory
so we need some basic definitions and theorems from this area.

A graph G is said to be bicritical if it has at least one edge and for every pair of vertices
u, v ∈ V (G) G − u − v has a perfect matching. Recall that a graph G is factor–critical
if for every v ∈ V (G) G − v has a perfect matching. Factor–critical graphs have a very
useful characterization in the language of ear–decompositions [2]. An ear–decomposition
is said to be odd if every ear is odd in it. A subgraph G′ of a graph G is nice if G− V (G′)
has a perfect matching.

Theorem 1.2. [Lovász] A graph G is factor–critical if and only if it has an odd ear–
decomposition, that is, ϕ(G) = 0. Moreover, if G is a factor–critical graph, then any odd
ear–decomposition of a nice factor–critical subgraph extends to an odd ear–decomposition
of G.

If for a connected graph G, all of its edges lie in some perfect matching then G is
said to be 1–extendable. The following important property of 1–extendable graphs can be
found in [2, Theorem 5.4.1, Theorem 5.4.4].

Theorem 1.3. If G is 1–extendable and e1 and e2 are any two non–parallel edges of G,
then G has an ear–decomposition such that only the first ear is even and it contains e1 and
e2.
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The following theorem is well–known and it follows from Theorem 1.2.

Theorem 1.4. Let H be a subgraph of G. If both H and G/H are factor–critical then so
is G.

We need a similar theorem, which will be proved in Section 2.

Lemma 1.5. Let G = (V,E) be a 2–edge–connected graph and assume that V is partitioned
into V1 and V2 such that G − V1 is connected. Denote Gi the graph obtained from G by
deleting all the edges with both ends in Vi and identifying all the vertices of Vi (i = 1, 2).

If G1 is factor–critical and G2 is 1–extendable then G is a factor–critical graph.

For a graph G = (V,E), let co(X) denote the number of odd components of G − X.
A set of vertices X is a barrier if co(X) − |X| =max{co(Y ) − |Y | : Y ⊆ V }. Let G be
any graph with a perfect matching. Then by Tutte’s theorem co(X) = |X| for any barrier
X. A barrier X of G is said to be a strong barrier if G − X has no even components,
each of the odd components is factor–critical and the bipartite graph, obtained from G by
deleting the edges induced by X and by contracting each factor–critical component to a
single vertex, is 1-extendable. If G has a strong barrier then G is called half–elementary.
Let the subgraph H of G induced by U ⊆ V be half–elementary with a strong barrier
X ⊆ U, then H is said to be a strong subgraph of G attached at X if X separates U − X
from V − U or if U = V.

The definition of strong subgraph was introduced by A.Frank [1] (he called it strong–
end) and he proved the following theorems.

Theorem 1.6. G is factor–critical if and only if G has no strong subgraphs.

Theorem 1.7. For a strong subgraph H of G, ϕ(G/H) = ϕ(G) − 1.

The following lemma is not explicitly stated in Theorem 2.4. in [1] but in fact A.Frank
proved this statement.

Lemma 1.8. Let G be a connected graph. Suppose for a vertex–set X, G−X has at least
|X| factor–critical components. Then there exists a strong subgraph H attached at some
Y ⊆ X such that all the factor–critical components of G− Y are components of G−X as
well.

Let us recall briefly the Gallai–Edmonds Structure Theorem (see [2]). Let N be an
arbitrary graph. Let D(N) denote the set of those vertices in N which are not covered by
at least one maximum matching of N. Let A(N) be the set of vertices in V (N) − D(N)
adjacent to at least one vertex in D(N). Then by the Gallai-Edmonds Structure Theorem,
A(N) is a barrier of N , the odd components of N − A(N) are factor-critical and their
union is exactly D(N). Furthermore if we assume that N has no perfect matching, then
A(N) = ∅ if and only if N is factor–critical.

2. Proofs of Lemmas

Proof. (of Lemma 1.1) First we show the equivalence of a.) and b.).
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i.) We prove by induction on k that if F ⊆ E(G) is a forest, |F | = k and G/F is
factor–critical, then G × F is factor–critical, as well.

Assume that for some edge f G/f is factor–critical but G × f is not. Since G × f
has an odd number of vertices and it is not factor–critical, by Gallai–Edmonds Theorem
A(G × f) 6= ∅ and G × f − A(G × f) has at least |A(G × f)| + 1 odd components.

It is easy to see using that G is 2-edge–connected that wherever lie the two end–
vertices of f in G × f , there exists a vertex set X 6= ∅ in G/f so that (G/f) − X has at
least |X| odd components. Thus for x ∈ X, (G/f) − x has no perfect matching, which
contradicts the assumption that G/f is factor–critical.

Now assume that the statement is true for |F | ≤ k − 1. Let F ⊆ E(G) be a forest so
that G/F is factor–critical and |F | = k. Let f ∈ F. Consider the graph G′ := G/f and
let F ′ := F − {f}. Then G′/F ′ is factor–critical, F ′ is a forest and |F ′| = k − 1, thus by
induction G′ ×F ′ is factor–critical. By the induction hypothesis for the graph G×F ′ and
the edge f , (G × F ′) × f = G × F is factor–critical. Thus we have proved that if for a
forest F , the contraction of F leaves a factor–critical graph, then so does its subdivision.

ii.) Assume that G × F is factor–critical. Then by Theorem 1.2 it has an odd ear–
decomposition. The corresponding odd ear–decomposition of G/F shows that G/F is
factor–critical.

Finally, we show the equivalence of b.) and c.).

iii.) If G×F is factor–critical, then it has an odd ear–decomposition by Theorem 1.2.
The corresponding ear–decomposition of G has exactly |F | = k even ears, thus ϕ(G) ≤ k.

iv.) Let P0 + ... + Pl be an ear–decomposition of G with ϕ(G) even ears. Choose
an edge from each even ear. Then the subdivision of these edges leaves a factor–critical
graph, thus ϕ(G) ≥ k, which completes the proof.

We need two propositions to prove Lemma 1.5.

Proposition 2.1. Let v be a vertex of a factor–critical graph H so that H−v is connected.
Then there exists an odd ear–decomposition of H such that

(∗) the first ear contains v and the other ears contain at most one edge incident to v.

Proof. We have to slightly modify the algorithm which proves Theorem 1.2 (see [2]).
The first ear is defined by two edges incident to v like in [2]. Now the next ear will

be defined by an edge not incident to v. Since v is not a cut–vertex in H, we can build up
the odd ear–decomposition with this restriction as well.

The following proposition can be proved similarly as Theorem 5.4.1 in [2] using The-
orem 5.4.4 from [2].

Proposition 2.2. Let H be a 1–extendable graph. Let g0, g1, ..., gk denote the edges
incident to a vertex v of H, so that g0 and g1 are not parallel. Then there exists an
ear–decomposition Q1 + Q2 + ... + Ql of H such that

(∗∗) Q1 is an even cycle, all the other ears Qi (2 ≤ i ≤ l) are paths of odd length, Q1

contains g0, g1 and Qi contains gi 2 ≤ i ≤ k.

Let us turn to the proof of Lemma 1.5.
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Proof. (of Lemma 1.5) Let vi denote the vertex of Gi corresponding to Vi.
By assumption, G1 and v1 satisfy the conditions of Proposition 2.1, thus there is an

odd ear–decomposition P1 + ... + Ph of G1 with property (∗). Let e0 and e1 be the edges
of P1 incident to v1. Let e2, ..., ek denote the other edges incident to v1. For 2 ≤ i ≤ k
there is an ear Pπi

containing ei in G1 and by (∗) Pπi
6= Pπj

if i 6= j. We may assume that
πi < πj if i < j. Let gi denote the edge in G2 corresponding to ei (i = 0, 1, ..., k). Note
that the edges between V1 and V2 correspond to e0, e1, ..., ek in G1 and to g0, g1, ..., gk in
G2.

a.) First assume that g0 and g1 are non–parallel in G2.

By assumption G2 is a 1–extendable graph, thus by Proposition 2.2 there is an ear–
decomposition Q1 + ... + Ql of G2 with property (∗∗).

We show how to build up an odd ear–decomposition of G from these two ear–
decompositions. Consider the following ear–decomposition of G. We take the ears P ′

1, ..., P
′
h

of G corresponding to P1, ..., Ph, extending each ear P ′
πi

by Qi − gi and finally we add the
remaining ears of G2. Thus

G = P ′
1 ∪ (Q1 − g0 − g1) + P ′

2 + ... + P ′
π2−1 + P ′

π2
∪ (Q2 − g2) + P ′

π2+1 + ... + P ′
πi
∪

(Qi − gi) + ... + P ′
πk−1 + P ′

πk
∪ (Qk − gk) + ... + P ′

h + Qk+1 + ... + Ql.

It is easily seen that each ear has an odd length, thus by Theorem 1.2 G is factor–
critical.

b.) Now consider that case when g0 and g1 are parallel in G2.

Let j be the least index so that g0 and gj are not parallel in G2. Clearly, we may
assume that such an edge gj exists. Let us change the indices 1 and j. Then the graph
G2 and the edges g0, g1 satisty the conditions of Proposition 2.2, thus there is an ear–
decomposition Q1 + ...+Ql of G2 with property (∗∗). Note that the ears Q2, ..., Qj contain
single edges g2, ..., gj 6= g1.

Consider the following ear–decomposition of G. We take the ears P ′
1, ..., P

′
h of G

corresponding to P1, ..., Ph, extending the ear P ′
πj

by Q1 − g0 − g1 and P ′
πi

by Qi − gi for
j + 1 ≤ i ≤ k and finally we add the remaining ears of G2. Thus

G = P ′
1 + ... + P ′

πj−1 + P ′
πj

∪ (Q1 − g0 − g1) + P ′
πj+1 + ... + P ′

πj+1−1 + P ′
πj+1

∪ (Qj+1 −
gj+1)+P ′

πj+1+1+...+P ′
πi
∪(Qi−gi)+...+P ′

πk−1+P ′
πk

∪(Qk−gk)+...+P ′
h+Qk+1+...+Ql.

It is easy to see that this is an odd ear–decomposition of G, thus by Theorem 1.2 G
is factor–critical. This completes the proof.

3. The matroid property

In this section we prove that the ear–extreme edge–sets are the independent sets of
some matroid. First of all we show that the maximal ear–extreme edge–sets have the same
cardinality.

Lemma 3.1. Any ear–extreme edge–set of G can be extended to an ear–extreme edge–set
of size ϕ(G).
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Proof. Let Y be an ear–extreme edge–set of G. Let Z be an ear–extreme edge–set of
G × Y for which ϕ((G × Y ) × Z) = 0. Then Y ∪ Z is an ear–extreme edge–set of G with
size ϕ(G).

For graphs with ϕ(G) = 1 the ear–extreme edge–sets trivially form the independent
sets of a matroid. In this case the set of ear–extreme edges can be characterized and a
structure theorem can be given for these graphs similar to the Cathedral Theorem for
saturated graphs due to L.Lovász [2]. This result can be found in [5].

Theorem 3.2 contains our basic observation.

Theorem 3.2. Let G be a graph with ϕ(G) = 1, and let F ⊆ E(G) be any forest of G
such that ϕ(G × F ) = 0. Then F contains an edge e for which ϕ(G × e) = 0.

Proof. Let G be a counterexample to the theorem with minimum number of vertices. The
theorem is trivially true for 1–extendable graphs by Theorem 1.3. Thus G is not bicritical.

From the assumption that ϕ(G) = 1 it follows easily that G has a perfect matching.
Let X be a maximal barrier of G. Then, clearly, all the components of G − X are factor–
critical. Since G is not bicritical, |X| ≥ 2 by [2, Theorem 5.2.5]. By Lemma 1.8 there
exists a strong subgraph H attached at Y ⊆ X such that all the factor–critical components
of G− Y are components of G−X. Then G− Y has at least two connected components.
Let C1, ..., C|Y | be the factor-critical components of G − Y . Let C∗

i = G/(G − Ci) and
Fi = E(Ci)∩F. We may assume that F does not contain any edge connecting Y with some
Ci, for otherwise this edge is ear–extreme in G by [1, Theorem 4.3/b] and by Theorem 1.7.
Thus Fi is a forest in C∗

i .

Lemma 3.3. For some component Ci ϕ(C∗
i × Fi) = 0.

Proof. Let si denote the vertex in C∗
i corresponding to G − Ci.

Since G×F is factor–critical, G×F−u has a perfect matching for any u ∈ Y. Therefore
C∗

i ×Fi−si has a perfect matching for some component Ci. We show that ϕ(C∗
i ×Fi) = 0.

Assume that N := C∗
i × Fi is not factor–critical. Clearly, N has no perfect matching and

since N is not factor-critical, A(N) 6= ∅. Since N − si has a perfect matching, the vertex
si is in D(N). Let L denote the factor–critical component of D(N) containing si. Then
there is a strong subgraph in the graph induced by the vertices A(N) ∪ (D(N) − V (L))
by Lemma 1.8. This is a strong subgraph in G×F as well which contradicts the fact that
G × F is factor–critical (by Theorem 1.6).

Since Ci is factor–critical, ϕ(C∗
i ) = 1. ϕ(C∗

i ×Fi) = 0, and |V (C∗
i )| < |V (G)| because

G−Y has at least two connected components. Therefore, the minimality of G implies that
there exists an edge e ∈ Fi for which ϕ(C∗

i × e) = 0, i.e. C∗
i × e is factor–critical.

We show that ϕ(G × e) = 0.
By definition, the graph H ′, obtained from H by deleting the edges spanned by Y, and

contracting each factor–critical component of H − Y to a single vertex, is a 1–extendable
bipartite graph. Thus by Lemma 1.5 the graph obtained from H ′ by ”blowing up” C∗

i × e
is factor–critical. (In other words, we replaced the vertex corresponding to Ci by C∗

i × e.)
This implies that H × e is factor–critical by Theorem 1.4 and by Theorem 1.7 G/H is
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factor–critical as well, whence by Theorem 1.4 G× e is factor–critical. This completes the
proof of Theorem 3.2.

Theorem 3.4. Let G be a graph with ϕ(G) = ϕ, and let F ⊆ E(G) be a forest of G
such that ϕ(G × F ) = 0. Then there exists an edge–set F ′ ⊆ F for which |F ′| = ϕ and
ϕ(G × F ′) = 0.

Proof. We prove by induction on ϕ. For ϕ = 1 it is true by the previous theorem. Assume
that the theorem is true for all graphs G∗ with ϕ(G∗) = ϕ − 1. Let G be a graph with
ϕ(G) = ϕ.

Let e be an ear–extreme edge of G. If e ∈ F, then we are done by induction for G× e.
Thus we may assume that e /∈ F. Let G′ = G × e and let e1 and e2 be the two new edges
in G′. Then ϕ(G′) = ϕ − 1 and ϕ(G′ × (F ∪ {e1})) = 0. By the induction hypothesis
there exists an edge–set F1 ⊆ F ∪ {e1} such that |F1| = ϕ − 1 and ϕ(G′ × F1) = 0.
Furthermore, F1 ⊆ F, otherwise ϕ(G) ≤ ϕ− 2. Thus F1 ⊂ F, |F1| = ϕ− 1, ϕ(G× F1) = 1.
Using the previous theorem for the graph G × F1 and the edge–set F − F1, ϕ(G × F1) =
1, ϕ((G × F1) × (F − F1)) = 0, we get that there exists an edge f ∈ F − F1 such that
ϕ((G × F1) × f) = 0. Let F ′ = F1 ∪ {f}. Then F ′ ⊆ F, |F ′| = ϕ,ϕ(G × F ′) = 0. This was
to be proved.

Now we are ready to prove our main result. It is interesting that Theorem 3.2 enables
us to prove this theorem and we do not need Theorem 3.4.

Main Theorem. The ear–extreme edge–sets of any 2-edge–connected graph G form the
independent sets of a matroid.

Proof. Let G be a counterexample with minimum ϕ(G). For ϕ = 1 there is nothing to
prove. Let M = {F ⊆ E : ϕ(G × F ) = ϕ(G) − |F |}. Our assumption for G means that
there are two sets F1, F2 ∈ M, with |F1| = |F2| = ϕ(G), and f ∈ F1 \ F2 such that for
every edge e ∈ F2 \ F1 (F1 \ {f}) ∪ {e} /∈ M, and the theorem is true for graphs with
smaller value of ϕ.

First we show that F1 ∩F2 = ∅. Suppose there is an edge e ∈ F1 ∩F2. Let G′ = G× e.
Then ϕ(G′) = ϕ(G) − 1 and F1 \ {e} and F2 \ {e} are ear–extreme edge–sets in G′. From
the minimality of G follows that there exists f ′ ∈ F2 \F1 such that (F1 \ {e} \ {f})∪ {f ′}
is an ear–extreme edge–set with maximum size in G′, that is (F1 \ {f}) ∪ {f ′} ∈ M. This
contradicts our assumption.

Let G∗ = G × (F1 \ {f}) and for every edge g ∈ F1 \ {f} let g1 and g2 denote
the two edges in G∗ corresponding to g. Let T = {g1 : g ∈ F1 \ {f}}. Then ϕ(G∗) =
ϕ(G× (F1 \ {f})) = 1 and ϕ(G∗ × (F2 ∪ T )) = 0. Theorem 3.2 implies the existence of an
edge e ∈ F2 ∪T such that ϕ(G∗× e) = 0. Furthermore, e ∈ F2 \F1, for otherwise, if e = g1

for some edge g ∈ F1 \ {f}, then ϕ(G × (F1 \ {f} \ {g})) = 0 contradicts ϕ(G) = ϕ.
Therefore, there exists an edge e ∈ F2 \ F1 such that ϕ(G × ((F1 \ {f}) ∪ {e})) = 0,

that is, (F1 \ {f}) ∪ {e} ∈ M, contradicting our assumption.

If ϕ(G) = 2 then we can say more, in this case the matroid is a partitional matroid,
but we omit the proof of this theorem. (see [4] or [6]) When ϕ(G) ≥ 3 then this matroid
is not a partitional matroid in general.
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Theorem 3.5. Let G be a graph with ϕ(G) = 2. In this case the ear–extreme edge–sets of
G form the independent sets of a partitional matroid.

We conclude this paper with some algorithmic aspects. Let us recall the problem
we mentioned in the abstract. Given a connected graph G and a non-negative weighting
w on its edges, what is the minimum weight of an edge-set whose contraction leaves a
factor-critical graph? Since any minimum weight edge-set J with this property is trivially
a forest, by Theorem 3.4 J includes a critical-making set with size ϕ(G) and of weight not
more than w(J). By the Main Theorem the ear–extreme edge-sets form the independent
sets of a matroid, thus the greedy algorithm gives rise to the desired algorithm, using as
an independence oracle the polynomial time algorithm developed by A.Frank in [1] for
computing the value ϕ(H) for any 2-edge-connected graph H.
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Budapest, 1989.

[4] Z. SZIGETI, On Ear–decompositions and Critical–making sets, 1992, (in Hungarian)

[5] Z. SZIGETI, On Lovász’s Cathedral Theorem, Proceedings of the Third Conference on Integer Programming

and Combinatorial Optimization, eds.: G. Rinaldi and L. A. Wolsey, 1993, 413-423.

[6] Z. SZIGETI, Conservative weightings of graphs, Ph. D. thesis, 1994.


