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no. 1, pp. 25-53]), which states that a graph has a
2-vertex-connected orientation if and only if it is
(2,2)-connected. In this paper, we provide a construction
of the family of (2, k)-connected graphs for k even,
which generalizes the construction given by Jordan
[J. Graph Theory 52 (2006), pp. 217-229] for (2,2)-
connected graphs. We also solve the corresponding
connectivity augmentation problem: given a graph G
and an integer k > 2, what is the minimum number of
edges to be added to make G (2, k)-connected. Both
these results are based on a new splitting-off theorem for
(2, k)-connected graphs.
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1 | INTRODUCTION

Let G = (V, E) be an undirected graph (in short, a graph), in which loops and parallel edges are
allowed. A subset of V is called nontrivial if it is different from the empty set and the whole set
V.ForU, W C V, dg(U, W) denotes the number of edges with one end-vertex in U\W and the
other end-vertex in W\U. For the sake of convenience, dg (U, U) is denoted by dg(U). Given a
set of edges F C E, we define dp(U) = d(yv ) (U).

Let H=(V + s, E) be a graph with a special vertex s such that no loop is incident
to s. For convenience, in this paper, H will always denote a graph with such a special
vertex s.
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1.1 | Connectivity

In this paper, we will need the following mixed-connectivity concepts of graphs introduced by
Kaneko and Ota [9]. Let ¢ and k be positive integers. The graph G is called (¢, k)-connected if
V] > ¢ and for all U C V, F C E such that k|U| + |F| < ¢k, G — U — F is connected. This
notion contains both vertex-connectivity (for k = 1) and edge-connectivity (for € = 1). Indeed,
G is ¢-vertex-connected if and only if |V| > ¢ and for all U C V such that |U| < ¢,G — U is
connected. Furthermore, G is k-edge-connected if and only if at least k edges enter all nontrivial
sets of V. The graph H = (V + s, E) is called k-edge-connected in V' if at least k edges enter all
nontrivial sets of V. In this paper, we consider (2, k)-connected graphs. Observe that G is (2, k)-
connected if|V| > 3, G is 2k-edge-connected and, for allv € V, G — v is k-edge-connected. Note
that (2, k)-connectivity is stronger than 2k-edge-connectivity but much weaker than 2k-vertex-
connectivity.

We will need some connectivity concepts in directed graphs as well. Let D = (V, A) be a
directed graph. We say that D is strongly connected if for every nontrivial vertex set X of V, there
exists an arc entering X. The digraph D is called ¢-arc-connected if, for all F C A such that
|F| < ¢, D — F is strongly connected. Note that D is #-arc-connected if and only if at least € arcs
enter all nontrivial sets of V. The digraph D is called ¢-vertex-connected if |V| > ¢ and for all
X C V such that |[X| < ¢, D — X is strongly connected.

To motivate our problems, let us recall some results on orientations, constructions, splitting-
off, and augmentations of graphs.

1.2 | Orientations
We start with the classic result on edge-connectivity.

Theorem 1.1 (Nash-Williams [12]). An undirected graph has a k-arc-connected
orientation if and only if it is 2k-edge-connected.

Inspired by Theorem 1.1, Frank [6] proposed a conjecture concerning vertex-connectivity.

Conjecture 1.1 (Frank [6]). An undirected graph G = (V, E) has a k-vertex-connected
orientation if and only if G is (k, 2)-connected.

Recently, some breakthroughs have been achieved on this conjecture. On the one hand,
Durand de Gevigney [3] proved that Conjecture 1.1 is false for k > 3.

Theorem 1.2 (Durand de Gevigney [3]). For every k > 3, there exist (k, 2)-connected
undirected graphs that have no k-vertex-connected orientation. Moreover, for every k > 3, it
is NP-complete to decide whether an undirected graph has a k-vertex-connected orientation.

On the other hand, Thomassen [14] proved that Conjecture 1.1 is true for k = 2.

Theorem 1.3 (Thomassen [14]). An undirected graph has a 2-vertex-connected orientation
if and only if it is (2, 2)-connected.
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We mention that the special case of Theorem 1.3 when the graph is Eulerian was earlier
proved by Berg and Jordan [2].

1.3 | Constructions

Theorem 1.1 can easily be proved by applying the following construction of Lovasz [10] of 2k-
edge-connected graphs. Let K2* be the graph on 2 vertices with 2k edges between them. The
operation pinching k edges is defined as follows: subdivide each of the k edges by a new vertex
and identify these new vertices.

Theorem 1.4 (Lovasz [10]). A graph is 2k-edge-connected if and only if it can be obtained
from KZ* by a sequence of the following two operations:

(a) adding a new edge,
(b) pinching k edges.

Conjecture 1.1 drew attention on the family of (2, 2)-connected graphs. Jordan [8] gave the
following construction of this family, similar to the above construction of 4-edge-connected graphs.
For k > 2, let K¥ be the graph on 3 vertices with k edges between each pair of vertices. Note that a
(2, 2)-connected graph must contain at least 3 vertices, this is why the starting graph is different.

Theorem 1.5 (Jordan [8]). A graph is (2, 2)-connected if and only if it can be obtained
from K3 by a sequence of the following two operations:

(a) adding a new edge,
(b) pinching 2 edges such that if one of them is a loop, then the other one is not adjacent to it.

Unfortunately, this construction does not help prove Conjecture 1.1 for k = 2.

We will generalize Theorem 1.5 in Theorem 4.9.

We mention that concerning vertex-connectivity, a few results are known. Constructions are
given only for 2- and 3-vertex-connected graphs, see Robbins [13], Barnette and Griinbaum [1],
and also Tutte [15].

1.4 | Splitting-off

To prove Theorem 1.4, one has to consider the inverse operations: deleting an edge and
complete splitting-off at a vertex of degree 2k. Let us now introduce the operation of complete
splitting-off at a vertex s of even degree. It consists of partitioning the set of edges incident to s
into pairs, replacing each pair (su, sv) by a new edge uv and then deleting s. If the graph is
minimally 2k-edge-connected, that is, when no edge can be deleted without destroying 2k-edge-
connectivity, then the following result shows that there exists a vertex of degree 2k.

Theorem 1.6 (Mader [11]). Every minimally 2k-edge-connected graph contains a vertex of
degree 2k.

Then, the following splitting-off theorem of Lovasz [10] implies the existence of a complete
splitting-off at this vertex that preserves 2k-edge-connectivity.
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Theorem 1.7 (Lovasz [10]). Let H = (V + s, E) be an £-edge-connected graph for € > 2,
where s is a vertex of even degree. Then, there exists a complete splitting-off at s such that the
new graph is €-edge-connected.

We will also need the splitting-off result of Mader [11]. Let (su, sv) be a pair of (possibly
parallel) edges in H = (V + s, E). Splitting-off the pair (su, sv) at s in H consists in replacing the
edges su, sv by a new edge uv. The graph arising from this splitting-off at s is denoted by H, .

Theorem 1.8 (Mader [11]). Let H = (V + s, E) be an £-edge-connected graph in V for
€ > 2 such that dy (s) # 3 and dy (s) > 2. Then, there exists a pair of edges (su, sv) in H
such that H,, is €-edge-connected in V.

For a pair (su, sv) of (possibly parallel) edges of H, if H and H,, are (2, k)-connected in V,
then the pair (su, sv) is called (2, k)-admissible (in short, admissible when k is clear from the
context). A complete splitting-off is called admissible if the resulting graph is (2, k)-connected
inV.

To get Theorem 1.5, one has to consider the inverse operations: deleting an edge and
complete splitting-off at a vertex of degree 4. If the graph is minimally (2, k)-connected, that is,
when no edge can be deleted without destroying (2, k)-connectivity, then the following result
[9, Lemma 7] shows that there exists a vertex of degree 2k. For the definitions of inner-set and
tight bi-set, see Section 2.

Theorem 1.9 (Kaneko and Ota [9]). Let G = (V, E) be a minimally (2, k)-connected
graph. Then, the inner-set of every tight bi-set contains a vertex of degree 2k.

We mention that Theorem 1.9 will be used in the proof of Theorem 4.9.

Jordan [8] proved a splitting-off theorem on (2, 2)-connected graphs. Here, it is possible that
there exists no complete splitting-off preserving (2, 2)-connectivity, in this case a special kind of
obstacle exists. Let H = (V + s, E) be a graph with dy(s) =4, and {t, x, y, z} the set of
neighbors of s. The quadruple (¢, X, Y, Z) is called a 2-obstacle at s if X, Y, and Z are pairwise
disjoint vertex sets of V—t,xe X,y €Y, z€ Z anddy_,(X) = dy_(Y) = dy_,(Y) = 2.

Theorem 1.10 (Jordan [8]). Let H = (V + s, E) be a (2, 2)-connected graph such that
V| > 3 and dy(s) = 4. Then, there exists a (2, 2)-admissible complete splitting-off at s if
and only if there exists no 2-obstacle at s.

We will generalize Theorem 1.10 in Theorem 4.7.

1.5 | Augmentation

Theorem 1.7 has other applications, among others, it can be used to solve the £-edge-connected
augmentation problem (see Frank [5]).

Theorem 1.11 (Watanabe and Nakamura [16]). Let G = (V, E) be a graph and € > 2 an
integer. The minimum cardinality of a set F of edges such that (V, E U F) is ¢-edge-
connected is equal to
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where X is a family of nontrivial pairwise disjoint sets of V.

The (2, k)-connectivity augmentation problem can be formulated as follows: what is the
minimum number of edges whose addition results in a (2, k)-connected graph. The min-max
theorem on this problem is presented in Theorem 4.12.

The ¢-vertex-connectivity augmentation problem is still open. For fixed ¢, Jackson
and Jordan [7] provided a polynomial algorithm.

This paper is devoted to the study of (2, k)-connected graphs and is organized as follows.
We give the necessary definitions in Section 2 and then some preliminary results in Section 3. The
main results are presented in Section 4. First, we provide a new splitting-off theorem for
(2, k)-connected graphs. As in the special case k = 2, the existence of a complete splitting-off
preserving (2, k)-connectivity depends on the nonexistence of an obstacle. Second, we give a
construction of the family of (2, k)-connected graphs for k even. These are the natural
generalizations of the previous results of Jordan [8] on (2,2)-connected graphs. Finally, we solve
the (2, k)-connectivity augmentation problem. We follow Frank’s [5] approach: we find a minimal
extension and then we apply our splitting-off theorem. This way we provide a new case for
connectivity augmentation when a min-max formula exists.

2 | DEFINITIONS

Let Q be a ground set. A subset of Q is called trivial if it coincides with @ or Q. The complement
of a subset U C Q is defined by U = Q\U. For X; C X, C Q, the pair of sets X = (Xq, X7) is
called a bi-set of Q. The sets Xj, Xo, and wP(X) = X\X; are the inner-set, the outer-set, and the
wall of X, respectively'. If X; = @ or Xo = Q, then the bi-set X is called trivial. The intersection
and the union of two bi-sets X = (X, X;) and Y = (Y, ¥{) are defined by XnY =
XoNYo, X1NnY) and XUY = (Xo U Yo, X1 U Y]), respectively. We encourage the readers to
use figures like Figure 1 to check properties of bi-sets.
Note that

WP + WP (V)] = WX Y)| + w>(XuY)|. (1)

We say that Y contains X, denoted by X C Y, if Xo C Yo and X; C Y{; while Y strictly contains
X, denoted by X C Y, if XC Y and X # Y. We say that X and Y are innerly disjoint if the inner-
sets X; and Y] are disjoint. We extend the complement operation to bi-sets by defining the
complement of X as X = (X, Xo ). For a family # of bi-sets of Q, we denote by Q;(F) = UxerX;
the union of the inner-sets of the members of ¥ . A bi-set function kP is called submodular if, for
all bi-sets X and Y,

hP(X) + hP(Y) > h®(XY) + h® (XU Y). (2)

'In this study, we use a small letter b to differentiate bi-set functions from set functions. We also use a sans serif typeface (such as X) to differentiate bi-sets
from sets.
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FIGURE 1 The intersection and the union of two bi-sets [Color figure can be viewed at
wileyonlinelibrary.com]

Let G = (V, E) be a graph. An edge e of G enters a bi-set X = (Xo, Xp) of V, if one of the end-
vertices of e belongs to Xo and the other one to X;. The degree of X, denoted by dg (X), is the
number of edges of G entering X. Note that the degree function of bi-sets is a generalization of
the degree function of sets since dg (U) = d};’ ((U, U)) for any subset U of V. Observe that d(l;’ is
symmetric with respect to the complement operation of bi-sets and satisfies the following
equation for all bi-sets X and Y of V.

de(X) + dd(Y) =dg(XnY) + dd(XUuY) + de(Xo N Yo, Xi N 1) + do(Yo N Xo, i N X7)
3)

that can be established by checking that any edge contributes to the same amount on each side.
It directly follows from 3 that d2 is submodular.

Let k be a positive integer. Recall that the graph G is 2k-edge-connected if and only if
dg(X) > 2k for all nontrivial sets X of V, that is, d2(X) > 2k for all nontrivial bi-sets X of V'
such that wP(X) is empty. Moreover, for any vertex v, the graph G — v is k-edge-connected if
and only if dg_,(X) > k for all nontrivial set X of V/, that is, d2(X) > k for all nontrivial bi-sets
X of V such that w°(X) = {v}. Note that if [w°(X)| > 2, then k|w®(X)| > 2k. These arguments
show that (2, k)-connectivity can be reformulated using bi-sets as follows: the graph G is (2, k)-
connected if and only if |V| > 3 and, for all nontrivial bi-sets X of V,

R0 = d@(X) + klw®(X)| > 2k. )

A bi-set X that satisfies 4 with equality is called tight. Equations 1 and 3 imply that, for all bi-sets
X and Y of V, we have

OO+ =XNY) + fEXuY) +de(Xo N Yo, Xi N T) + da(Yo N Xo, Yi N X0).
(5)

Let H = (V + s, E) be a graph. We denote by Ny (s) the set of neighbors of s in H. The graph
H is called (2, k)-connected in V if |V| > 3, and 4 holds in H for all nontrivial bi-sets X of V.
Note that, considering the graph H, for a set X (resp. a bi-set X), the complement X (resp. X) is
taken with respect to the ground set Q = V + s. We will also need the complement X ¢ (resp. X°)
with respect to V, that is, X¢ := V\X and X° := (X7, X§) = (V\X1, V\Xp). Observe that

f 00 = di (s, X0) = du (X1, X\Xo) + kw* (X)| = f (X) = du (5, X5). (6)
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By 5 and 4, we have immediately the following results.

Proposition 2.1. Let H= (V + s, E) be a (2, k)-connected graph in U, where U = V or
U=V +s, Xand tight bi-sets of U.

(@) If XnY and XUY are nontrivial bi-sets of U, then XY and XUY are tight
and dyXo N Yo, XiNY) = duy (Yo N Xo, YiNX;) = 0.

() If XNY and XNY are nontrivial bi-sets of U, then XNY and XNY are tight
and dy(Xo N Y1, Xi N Yo) = dy (Y N Xo, Yo N X) = 0.

Proposition 2.2. Let H=(V + s, E) be a graph, X and Y bi-sets of V + s such that
fR(X1Y) > 2k and [w°(XUY)| > 2. Then,

(fp X) = 2k) + (Fy(Y) — 2k) > df (XU Y) + dyRXo N Yo, Xi N ¥) + dy (Yo N Xo, YN X7).
7

3 | PRELIMINARIES

In this section, we provide the preliminary results that will be needed in the proofs of our main
theorems.

3.1 | Blocking bi-sets

We introduce a special type of bi-sets that help characterize pairs of adjacent edges not to be
admissible. Then, we provide a useful lemma about such bi-sets to be applied frequently in the
later proofs.

Let H = (V + s, E) be a (2, k)-connected graph in V with a special vertex s and (su, sv) a
pair of edges. A nontrivial bi-set X of V' is called a blocking bi-set for the pair (su, sv) if either 8 or
9 is satisfied.

f}’l (X) < 2k + 1 and X; contains both u and v, (8)

ffl (X) = 2k, X; contains one of u and v, and w?(X) consists of the other one. 9)

Let X be a blocking bi-set for the pair (su, sv). Then, we say that X blocks (su, sv). If 8 occurs,
then X is called dangerous and if 9 occurs, then X is called critical. Note that critical bi-sets are
tight. The blocking bi-set X for the pair (su, sv) is called maximal if no blocking bi-set for
(su, sv) contains strictly X. The term blocking is justified by the following lemma.

Lemma 3.1. Let H=(V + s, E) be a (2, k)-connected graph in V. A pair (su, sv) is
nonadmissible if and only if there exists a bi-set of V blocking (su, sv).
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Proof.  The sufficiency is clear. Let us see the necessity. Since (su, sv) is nonadmissible,
there exists a nontrivial bi-set X of V, which violates 4 in H, ,. Since f}’l (X) > 2k, either
dp,, X) = diy(X) — 2, that is, u,v € X; and fp (X) <2k + 1, or djj,, (X) = di(X) — 1,
that is, u € X; and {v} = w°(X) (or v € X; and {u} = w®(X)), and f3 (X) < 2k. [ ]

Note that if a bi-set X blocks a pair (su, sv), then after any sequence of splitting-off of
admissible pairs not containing su nor sv, X still blocks (su, sv). Hence, a nonadmissible pair in
H remains nonadmissible in any graph arising from H by a sequence of splitting-off of
admissible pairs. Note also that, by 8 and 9, for a blocking bi-set X,

wb(X)| <1, (10)

f2X) = 2k < dp (s, Xp) — 1. (11)

Proposition 3.2. Let H= (V + s, E) be a (2, k)-connected graph in V and X either a
tight bi-set of V such that X; contains a neighbor of s or a blocking bi-set. Then, Ny (s) is not
contained in Xo.

Proof. By assumption, X satisfies 11 and X® is a nontrivial bi-set of V, and hence, 6 and
(2, k)-connectivity of H in V provide that dy (s, X§) > 1 and we are done. [ |

Proposition 3.3. Let H = (V + s, E) be a (2, k)-connected graph in V with dy (s) even.

(i) For a nontrivial bi-set X of V, dy(s, Xp) < [%(dH(s) — dy (s, wP (X)) + ffl ) - 2k)]
(ii) If X is a dangerous bi-set of V, then dy (s, X1) < %dH (s).
(iii) If X is a critical bi-set of V, then dy (s, X7) < %dH(s) -1

(iv) If X and Y are critical bi-sets of V with the same wall w and dy (s, w) is odd, then
Ng (s) is not contained in Xo U Yo.

Proof. (i) follows from dy (s, X§) = dy(s) — dy (s, w°(X)) — du (s, X1), 6, (2, k)-
connectivity of H in V and since dy (s, Xp) is integer.

(i) and (iii) follow from (i) and from the conditions that X is dangerous (resp. X is critical)
and dg (s) is even.

(iv) follows from wP(X) = {w} = wP(Y), (i), and from the facts that X and Y are critical
and dy(s) — dy(s, w) is odd, as follows: dy(s, Xo U Yp) < dy(s, X7) +dy (s, i) +
dir (s, w) < 3(du (s) — diy (s, W) + 5 (dp (s) = dp (s, w)) + diz (s, w) = dyy (s). u

We will heavily rely on the following lemma whose proof is quite technical.
Lemma 3.4. Let H=(V + s, E) be a (2, k)-connected graph in V with dy (s) even. Let X

be a maximal blocking bi-set for a pair (su, sv) with u € X;. Let 7 € Ny(s)\X; and Y a
blocking bi-set for the pair (su, sz). Then, w®(X) and w°(Y) coincide and are a singleton.
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Proof. Note that
if Y is dangerous or w®(Y) N X; = @, then u € X; N Y; N Ny (s). (12)

We prove the lemma through the following claims.
Claim 3.5. The bi-sets X and Y satisfy the following:

(a) If wP(Y) N X; is empty, then ffl XmyY) > 2k.
(b) If w°(XNY) is empty, then f7 (X1Y) > 2k.
(©) IfwP(XNY) is empty, then f2(X1Y) > 2k.
(d) If wb(XUY) is empty, then ff (XUY) > 2k + 2.

Proof. By the (2, k)-connectivity of H in V' and since none of Xp and Y, contains V,
proving (a), (b), or (c) reduces to check that the inner-set of the bi-set resulting from the
intersection is nonempty.

(@) Byw" (M nXi=gandueXinYo=XNY.

(b) Byw!XnY)=@gandzeX nYo=Xo N Y)UuwPXnY)=X, n Y.

© IfXinY =@, thenXoNY, =w”XnY)u (X n Yo) = @, thatis, Xo C Y. So, by 8
or 9, u,v €Y, thus Y blocks (su, sv). Since z € Yo\X;, we have either z € ¥{\X; or
zZ € Yo\Yi. In the first case, X; C Y] and in the latter case, Xo ¢ Yo. It follows that Y
strictly contains X that contradicts the maximality of X.

(d) Suppose that w°(XUY) = @. Then, u, v € Xo U Yo = X; U Y. Thus, by z € Yo\X; =
YI\X1, XU'Y strictly contains X and X; U Y] # @. Since X and Y are blocking bi-sets,
by Proposition 3.3 and 12, we have dy(s, X;U Y) =dy(s, Xp) +dy(s, ¥)) —
dy(s, Xt NY) < %dH (s) + %dH(s) — 1 =dy(s) — 1, that is, there exists a neighbor
of s in V\(X; U Y7), and hence V # Xo U Yo. It follows that X LI Y is a nontrivial bi-set
of V containing u and v in its inner-set. Hence, by the maximality of X, X U'Y does
not block (su, sv), and then, f5(XUY) > 2k + 2. [

Claim 3.6. At least one of w®(X) and wP(Y) is not empty.

Proof.  Suppose that wP(X) = @ = w®(Y). Then, the conditions of Claim 3.5 are satisfied
and  f5XNY) = dy (X 0 YD), f5XNY) = dy (R\X), f5(XNY) = dy(6\¥),  and
f;’[(XuY) =dy (X1 U Y)). Since X and Y are blocking bi-sets, by 12 and Claim 3.5,
we have 4k+2=0Qk+ D+ Qk+1D)>dy) +dg(Y)=dgyXTUY, XiNY) +dy
(0\Y, Y\X) + 5 (du (X5 0 Y) + d (\K) + d (YAXD) + diy (X5 U Y) 2 1+ 0 + 5 (2k+
2k + 2k + (2k + 2)) = 4k + 2. Thus, equality holds everywhere, in particular, dy (X7) is
odd and dy(X; N Y5) and dy (X;\Y) are even. This contradicts dy(Xp) = dg (X N Y) +
dy (Xi\YD) — 2dy (X n Y, X1\ VD). [ |

Claim 3.7. None of w°(X) and wP(Y) is empty.
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Proof. By contradiction suppose that the claim is false. Then, by Claim 3.6 and 10, one
of X and Y has an empty wall, call it A, and the other one has a wall of size one, call it B.
Suppose that wP(B) N A; = @. By Claim 3.5(a), ffl (AnB) > 2k. If A = X, then, by Claim
3.5(c), fo(XNY) > 2k, otherwise A =Y and then, by Claim 3.5(b), f>(XNY) > 2k; in
both cases, f}_’l (A B) > 2k. Since B is a blocking bi-set and w® (B) is a singleton, we have,
by 11,

dfy (B) = du (s, By) = (f; (B) — klw*(B)]) — du(s, B) < k — 1. (%)

Then, by wP(A) = @, 5 applied for A B and A B, since the edges between A;\Bj and
A; N By enter B but not s, A is a blocking bi-set and by %, we have the following
contradiction: 2k + 2k < fj (AN B) +f7 (AN B) =f) (A) +2dy (A\By, A; n BY) <[} (A) +
2(d5(B) — dy (s, B)) < (2k + 1) + 2(k — 1).

From now on we suppose that wP(B) N A; # @. Since wP(B) is a singleton, it follows
that w°(B) N A; = @. Then, by Claim 3.5(d), f}; (AUB) > 2k + 2. If A =X, then, by
Claim 3.5(b), ffl (XNY)>2k, otherwise A=Y and then, by Claim 3.5(c),
ffl (XNY) > 2k; in both cases, f}_’l (A B) > 2k. Recall that B is a blocking bi-set and
wP(B) is a singleton. Then, by 12, we have

df(B) — du (s, At N By) = (f; (B) — klw*(B)) — du(s, A1 N B) < k. (k%)

Then, by the symmetry of ffl, by 5 applied for A LI B and A U B, since the edges between
Aj U By and B;\A enter B but not A; N By, since A is a blocking bi-set and by % %, we have
the following contradiction: (2k +2) + 2k < fo(AUB) + f3(ANB) =f7 (AUB) +
f}’,(AI—I B) =f}}(A) + 2dy(A; U B, B)\A4p) < f}.);(A) + 2(dj(B) — d (s, Ay N By)) <

2k + 1) + 2k. [ ]

Claim 3.8. The bi-sets X and Y have the same wall.

Proof. By Claim 3.7 and 10, both w®(X) and wP(Y) are singletons. For a contradiction
suppose that wP(X) # w®(Y), that is, w®(X) N wP(Y) = @. We have three cases.

Case 1. [w°(XUY)| = 2. Then, w*(X 1Y) = @. By Claim 3.5(a), ffl (XMY) > 2k. Hence, by
7, 11 applied for X, and by the facts that Y is a blocking bi-set and if Y is dangerous,
then z € (1\X)) N Ny(s), we have the following contradiction: d}’, Xuy) <
(00 = 2k) + (fy (V) = 2k) < dpr (5, X0) + di (5, Y\XD) = dr (5, X1 U YD) <
dh(Xuy).

Case 2. [w°(XUY)| = 1. Then, we may call X and Y as A and B such that wP(AMB) = @
and [w°(AU B)| = 2. If A = X, then, by Claim 3.5(c), fj, (X 1Y) > 2k, otherwise
A=Y and then, by Claim 3.5(b), f13 (XmY)>2k; in both cases,
f}; (ANB)>2k. Since A is a blocking bi-set, we have, by 12,
f2(A) — 2k < dy(s, At N By). By symmetry of f) and 11, f}(B)— 2k =
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f3(B) — 2k < dy(s, B)). Then, 7 applied for A and B contradicts
the following: (f (A) — 2k) + (f5 (B) — 2k) < dy (s, A; N By) + dy(s, By <
du(Ao N Br, A1 N Bo) + (di(AUB) + dy(Br N Ao, Bo NAD).

Case 3. [wW°(XUY)| = 0. Then, [w°(XY)| = 2. By Claim 3.5(d), since X is a blocking
bi-set, ffl is submodular, Y is a blocking bi-set and by 12, we have the following
contradiction: 1 = (2k + 2) — (2k + 1) < ff (XUY) — f (X) < f2(Y) — fL(X1Y)
< 2k + dy (s, X N Y) = (du(s, X N YD) + kwP (X1 Y)]) = 0.

Claims 3.7 and 3.8 and 10 prove Lemma 3.4. [ |

Proposition 3.9. Let H = (V + s, E) be a (2, k)-connected graph in V with dy (s) > 4 even.
If there exists no admissible pair incident to s, then dy (s, u) < %dH (s) for each neighbor u of s.

Proof.  Since any pair incident to s is nonadmissible, by Lemma 3.1, there exists a bi-set
that blocks it. By contradiction, suppose that dy (s, u) > %dH (s) > 2 for some u € Ny (s).
Let X be a maximal blocking bi-set for (su, su). Clearly, we have u € X;. By Proposition
3.2, there exists a vertex v in Ny (5)\Xo. Let Y be a blocking bi-set for the pair (su, sv). By
Lemma 3.4, X and Y have the same wall and thus u, v € Yo\w?(X) = Y;. This gives
dy(s, Y1) > dg (s, u) + dy(s, v) > d”T(S) + 1 that contradicts Proposition 3.3. [ ]

3.2 | Obstacles

Let H = (V + s, E) be a (2, k)-connected graph in V such that dy (s) is even. We extend the
definition of 2-obstacle (defined in Section 1.4) as follows. The pair (¢, C) is called a t-star
k-obstacle at s (in short, an obstacle) if

t is a neighbor of s with dy (s, t) odd, (13)

C is a collection of critical bi-sets, (14)

each element of C has wall {t}, (15)

the elements of C are pairwise innerly disjoint, (16)
Ny (\t} € K(O). 7)

Note that a t-star k-obstacle for k = 2 is a 2-obstacle. Note also that if (¢, C) is an obstacle at s,
then, by Lemma 3.1, no pair (st, su) with u € Ny (s)\{t} is admissible. Some basic properties of
obstacles are proven in the following proposition.

Proposition 3.10. Let H = (V + s, E) be a (2, k)-connected graph in V with dy (s) even

and (t, C) an obstacle at s. Then,
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ICl = 3, (18)

H — st is (2, k)-connected in V. (19)

Proof. 18: By 17, 13 and dy(s) even, |C| > 1. Let X and Y be two (not necessarily
distinct) elements of C. By 14, 15, 13, and Proposition 3.3(iv), Ny(s)\(Xo U Yo) is
nonempty. Thus, by 17, there exists an element in C\{X, Y}.

19: Suppose that H — st is not (2, k)-connected in V, that is, by (2, k)-connectivity of
H, there exists in H a nontrivial tight bi-set X of V such that t € X;. By 14, every
YeC is a tight biset of V. Hence, by Proposition 2.1(b) and
daXiNn Yo, Xo NY) > dy(s, t) > 1, XMY or XMY is trivial, that is, since X and Y
are nontrivial, Y C Xp or X; C Y. If ¥ C X for all Y € C, then, by 17 and t € X], we
have Ny (s) C Xo and, by the tightness of X, this contradicts Proposition 3.2. So there
exists Y* € C such that X; C Y§. For all Y € C, since H is (2, k)-connected in V and Y is
critical, dg(t, Y1) = dg(¥7) — (f;’[ (Y) — klwP(Y)|) > 2k — (2k — k) = k. By tightness of
X,teX, 13, 16, 18, and X; C Y}, we have the following -contradiction,
2k — klw*(X)| = f (X) — kwP(X)| = di(X) = dyy (X)) — diy KwP (X)) > di (¢, ) +
Dvecry b oont—g 38 (6 YD) 2 1+ (2 = W (X)Dk. |

The following lemma shows that to find an obstacle one does not have to focus on the
disjointness of the inner-sets.

Lemma 3.11. Let H = (V + s, E) be a (2, k)-connected graph in V with dy(s) even. If
there exists a pair (t, F) satisfying 13-15 and 17, then there exists a t-star k-obstacle at s.

Proof. The proof applies the uncrossing method. Choose a pair (¢, C) satisfying 13-15
and 17 such that }}, _ . |Xi| is minimum. Suppose there exist two distinct elements X and
Y in C such that X] N Y] # @, thatis, X MY is a nontrivial bi-set of V. By choice of C, none
of the bi-sets X and Y contains the other. Hence, X Y and X MY are nontrivial bi-sets of
V. By 13-15, we can apply Proposition 3.3(iv), and we get that X 1Y is a nontrivial bi-set
of V. Note that critical bi-sets are tight nontrivial bi-sets of V. Hence, by Proposition 2.1(a)
and (b), XMY,XnY, and XMY are tight. The bi-sets among them, which contain a
neighbor of s, are critical bi-sets with wall t. Hence, they can replace X and Y in C
contradicting the minimality of Zx cc Xl [ ]

4 | RESULTS

41 | A new splitting-off theorem

The first result of this section shows the existence of an obstacle when no pair of edges incident
to the special vertex is admissible.

Theorem 4.1. Let H = (V + s, E) be a (2, k)-connected graph in V with dy (s) > 2 even
and k > 2. If there exists no admissible pair at s, then dy (s) = 4 and there exists an obstacle at s.

Proof.  Suppose that there exists no admissible splitting-off at s.
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Claim 4.2. There exists a vertex t and a family # of dangerous blocking bi-sets such that
15 holds for ¥ and every pair of edges incident to s but not to ¢ is blocked by an element
of .

Proof. By Lemma 3.1, for each pair of edges incident to s, there exists a bi-set that
blocks it. Let X be a maximal blocking bi-set for a pair (su, sv) with u € X;. By Proposition
3.2, there exists a neighbor z of s in Xo. Let Y be a maximal blocking bi-set for the pair
(su, sz). By Lemma 3.4, the wall of X and the wall of Y coincide and are reduced to a
singleton, say {t}. By u € X; and z € Xo, t is different from u and from z. Thus, Y is a
dangerous blocking bi-set.

For the same reasons, every maximal blocking bi-set for a pair (sa, sb) with a € ¥ and
b € Yo is a dangerous blocking bi-set with wall {t}. By repeating this argument once
more, we have that every pair (sa, sb) with a, b & {t} is blocked by a dangerous blocking
bi-set with wall {t}. This proves the claim. [ ]

Let t and ¥ be, respectively, the vertex and the family that exist by Claim 4.2.
Claim 4.3. The degree of s in H' = H — t is 3.

Proof. By (2, k)-connectivity in V' of H, H’' is k-edge-connected in V' = V — t. For
every pair (su’, sv’) of edges in H’, by the definition of ¥, there exists Z € ¥ for u’, v'.
Then, by wP(Z)=1{t} and since Z is a dangerous bi-set, dy,(Z) = d}(2) =
f2(2) — kwb(Z)| <k + 1, that is, by u',v' € Z, the splitting-off the pair (su’, sv')
destroys the k-edge-connectivity in V' of H'. Hence, by k > 2 and Theorem 1.8, the claim
follows. |

By dy (s) even and Claim 4.3 and Proposition 3.9, d (s, t) is odd and smaller than %dH (s),
that is, dy (s, t) = 1 and dy (s) = 4. Hence, by Proposition 3.2, the inner-set of each element of
¥ contains exactly two neighbors of s and |F] = 3. So, for X € F, X® = (X%, X{) is a nontrivial
bi-set of V and X§ contains exactly one neighbor of s, say x. By 6, we have
ffl (X9 :ffl X) —dy(s, X1) + dy(s, X§) <2k +1—2+1=2k thus X® is a critical bi-set
blocking (st, sx). So (¢, F°) = (t, {X°: X € F}) satisfies 13-15 and 17. The obstacle at s is
obtained by applying Lemma 3.11 on (¢, F°). [ |

The following lemma concerns the case when an obstacle occurs after an admissible
splitting-off.

Lemma 4.4. Let H= (V + s, E) be a (2, k)-connected graph in V with dy (s) > 6 even,
(su, sv) an admissible pair in H and (t, C) an obstacle at s in H,,,.

(@) Ift € {u, v}, then dy(s, t) > 2 and (st, st) is admissible in H.
(b) If t & {u, v}, then either there exists a t-star k-obstacle at s in H or there exists no
obstacle at s in H, , for some admissible pair (st, sz) in H.

Proof.
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(a) If the vertices ¢, u, and v coincide, then there is nothing to prove. So we assume that
t=v and t # u. By 13 in Hy,, dy(s, t) = dg, (s, t) + 1 > 2. For a contradiction,
suppose that (st, st) is nonadmissible in H, thus, by Lemma 3.1, there exists a maximal
blocking bi-set X for this pair in H. Let Y be an element of C, if possible the one whose
inner-set contains u. Since t = v € Xj, X is blocking bi-set in H, Y is critical bi-set in
H,, and by Proposition 3.3, we have dy,, (s, X; U ¥)) < dp, (s, X)) + dp,, (s, ¥)) <

(i (s, X)) = 1) + dp,, (s, YD) < Gdu(s) — 1) + (3dp,,(s) — 1) = dp, (s) =1. So, by
17 and t € X, there exists a vertex z € Np, ,(s)\(X; U Y1) contained in the inner-set
of an element Z of C\Y. Since none of u or v = t belongs to Z, ffl 2 = ff[w (2), that

is, Z blocks the pair (st,sz) in H. Since z ¢ X;, by Lemma 3.4, we have
wP(X) = wP(Z) = {t} € Xi, a contradiction that completes the proof of (a).
(b) Suppose that t ¢ {u, v}.

Claim 4.5. If st belongs to no admissible pair in H, then there exists a ¢-star k-obstacle in H.

Proof. Byt & {u, v} and 13, dy (s, t) = dp,, (s, t) is odd, thus it remains to construct a
collection ¥ of critical bi-sets satisfying 15-17. By Lemma 3.11, it suffices to find one
satisfying 15 and 17.

Let Fy:={X' € C: |X{ n{u, v}| < 2}. Note that either ¥, = C or F5 = C\Y for some
Y € C with {u, v} C Y. By 14 and 15 for C in H,,, ¥, is a collection of critical bi-sets in H
satisfying 15. Suppose ¥, does not satisfy 17, that is, there exist some
zZ € Ng(s)\(K(C) U {t}). For any such z, since st belongs to no admissible pair, by
Lemma 3.1, there exists a maximal blocking bi-set X* in H for the pair (st, sz). We prove
that w° (X?) = {t} and then X? is critical and hence ¥ := ¥ U {X%: z&€Ny (s)\(VA(C) U {t})}
is the required collection.

Assume, by contradiction, that {t} # w°(X?) for some z, then, by 10,
t € X3\wP(X?) = XF. We have Ny (s) n Vi(C) C XF otherwise, there exists Z € C such
that (Ng (s) N Z)\XF # @, thus by Lemma 3.4, we have wP(X?) = w(Z) = {t} C X{, a
contradiction. If F, = C then, by Proposition 3.3 and Ny(s) N 1(C) C X£, we have
%dH (s) > dy (s, XF) > dy(s) — 2 that contradicts dy(s) > 6. Otherwise ¥, = C\Y and
{u, v, z} C Y. Note that if X? is dangerous, then z € XF N ¥;. Hence, by N (s) C Xf U Y
and Proposition 3.3, the following contradiction completes the proof of Claim 4.5:
du(s) = du(s, Y1) + du(s, X{) — du(s, Xf N Y) = (dp,, (s, Y1) + 2) + (du(s,X7) — dus,
XF W) <GWUu(s) —2) = 1) + 2+ Gdu(s) — 1) = dy(s) — 1. |

Claim 4.6. If (st, sz) is an admissible pair in H and (¢', C’) is a t'-star k-obstacle in H; ,,
then t = t'.

Proof. By contradiction, assume that there exist an admissible pair (st, sz) in H and an
obstacle (¢', C’) in H;; such thatt # t’. If t’ belongs to an element of C, then denote X this
element and let X = (&, @) otherwise. If t belongs to an element of C’, then denote X’ this
element and let X’ = (@, @) otherwise. First, we prove that
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MO\X) N M(C)\X1) = @. (20)

For a contradiction, suppose that there exists Y € C\{X} and Y’ € C'\{X'} such that Y] n Y7 is
nonempty, that is, YMY’ is nontrivial. Then, since [wP(YUY")|=|{ '} =2, 7
can be applied for Y and Y. By t€Y; and t#¢, we have t¢& Y'c thus
f13 Y = fIPI,z (Y'). Hence, by 7, since Y’ is critical in H,, and, by 11 applied
for the critical bi-set Y of H,,, we have the following contradiction:
0<(fr(Y) =2k) + (F, (V) = 2k) — d(YuY) < (fh(Y) = 2k) + (F (Y) = 2k) = du(s, YD)
= (fl?nz Y —2k) + (flguv (Y) = 2k) — dpg,,(s,Y)) < 0 —1, which completes the proof
of 20.

Now, denote H' = H — {st, su, sv, sz}. Observe that, by t # ¢’ and 17, ift" € Ny, (s), then
t"€ (C) so ' & Ny, (s)\X;. For the same reason, ¢ Ny, (s)\X1. Hence,
by 17 and 20, we have, Ny, ()\(X; U X{) € (Nig,, ()\XD) 0 (N, (\XT)S(A(O\X)) N
(VK(CH\X1) = @. Hence, by Proposition 3.3 and 13, we have dy(s)—4<dy,
(5) < du,(5, XD + (5, X1) < dig (5, X0 + dig, (5, X1) <[ 2 (i, ) = diy,, G5, )] +
Gdr,(s) = 1) < Gdu(s) = 1 = 1) + Gdu(s) — 2) = du(s) —4.  So equality ~holds
everywhere. In particular, st, su, sv, and sz are distinct edges (even if some of them may be
parallel), z does not belong to X;, none of u or v belongs to X1 and dy (s, £) = dg,, (s, £) = 1.
Hence, z € Ny, (s)\{t}, so by 17 in H,,, z belongs to the inner-set of an element Z € C\{X}.
Since (st,sz) is admissible in H and Z is critical in H,,, we have
2k :f;bzw (2) fobl (Z) — 2> (2k + 1) — 2, and hence Z; contains u or v, say u. Then, by
uezZe C\{X} and 16, we have u € V;(C)\X but since t ¢ V;(C)\X;, we have u # t’ thus, by
17 in H; ;, u belongs to the inner-set of an element Y’ € C'\{X'}. This contradicts 20 and hence
completes the proof of Claim 4.6. [ |

Suppose there exists no t-star k-obstacle at s in H. Hence, by Claim 4.5, there exists an
admissible pair (st, sz) in H. By Claim 4.6, if there exists an obstacle in H; ,, then it is a t-star
k-obstacle (t, C'). By t & {u, v} and 13 in H,,, dy (s, t) is odd. Hence, by 13 in H, ,, 7 = t. Thus,
(t, C') is a t-star k-obstacle in H, and this contradiction completes the proof of (b). [ ]

Now, we are in the position to prove our main result that characterizes the existence of a
complete admissible splitting-off.

Theorem 4.7. Let H = (V + s, E) be a (2, k)-connected graph inV with k > 2 and dy (s)
even. There exists a complete admissible splitting-off at s if and only if there exists no obstacle
at s.

Proof. Suppose there exists an obstacle (¢, C) at s. By 13, every sequence of %dH(S)
splitting-off of disjoint admissible pairs at s contains a pair (st, su) with u € Ny (s)\{t}. As
we noticed after the definition of an obstacle, such a pair is not admissible in H and so
not admissible in any graph arising from H by a sequence of splitting-off of disjoint
admissible pairs. Thus, there is no admissible complete splitting-off at s.

Now, we prove, by induction on dy (s), that if there exists no obstacle at s, then there
exists an admissible complete splitting-off at s. For dy (s) = 0, there is nothing to prove.
For dy (s) = 2, the only splitting-off is obviously admissible. Suppose dy (s) = 4 and there
exists no obstacle at s. By Theorem 4.1, there exists an admissible splitting-off (su, sv) at s.



16 DURAND DE GEVIGNEY anp SZIGETI
WILEY

Since the only possible splitting-off in H,, is admissible, there exists an admissible
complete splitting-off at s in H.

Now, suppose that the theorem is true for every graph H’ that satisfies the conditions
with dy(s) = 2i fori < ¢ for some ¢ > 2. Let H = (V + s, E) be a (2, k)-connected graph
in V such that dy(s) = 2¢ + 2 > 6 and there exists no obstacle at s. By Theorem 4.1,
there exists an admissible splitting-off (su, sv) at s. If there exists no obstacle at s in H,,,
then, by induction, there exists an admissible complete splitting-off at s and we are done.
So we may assume that there exists a ¢-star k-obstacle at s in H,,,. Since there exists no
obstacle at s in H, if Case (b) of Lemma 4.4 occurs, then there exists some admissible pair
(st, sw) in H such that there exists no obstacle at s in H; ,,. Thus, by induction, there exists
an admissible complete splitting-off at s in H and we are done. So we may assume that
Case (a) of Lemma 4.4 occurs and we consider H;, that is (2, k)-connected in V. If there
exists an obstacle (¢, C') at s in H;,, for the same reason as above, we may suppose that
Case (a) of Lemma 4.4 occurs. Hence, t =t and (¢, C’) is an obstacle in H, a
contradiction. So no obstacle exists in H;, and, by induction, the proof of Theorem 4.7 is
completed. [ |

4.2 | Construction of (2, k)-connected graphs

In this section, we provide a construction of the family of (2, k)-connected graphs for k even.
The special case k = 2 has been previously proved by Jordan [8].

We need the following extension of Lemma 5.1 of [8] for k even. Let G = (V, E) be a (2, k)-
connected graph, s a vertex of even degree, (¢, C) and (¢, C") two obstacles at s. We say that (¢, C)
is a refinement of (t, C") if for all X € C, there exists X’ € C’ such that X C X'. An obstacle that
has no proper refinement is called finest.

Lemma 4.8. Let G = (V, E) be a (2, k)-connected graph with k even. Let s be a vertex of
degree 2k and (t, C) a finest obstacle at s. Let X € C, s’ a vertex in X; of degree 2k and
(t', C") an obstacle at s'. Then, there exists X' € C' such that X1 C Xy

Proof.  Note that G is (2, k)-connected in V — s and also in V — s’. By contradiction, we
assume that the lemma is false.

Suppose t' € X;. By 16 and 18 for C’, there exists X’ € C' such that t ¢ X{. By
assumption, for each X’ € C’, X{ \X; # @. Then, X 1 X’ is a nontrivial bi-set of V — s’ and
[wP (X X")| = |{t, t'}| = 2. Hence, by Proposition 2.2 and since X and X’ are tight, we
have 0 + 0 > d2(X L X’) > dg(s’, X{) > 1, a contradiction. Hence, t’ & X.

Suppose t" # t. If ¢t belongs to the inner-set of an element of C’, then call Z’ this
element and define Z’' = (@, @) otherwise. Note that if ¢ is a neighbor of §’, then the first
case occurs. Thus, by Proposition 3.3(iii), we have dg(s’,X] U Z{) < dg(s’, Xo) +
do(s', Z{) < d2(X) + (%dG(s/) —1)=k+(k—-1)=2k—-1=dg(s’) — 1. Hence, by
17, there exists Y € C' with Y] N X1 # @ and t ¢ Yi. Thus, XY’ is a nontrivial
bi-set of V — s and [w°(XuY’)| =|{t, t'}] = 2. Since X and Y’ are both tight, by
Proposition 2.2 and 13, we have 0 +0>dsXo N Yo, Xt NY[) > ds(t/,s)>1, a
contradiction. So we proved that t = t'.

By (2, k)-connectivity of G and dg (s") = 2k, we getdg(s’, t) < k. Thus, by 13 for C’ and
k even, dg(s’,t) <k. Hence, dg(s’,X)=ds(,t)+de(s’,Xo) <k +d2X) =
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f2(X) = 2k = dg(s"). Thus, by 17, there exists Y’ € C’ with Y{ N X; # @. Then, by
|C’'| > 3 and assumption, X LI Y’ is a nontrivial bi-set of V, thus, by Proposition 2.1(a) with
U =V, we get that XMY’ is a tight bi-set with wall ¢.

Note also that s’ € X; N Y; and, by assumption, X; N Y{ # @, thus, by Proposition 2.1
(b) with U = V, we get that XY’ is a tight bi-set with wall ¢. Thus, in C, X can be
replaced by the bi-sets among X 1Y’ and X 1 Y’, which contain at least one neighbor of s
in their inner-set. Hence, (¢, C) is not a finest obstacle at s, a contradiction. [ ]

We can now describe and prove the construction of the family of (2, k)-connected graphs for
k even. We recall that K¥ is the graph on 3 vertices where each pair of vertices is connected by k
parallel edges. Note that K3k is (2, k)-connected and it is the only minimally (2, k)-connected
graph on 3 vertices.

Theorem 4.9. A graph G is (2, k)-connected with k even if and only if G can be obtained
from KF by a sequence of the following two operations:

(a) adding a new edge,
(b) pinching a set F of k edges such that for all vertices v, dr (v) < k.

Proof.  First, we prove the sufficiency, that is, these operations preserve (2, k)-
connectivity. It is clearly true for (a). Let G’ be a graph obtained from a (2, k)-connected
graph G = (V, E) by the operation (b) and call s the new vertex. We must show that for
every nontrivial bi-set X of V' + s, we have fé’, (X) > 2k. Since this inequality trivially holds
whenever [wP(X)| > 2, we assume that [wP(X)| < 1 in what follows. If X is a nontrivial
bi-set of V, then s¢ Xo and, by (2, k)-connectivity of G, we have
f(l;’, X) = d2(X) + klwP(X)| > d2(X) + klwb(X)| = f2(X) > 2k, and we are done. From
now on, by symmetry of fg, we may assume that s € Xo. If {s} C X], then X is a nontrivial
bi-set of V' and, by symmetry of fé’,, we are done again. If {s} = X, then, by dg,(s) = 2k
and dr(W°(X)) <k, we have f5(X)=d&X) + klw>(X)| = dg(s) —dg' (s, WP (X)) +
kwb(X)| = dg(s) — dpwP(X)) + klw®(X)| > 2k.  If {s} € Xo\X; = w°(X), then,
by wP(X)| <1, we have wP(X)={s} and then @ # X;# V. Hence, by
|Fl =k and (2, k)-connectivity of G, we have fcl; X) = dé’r(X) + kb (X)| =
(do(X1) — dr(XD) + k > dc(X1) — |F| + k > 2k.

To see the necessity, let G be a (2, k)-connected graph with at least 4 vertices. Note that
the inverse operation of (a) is deleting an edge and that of (b) is a complete splitting-off at
a vertex s of degree 2k such that dg (s, v) < k for all v € V. Note also that these inverse
operations must preserve (2, k)-connectivity. Thus, we may assume that, on the one
hand, G is minimally (2, k)-connected and hence, by Theorem 1.9, G contains a vertex of
degree 2k, and, on the other hand, for every such vertex u, there exists no admissible
complete splitting-off at u, that is, by Theorem 4.7, there exists an obstacle at u.

We choose in {(u, (t, C), X): dg(u) = 2k, (t, C) a finest obstacle at u, X € C} a triple
(u*, (t%, C*), X*) with X* minimal for inclusion. By Theorem 1.9, there exists a vertex u’ of
degree 2k in Xj*. Then, as we have seen, there exists a finest obstacle (¢', C’) at u’. By
Lemma 4.8, there exists X' € C’ such that X{ C Xj*. Since X1 U {u’} C X{*, the triple
(u', (¢, C"), X’) contradicts the choice of (u*, (t*, C*), X*). [ ]
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We mention that the condition k is even is necessary in Lemma 4.8 and Theorem 4.9.
Consider the graph obtained from K, by adding a new vertex ¢ and 3 edges between ¢ and each
vertex of K. This graph is minimally (2, 3)-connected but there exists no complete admissible
splitting-off at any of the 4 vertices of degree 6. Indeed, if s, a, b, ¢ denote the vertices of degree
6, then {({a, t}, {a}), ({b, t}, {b}), ({c, t}, {c})} is a t-star 3-obstacle at s.

43 | Augmentation theorem

In this section, we answer the following question for k > 2: given a graph what is the minimum
number of edges to be added to make it (2, k)-connected. For k = 1, that is, for 2-vertex-
connectivity, this problem had been already solved by Eswaran and Tarjan [4].

We shall need the following definitions. Let G = (V, E) be a graph. An s-extension of G is a
graph H = (V + s, E U F), where F is a set of edges between V' and the new vertex s. The size of
an s-extension of G is defined by |F|.

We mimic the approach of Frank [5] for the augmentation problem: first, we prove a result
on minimal extensions and then, by applying our splitting-off theorem, we get a result on
minimal augmentation.

Lemma 4.10. Let G = (V, E) be a graph such that |V| > 3 and k a positive integer. The
minimum size of an s-extension of G, that is, (2, k)-connected in V, is equal to maximum of
{ZXG x 2k — fé’ (X))}, where X is a family of nontrivial pairwise innerly disjoint bi-sets
of V.

Proof. IfH' =(V+s, EUF')is an s-extension of G, that is, (2, k)-connected in V and
X'’ is an arbitrary family of nontrivial pairwise innerly disjoint bi-sets of V, then

3@k D GO 2N = Y sy (XD < .

X'eX’ X'eX’ X'eX’

This shows that max < min.

To prove that equality holds, we provide a family X of nontrivial pairwise innerly
disjoint bi-sets of V' and an s-extension of G, that is, (2, k)-connected in V' of size X,
(2k — f2(X)). Let M be defined as the maximum value of 2k — f? (X") over all bi-set X' of
V. If M <0, then G is (2, k)-connected and we are done. Suppose that M > 0. We
consider the s-extension of G whose set of new edges consists of M parallel edges sv, for
each v € V. This extension is obviously (2, k)-connected in V. Then, we remove as many
new edges as possible without destroying the (2, k)-connectivity in V. Let F be the set of
remaining edges and H = (V + s, E U F). In H, by minimality of F, each edge e of F
enters a tight bi-set of V. Let X be a family of nontrivial tight bi-sets of V' such that

each edge of F enters at least one element of X and (21)

> 1Xi| is minimal. (22)
XeX
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Claim 4.11. The elements of X are pairwise innerly disjoint.

Proof. Note that the degree of each tight bi-set X in X is at least one, thus [w®(X)| < 1.
Suppose there exist two distinct elements X and Y in X such that X; N Y} # @, that is,
XnY is a nontrivial bi-set of V.

If X UY is a nontrivial bi-set of V, then, by (2, k)-connectivity in V of H, tightness of X
and Y and Proposition 2.1(a), XY is tight. Since all the edges of F entering X; or ¥;
enters (X U Y);, the family obtained from X by substituting X 'Y for X and Y satisfies 21
and, by X; N Y} # @, contradicts 22. So Xo U Yo = V.

If XMY and XY are nontrivial bi-sets of V, then, by (2, k)-connectivity in V of H,
tightness of X and Y and Proposition 2.1(b), both XY and XMY are tight and
dyXo N Y, X1 N Yo) = dy(Y; N Xo, Yo N Xp) = 0. Hence, all the edges of F entering the
set X; or the set Y] enters the set (X 1 Y); or (X 1 Y);. Thus, the family obtained from X by
substituting X 1 Y and XY for X and Y satisfies 21 and, by X; N Y # @, contradicts 22.
So, by symmetry, we may assume that X; C Yo.

We have Ny (s) N X; € Y] otherwise X — X satisfies 21 and contradicts the minimality
of X. Thus, by X; C Yo, dy (s, w°(Y)) > 1 and, since Xo U Yo = V and Y is nontrivial,
WP (X)\Yo = Xo\Yo = (Xo U Yo)\Yy = V\Yp is nonempty. So [wP(X U Y)| > 2.

For the same reason as above, Ny (s) N Y;Z€X;. Thus, by [w°(X)| < 1 and w®(X)\Yo # @,
the set 1\Xo = ¥1\X; contains a neighbor of s, that is, XY is nontrivial. Thus, by
symmetry of f}_’l, tightness of X and Y and 7, we have the following contradiction
0+0=(5X) —2k) + (F3(Y) = 2k) > duy (X N Yo, Xo N ¥) > dy(s, wP(Y)) > 1, which
completes the proof of Claim 4.11. [ ]

By Claim 4.11, 21 and by tightness of the elements of X, we have

IFl= ), diusm 0= D, (FR00 —f200) = D 2k — £2(X),

XeX XeX XeX

which completes the proof of Lemma 4.10. [ |

The augmentation theorem goes as follows.

Theorem 4.12. Let G = (V, E) be a graph such that |V| > 3 and k > 2 an integer. The
minimum cardinality y of a set F of edges such that (V, E U F) is (2, k)-connected is
equal to

a=[Fmax(F, k- oo}

where X is a family of nontrivial pairwise innerly disjoint bi-sets of V.

Proof. We first prove y > «. Let X be a family of nontrivial bi-sets of V such that the
elements of X are pairwise innerly disjoint. For each X € X, we must add at least
2k — fg (X) new edges entering the bi-set X when this quantity is positive. Since the
elements of X are pairwise innerly disjoint, a new edge may enter at most 2 elements of
X. Hence, 2y > 3}, (2k — fé’ (X)) thus, since y is integer, y > o follows.
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We now prove y < a. By Lemma 4.10, there exists an s-extension H = (V + s, EU F)
of G, that is, (2, k)-connected in V and a family X of nontrivial pairwise innerly disjoint
bi-sets of V' such that

IFl =2 @k=F200).

If |F| is odd, then there exists a vertex u € V such that dy (s, u) is odd, in this case, let
F’ = F U {su} otherwise let F’ = F. So, in the graph H' = (V + s, E U F’), dy(s) is even.

Suppose there exists an obstacle (¢, C) at s. By 19, H' — st is (2, k)-connected in V. If
H = H’ this contradicts the minimality of |F|. Then, dy(s) is odd and F’ = F + su for
some vertex u € V such that dg (s, u) is odd. If u € X; for some X € C, then we have
fy X) = fiy (X) — 1 = 2k — 1, a contradiction to the (2, k)-connectivity of H. Thus, by 17,
u =t and hence dg, (s, t) = dg (s, t) + 1 is even, which contradicts 13.

Hence, no obstacle exists at s, and, by Theorem 4.7, there exists an admissible complete
splitting-off at s in H'. Let us denote by F” the set of edges obtained by this complete
splitting-off. Then, (V, E U F”) is (2, k)-connected and

P = S0 = 5101 =[5 Ty @k - 2000 |

This proves y < a and completes the proof of Theorem 4.12. [ |
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