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Abstract

A graph G is called k(2, )‐connected if G is k2 ‐edge‐
connected and G v− is k‐edge‐connected for every

vertex v. The study of (2, 2)‐connected graphs is

motivated by a theorem of Thomassen [J. Combin.

Theory Ser. A 110 (2015), pp. 67–78] (that was a

conjecture of Frank [SIAM J. Discrete Math. 5 (1992),

no. 1, pp. 25–53]), which states that a graph has a

2‐vertex‐connected orientation if and only if it is

(2,2)‐connected. In this paper, we provide a construction

of the family of k(2, )‐connected graphs for k even,

which generalizes the construction given by Jordán

[J. Graph Theory 52 (2006), pp. 217–229] for (2,2)‐
connected graphs. We also solve the corresponding

connectivity augmentation problem: given a graph G
and an integer ≥k 2, what is the minimum number of

edges to be added to make G k(2, )‐connected. Both

these results are based on a new splitting‐off theorem for

k(2, )‐connected graphs.
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1 | INTRODUCTION

Let G V E= ( , ) be an undirected graph (in short, a graph), in which loops and parallel edges are
allowed. A subset of V is called nontrivial if it is different from the empty set and the whole set
V . For ⊂U W V d U W, , ( , )G denotes the number of edges with one end‐vertex inU W\ and the
other end‐vertex in W U\ . For the sake of convenience, d U U( , )G is denoted by d U( )G . Given a
set of edges ⊆F E, we define d U d U( ) = ( )F V F( , ) .

Let H V s E= ( + , ) be a graph with a special vertex s such that no loop is incident
to s. For convenience, in this paper, H will always denote a graph with such a special
vertex s.
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1.1 | Connectivity

In this paper, we will need the following mixed‐connectivity concepts of graphs introduced by
Kaneko and Ota [9]. Let ℓ and k be positive integers. The graph G is called ℓ k( , )‐connected if
∣ ∣ ℓV > and for all ⊆ ⊆U V F E, such that ∣ ∣ ∣ ∣ ℓk U F k G U F+ < , − − is connected. This
notion contains both vertex‐connectivity (for k = 1) and edge‐connectivity (for ℓ = 1). Indeed,
G is ℓ‐vertex‐connected if and only if ∣ ∣ ℓV > and for all ⊂U V such that ∣ ∣ ℓU G U< , − is
connected. Furthermore, G is k‐edge‐connected if and only if at least k edges enter all nontrivial
sets of V . The graph H V s E= ( + , ) is called k‐edge‐connected in V if at least k edges enter all
nontrivial sets of V . In this paper, we consider k(2, )‐connected graphs. Observe that G is k(2, )‐
connected if ∣ ∣ ≥V G3, is k2 ‐edge‐connected and, for all ∈v V G v, − is k‐edge‐connected. Note
that k(2, )‐connectivity is stronger than k2 ‐edge‐connectivity but much weaker than k2 ‐vertex‐
connectivity.

We will need some connectivity concepts in directed graphs as well. Let D V A= ( , ) be a
directed graph. We say that D is strongly connected if for every nontrivial vertex set X ofV , there
exists an arc entering X . The digraph D is called ℓ‐arc‐connected if, for all ⊆F A such that
∣ ∣ ℓF D F< , − is strongly connected. Note that D is ℓ‐arc‐connected if and only if at least ℓ arcs
enter all nontrivial sets of V . The digraph D is called ℓ‐vertex‐connected if ∣ ∣ ℓV > and for all

⊂X V such that ∣ ∣ ℓX D X< , − is strongly connected.
To motivate our problems, let us recall some results on orientations, constructions, splitting‐

off, and augmentations of graphs.

1.2 | Orientations

We start with the classic result on edge‐connectivity.

Theorem 1.1 (Nash‐Williams [12]). An undirected graph has a k‐arc‐connected
orientation if and only if it is k2 ‐edge‐connected.

Inspired by Theorem 1.1, Frank [6] proposed a conjecture concerning vertex‐connectivity.

Conjecture 1.1 (Frank [6]). An undirected graph G V E= ( , ) has a k‐vertex‐connected
orientation if and only if G is k( , 2)‐connected.

Recently, some breakthroughs have been achieved on this conjecture. On the one hand,
Durand de Gevigney [3] proved that Conjecture 1.1 is false for ≥k 3.

Theorem 1.2 (Durand de Gevigney [3]). For every ≥k 3, there exist k( , 2)‐connected
undirected graphs that have no k‐vertex‐connected orientation. Moreover, for every ≥k 3, it
is NP‐complete to decide whether an undirected graph has a k‐vertex‐connected orientation.

On the other hand, Thomassen [14] proved that Conjecture 1.1 is true for k = 2.

Theorem 1.3 (Thomassen [14]). An undirected graph has a 2‐vertex‐connected orientation
if and only if it is (2, 2)‐connected.
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We mention that the special case of Theorem 1.3 when the graph is Eulerian was earlier
proved by Berg and Jordán [2].

1.3 | Constructions

Theorem 1.1 can easily be proved by applying the following construction of Lovász [10] of k2 ‐
edge‐connected graphs. Let K k

2
2 be the graph on 2 vertices with k2 edges between them. The

operation pinching k edges is defined as follows: subdivide each of the k edges by a new vertex
and identify these new vertices.

Theorem 1.4 (Lovász [10]). A graph is k2 ‐edge‐connected if and only if it can be obtained
from K k

2
2 by a sequence of the following two operations:

(a) adding a new edge,
(b) pinching k edges.

Conjecture 1.1 drew attention on the family of (2, 2)‐connected graphs. Jordán [8] gave the
following construction of this family, similar to the above construction of 4‐edge‐connected graphs.
For ≥k 2, let K k

3 be the graph on 3 vertices with k edges between each pair of vertices. Note that a
(2, 2)‐connected graph must contain at least 3 vertices, this is why the starting graph is different.

Theorem 1.5 (Jordán [8]). A graph is (2, 2)‐connected if and only if it can be obtained
from K3

2 by a sequence of the following two operations:

(a) adding a new edge,
(b) pinching 2 edges such that if one of them is a loop, then the other one is not adjacent to it.

Unfortunately, this construction does not help prove Conjecture 1.1 for k = 2.
We will generalize Theorem 1.5 in Theorem 4.9.
We mention that concerning vertex‐connectivity, a few results are known. Constructions are

given only for 2‐ and 3‐vertex‐connected graphs, see Robbins [13], Barnette and Grünbaum [1],
and also Tutte [15].

1.4 | Splitting‐off
To prove Theorem 1.4, one has to consider the inverse operations: deleting an edge and
complete splitting‐off at a vertex of degree k2 . Let us now introduce the operation of complete
splitting‐off at a vertex s of even degree. It consists of partitioning the set of edges incident to s
into pairs, replacing each pair su sv( , ) by a new edge uv and then deleting s. If the graph is
minimally k2 ‐edge‐connected, that is, when no edge can be deleted without destroying k2 ‐edge‐
connectivity, then the following result shows that there exists a vertex of degree k2 .

Theorem 1.6 (Mader [11]). Every minimally k2 ‐edge‐connected graph contains a vertex of
degree k2 .

Then, the following splitting‐off theorem of Lovász [10] implies the existence of a complete
splitting‐off at this vertex that preserves k2 ‐edge‐connectivity.
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Theorem 1.7 (Lovász [10]). Let H V s E= ( + , ) be an ℓ‐edge‐connected graph for ℓ ≥ 2,
where s is a vertex of even degree. Then, there exists a complete splitting‐off at s such that the
new graph is ℓ‐edge‐connected.

We will also need the splitting‐off result of Mader [11]. Let su sv( , ) be a pair of (possibly
parallel) edges in H V s E= ( + , ). Splitting‐off the pair su sv( , ) at s in H consists in replacing the
edges su sv, by a new edge uv. The graph arising from this splitting‐off at s is denoted by Hu v, .

Theorem 1.8 (Mader [11]). Let H V s E= ( + , ) be an ℓ‐edge‐connected graph in V for
ℓ ≥ 2 such that ≠d s( ) 3H and ≥d s( ) 2H . Then, there exists a pair of edges su sv( , ) in H
such that Hu v, is ℓ‐edge‐connected in V .

For a pair su sv( , ) of (possibly parallel) edges of H , if H and Hu v, are k(2, )‐connected in V ,
then the pair su sv( , ) is called k(2, )‐admissible (in short, admissible when k is clear from the
context). A complete splitting‐off is called admissible if the resulting graph is k(2, )‐connected
in V .

To get Theorem 1.5, one has to consider the inverse operations: deleting an edge and
complete splitting‐off at a vertex of degree 4. If the graph is minimally k(2, )‐connected, that is,
when no edge can be deleted without destroying k(2, )‐connectivity, then the following result
[9, Lemma 7] shows that there exists a vertex of degree k2 . For the definitions of inner‐set and
tight bi‐set, see Section 2.

Theorem 1.9 (Kaneko and Ota [9]). Let G V E= ( , ) be a minimally k(2, )‐connected
graph. Then, the inner‐set of every tight bi‐set contains a vertex of degree k2 .

We mention that Theorem 1.9 will be used in the proof of Theorem 4.9.
Jordán [8] proved a splitting‐off theorem on (2, 2)‐connected graphs. Here, it is possible that

there exists no complete splitting‐off preserving (2, 2)‐connectivity, in this case a special kind of
obstacle exists. Let H V s E= ( + , ) be a graph with d s( ) = 4H , and t x y z{ , , , } the set of
neighbors of s. The quadruple t X Y Z( , , , ) is called a 2‐obstacle at s if X Y, , and Z are pairwise
disjoint vertex sets of ∈ ∈ ∈V t x X y Y z Z− , , , and d X d Y d Y( ) = ( ) = ( ) = 2H t H t H t− − − .

Theorem 1.10 (Jordán [8]). Let H V s E= ( + , ) be a (2, 2)‐connected graph such that
∣ ∣ ≥V 3 and d s( ) = 4H . Then, there exists a (2, 2)‐admissible complete splitting‐off at s if
and only if there exists no 2‐obstacle at s.

We will generalize Theorem 1.10 in Theorem 4.7.

1.5 | Augmentation

Theorem 1.7 has other applications, among others, it can be used to solve the ℓ‐edge‐connected
augmentation problem (see Frank [5]).

Theorem 1.11 (Watanabe and Nakamura [16]). Let G V E= ( , ) be a graph and ℓ ≥ 2 an
integer. The minimum cardinality of a set F of edges such that ∪V E F( , ) is ℓ‐edge‐
connected is equal to
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where � is a family of nontrivial pairwise disjoint sets of V .

The k(2, )‐connectivity augmentation problem can be formulated as follows: what is the
minimum number of edges whose addition results in a k(2, )‐connected graph. The min‐max
theorem on this problem is presented in Theorem 4.12.

The ℓ‐vertex‐connectivity augmentation problem is still open. For fixed ℓ, Jackson
and Jordán [7] provided a polynomial algorithm.

This paper is devoted to the study of k(2, )‐connected graphs and is organized as follows.
We give the necessary definitions in Section 2 and then some preliminary results in Section 3. The
main results are presented in Section 4. First, we provide a new splitting‐off theorem for

k(2, )‐connected graphs. As in the special case k = 2, the existence of a complete splitting‐off
preserving k(2, )‐connectivity depends on the nonexistence of an obstacle. Second, we give a
construction of the family of k(2, )‐connected graphs for k even. These are the natural
generalizations of the previous results of Jordán [8] on (2,2)‐connected graphs. Finally, we solve
the k(2, )‐connectivity augmentation problem. We follow Frank’s [5] approach: we find a minimal
extension and then we apply our splitting‐off theorem. This way we provide a new case for
connectivity augmentation when a min‐max formula exists.

2 | DEFINITIONS

Let Ω be a ground set. A subset of Ω is called trivial if it coincides with ∅ or Ω. The complement
of a subset ⊆U Ω is defined by U U= Ω\ . For ⊆ ⊆X X ΩI O , the pair of sets X X= ( , )O IX is
called a bi‐set of Ω. The sets X X,I O, and w X X( ) = \b

O IX are the inner‐set, the outer‐set, and the
wall of X, respectively1. If ∅X =I or X = ΩO , then the bi‐set X is called trivial. The intersection
and the union of two bi‐sets X X= ( , )O IX and Y Y= ( , )O IY are defined by ⊓ =X Y

∩ ∩X Y X Y( , )O O I I and ⊔ ∪ ∪X Y X Y= ( , )O O I IX Y , respectively. We encourage the readers to
use figures like Figure 1 to check properties of bi‐sets.

Note that

∣ ∣ ∣ ∣ ∣ ⊓ ∣ ∣ ⊔ ∣w w w w( ) + ( ) = ( ) + ( ) .b b b bX Y X Y X Y (1)

We say that Y contains X, denoted by ⊑X Y, if ⊆X YO O and ⊆X YI I; while Y strictly contains
X, denoted by ⊏X Y, if ⊑X Y and ≠X Y. We say that X and Y are innerly disjoint if the inner‐
sets XI and YI are disjoint. We extend the complement operation to bi‐sets by defining the
complement of X as X X= ( , )I OX . For a family � of bi‐sets of Ω, we denote by ∪ ∈ XΩ ( ) =I IX� �

the union of the inner‐sets of the members of � . A bi‐set function hb is called submodular if, for
all bi‐sets X and Y,

≥ ⊓ ⊔h h h h( ) + ( ) ( ) + ( ).b b b bX Y X Y X Y (2)

1In this study, we use a small letter b to differentiate bi‐set functions from set functions. We also use a sans serif typeface (such as X) to differentiate bi‐sets
from sets.
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Let G V E= ( , ) be a graph. An edge e of G enters a bi‐set X X= ( , )O IX of V , if one of the end‐
vertices of e belongs to XO and the other one to XI. The degree of X, denoted by d ( )G

b X , is the
number of edges of G entering X. Note that the degree function of bi‐sets is a generalization of
the degree function of sets since d U d U U( ) = (( , ))G G

b for any subsetU of V . Observe that dG
b is

symmetric with respect to the complement operation of bi‐sets and satisfies the following
equation for all bi‐sets X and Y of V .

⊓ ⊔ ∩ ∩ ∩ ∩d d d d d X Y X Y d Y X Y X( ) + ( ) = ( ) + ( ) + ( , ) + ( , )G G G G G G
b b b b

O O I I O O I IX Y X Y X Y

(3)

that can be established by checking that any edge contributes to the same amount on each side.
It directly follows from 3 that dG

b is submodular.
Let k be a positive integer. Recall that the graph G is k2 ‐edge‐connected if and only if

≥d X k( ) 2G for all nontrivial sets X of V , that is, ≥d k( ) 2G
b X for all nontrivial bi‐sets X of V

such that w ( )b X is empty. Moreover, for any vertex v, the graph G v− is k‐edge‐connected if
and only if ≥d X k( )G v− for all nontrivial set X of V , that is, ≥d k( )G

b X for all nontrivial bi‐sets
X of V such that w v( ) = { }b X . Note that if ∣ ∣ ≥w ( ) 2b X , then ∣ ∣ ≥k w k( ) 2b X . These arguments
show that k(2, )‐connectivity can be reformulated using bi‐sets as follows: the graph G is k(2, )‐
connected if and only if ∣ ∣ ≥V 3 and, for all nontrivial bi‐sets X of V ,

≔ ∣ ∣ ≥f d k w k( ) ( ) + ( ) 2 .G G
b b bX X X (4)

A bi‐set X that satisfies 4 with equality is called tight. Equations 1 and 3 imply that, for all bi‐sets
X and Y of V , we have

⊓ ⊔ ∩ ∩ ∩ ∩f f f f d X Y X Y d Y X Y X( ) + ( ) = ( ) + ( ) + ( , ) + ( , ).G G G G G G
b b b b

O O I I O O I IX Y X Y X Y

(5)

Let H V s E= ( + , ) be a graph. We denote by N s( )H the set of neighbors of s in H . The graph
H is called k(2, )‐connected in V if ∣ ∣ ≥V 3, and 4 holds in H for all nontrivial bi‐sets X of V .
Note that, considering the graph H , for a set X (resp. a bi‐set X), the complement X (resp. X) is
taken with respect to the ground set V sΩ = + . We will also need the complement X c (resp. cX )
with respect to V , that is, ≔X V X\c and ≔ X X V X V X( , ) = ( \ , \ )c

I
c

O
c

I OX . Observe that

∣ ∣f d s X d X X X k w f d s X( ) − ( , ) = ( , \ ) + ( ) = ( ) − ( , ).H H H H H
b

I I O
b b c

O
cX X X (6)

FIGURE 1 The intersection and the union of two bi‐sets [Color figure can be viewed at
wileyonlinelibrary.com]
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By 5 and 4, we have immediately the following results.

Proposition 2.1. Let H V s E= ( + , ) be a k(2, )‐connected graph in U , where U V= or
U V s= + , X and Y tight bi‐sets of U .

(a) If ⊓X Y and ⊔X Y are nontrivial bi‐sets of U , then ⊓X Y and ⊔X Y are tight
and ∩ ∩ ∩ ∩d X Y X Y d Y X Y X( , ) = ( , ) = 0H HO O I I O O I I .

(b) If ⊓X Y and ⊓X Y are nontrivial bi‐sets of U , then ⊓X Y and ⊓X Y are tight
and ∩ ∩ ∩ ∩d X Y X Y d Y X Y X( , ) = ( , ) = 0H HO I I O I O O I .

Proposition 2.2. Let H V s E= ( + , ) be a graph, X and Y bi‐sets of V s+ such that
⊓ ≥f k( ) 2H

b X Y and ∣ ⊔ ∣ ≥w ( ) 2b X Y . Then,

≥ ⊔ ∩ ∩ ∩ ∩f k f k d d X Y X Y d Y X Y X( ( ) − 2 ) + ( ( ) − 2 ) ( ) + ( , ) + ( , ).H H H H H
b b b

O O I I O O I IX Y X Y

(7)

3 | PRELIMINARIES

In this section, we provide the preliminary results that will be needed in the proofs of our main
theorems.

3.1 | Blocking bi‐sets
We introduce a special type of bi‐sets that help characterize pairs of adjacent edges not to be
admissible. Then, we provide a useful lemma about such bi‐sets to be applied frequently in the
later proofs.

Let H V s E= ( + , ) be a k(2, )‐connected graph in V with a special vertex s and su sv( , ) a
pair of edges. A nontrivial bi‐set X ofV is called a blocking bi‐set for the pair su sv( , ) if either 8 or
9 is satisfied.

≤f k X u v( ) 2 + 1 and contains both and ,H
b

IX (8)

f k X u v w( ) = 2 , contains one of and , and ( ) consists of the other one.H
b

I
bX X (9)

Let X be a blocking bi‐set for the pair su sv( , ). Then, we say that X blocks su sv( , ). If 8 occurs,
then X is called dangerous and if 9 occurs, then X is called critical. Note that critical bi‐sets are
tight. The blocking bi‐set X for the pair su sv( , ) is called maximal if no blocking bi‐set for
su sv( , ) contains strictly X. The term blocking is justified by the following lemma.

Lemma 3.1. Let H V s E= ( + , ) be a k(2, )‐connected graph in V . A pair su sv( , ) is
nonadmissible if and only if there exists a bi‐set of V blocking su sv( , ).

DURAND DE GEVIGNEY AND SZIGETI | 7



Proof. The sufficiency is clear. Let us see the necessity. Since su sv( , ) is nonadmissible,
there exists a nontrivial bi‐set X of V , which violates 4 in Hu v, . Since ≥f k( ) 2H

b X , either
d d( ) = ( ) − 2H H

b b
u v,

X X , that is, ∈u v X, I and ≤f k( ) 2 + 1H
b X , or d d( ) = ( ) − 1H H

b b
u v,

X X ,

that is, ∈u XI and v w{ } = ( )b X (or ∈v XI and u w{ } = ( )b X ), and ≤f k( ) 2H
b X . ■

Note that if a bi‐set X blocks a pair su sv( , ), then after any sequence of splitting‐off of
admissible pairs not containing su nor sv, X still blocks su sv( , ). Hence, a nonadmissible pair in
H remains nonadmissible in any graph arising from H by a sequence of splitting‐off of
admissible pairs. Note also that, by 8 and 9, for a blocking bi‐set X,

∣ ∣ ≤w ( ) 1,b X (10)

≤f k d s X( ) − 2 ( , ) − 1.H H
b

IX (11)

Proposition 3.2. Let H V s E= ( + , ) be a k(2, )‐connected graph in V and X either a
tight bi‐set of V such that XI contains a neighbor of s or a blocking bi‐set. Then, N s( )H is not
contained in XO.

Proof. By assumption, X satisfies 11 and cX is a nontrivial bi‐set of V , and hence, 6 and
k(2, )‐connectivity of H in V provide that ≥d s X( , ) 1H O

c and we are done. ■

Proposition 3.3. Let H V s E= ( + , ) be a k(2, )‐connected graph in V with d s( )H even.

(i) For a nontrivial bi‐set X of ≤ ⌊ ⌋V d s X d s d s w f k, ( , ) ( ( ) − ( , ( )) + ( ) − 2 )H H H HI
1
2

b bX X .

(ii) If X is a dangerous bi‐set of V , then ≤d s X d s( , ) ( )H HI
1
2 .

(iii) If X is a critical bi‐set of V , then ≤d s X d s( , ) ( ) − 1H HI
1
2 .

(iv) If X and Y are critical bi‐sets of V with the same wall w and d s w( , )H is odd, then
N s( )H is not contained in ∪X YO O.

Proof. (i) follows from d s X d s d s w d s X( , ) = ( ) − ( , ( )) − ( , )H H H HO
c b

IX , 6, k(2, )‐
connectivity of H in V and since d s X( , )H I is integer.
(ii) and (iii) follow from (i) and from the conditions that X is dangerous (resp. X is critical)
and d s( )H is even.
(iv) follows from w w w( ) = { } = ( )b bX Y , (i), and from the facts that X and Y are critical
and d s d s w( ) − ( , )H H is odd, as follows: ∪ ≤d s X Y( , )H O O d s X( , ) +H I dH s Y( , ) +I
d s w( , ) <H d s d s w d s d s w d s w d s( ( ) − ( , )) + ( ( ) − ( , )) + ( , ) = ( ).H H H H H H

1
2

1
2 ■

We will heavily rely on the following lemma whose proof is quite technical.

Lemma 3.4. Let H V s E= ( + , ) be a k(2, )‐connected graph in V with d s( )H even. Let X
be a maximal blocking bi‐set for a pair su sv( , ) with ∈u XI. Let ∈z N s X( )\H I and Y a
blocking bi‐set for the pair su sz( , ). Then, w ( )b X and w ( )b Y coincide and are a singleton.
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Proof. Note that

∩ ∅ ∈ ∩ ∩w X u X Y N sif is dangerous or ( ) = , then ( ).H
b

I I IY Y (12)

We prove the lemma through the following claims.

Claim 3.5. The bi‐sets X and Y satisfy the following:

(a) If ∩w X( )b
IY is empty, then ⊓ ≥f k( ) 2H

b X Y .

(b) If ⊓w ( )b X Y is empty, then ⊓ ≥f k( ) 2H
b X Y .

(c) If ⊓w ( )b X Y is empty, then ⊓ ≥f k( ) 2H
b X Y .

(d) If ⊔w ( )b X Y is empty, then ⊔ ≥f k( ) 2 + 2H
b X Y .

Proof. By the k(2, )‐connectivity of H in V and since none of XO and YO contains V ,
proving (a), (b), or (c) reduces to check that the inner‐set of the bi‐set resulting from the
intersection is nonempty.

(a) By ∩ ∅w X( ) =b
IY and ∈ ∩ ∩u X Y X Y=I O I I.

(b) By ⊓ ∅w ( ) =b X Y and ∈ ∩ ∩ ∪ ⊓ ∩z X Y X Y w X Y= ( ) ( ) =I O O I
b

O IX Y .

(c) If ∩ ∅X Y =I O , then ∩ ⊓ ∪ ∩ ∅X Y w X Y= ( ) ( ) =O I
b

I OX Y , that is, ⊆X YO I. So, by 8
or 9, ∈u v Y, I, thus Y blocks su sv( , ). Since ∈z Y X\O I, we have either ∈z Y X\I I or

∈z Y Y\O I. In the first case, ⊊X YI I and in the latter case, ⊊X YO O. It follows that Y
strictly contains X that contradicts the maximality of X.

(d) Suppose that ⊔ ∅w ( ) =b X Y . Then, ∈ ∪ ∪u v X Y X Y, =O O I I. Thus, by ∈z Y X\ =O I

⊔Y X\ ,I I X Y strictly contains X and ∪ ≠ ∅X YI I . Since X and Y are blocking bi‐sets,
by Proposition 3.3 and 12, we have ∪d s X Y d s X( , ) = ( , ) +H HI I I d s Y( , ) −H I

∩ ≤d s X Y d s d s d s( , ) ( ) + ( ) − 1 = ( ) − 1H H H HI I
1
2

1
2 , that is, there exists a neighbor

of s in ∪V X Y\( )I I , and hence ≠ ∪V X YO O. It follows that ⊔X Y is a nontrivial bi‐set
of V containing u and v in its inner‐set. Hence, by the maximality of ⊔,X X Y does

not block su sv( , ), and then, ⊔ ≥f k( ) 2 + 2H
b X Y . ■

Claim 3.6. At least one of w ( )b X and w ( )b Y is not empty.

Proof. Suppose that ∅w w( ) = = ( )b bX Y . Then, the conditions of Claim 3.5 are satisfied
and ⊓ ∩ ⊓ ⊓f d X Y f d Y X f d X Y( ) = ( ), ( ) = ( \ ), ( ) = ( \ )H H H H H H

b
I I

b
I I

b
I IX Y X Y X Y , and

⊔ ∪f d X Y( ) = ( )H H
b

I IX Y . Since X and Y are blocking bi‐sets, by 12 and Claim 3.5,
we have ≥k k k d X d Y4 + 2 = (2 + 1) + (2 + 1) ( ) + ( ) =H HI I ∪ ∩d X Y X Y d( , ) +H HI I I I

∩X Y Y X d X Y d X Y d Y X( \ , \ ) + ( ( ) + ( \ ) + ( \ ) +H H HI I I I
1
2 I I I I I I ∪ ≥d X Y( )) 1 + 0 +H I I

1
2 k(2 +

k k k k2 + 2 + (2 + 2)) = 4 + 2. Thus, equality holds everywhere, in particular, d X( )H I is
odd and ∩d X Y( )H I I and d X Y( \ )H I I are even. This contradicts ∩d X d X Y( ) = ( ) +H HI I I

∩d X Y d X Y X Y( \ ) − 2 ( , \ )H HI I I I I I . ■

Claim 3.7. None of w ( )b X and w ( )b Y is empty.
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Proof. By contradiction suppose that the claim is false. Then, by Claim 3.6 and 10, one
of X and Y has an empty wall, call it A, and the other one has a wall of size one, call it B.
Suppose that ∩ ∅w A( ) =b

IB . By Claim 3.5(a), ⊓ ≥f k( ) 2H
b A B . If =A X, then, by Claim

3.5(c), ⊓ ≥f k( ) 2H
b X Y , otherwise =A Y and then, by Claim 3.5(b), ⊓ ≥f k( ) 2H

b X Y ; in
both cases, ⊓ ≥f k( ) 2H

b A B . SinceB is a blocking bi‐set and w ( )b B is a singleton, we have,
by 11,

∣ ∣ ≤d d s B f k w d s B k( ) − ( , ) = ( ( ) − ( ) ) − ( , ) − 1.H H H H
b

I
b b

IB B B (★)

Then, by ∅w ( ) =b A , 5 applied for ⊓A B and ⊓A B, since the edges between A B\I I and
∩A BI I enter B but not s, A is a blocking bi‐set and by ★, we have the following

contradiction: ≤ ⊓k k f2 + 2 ( ) +H
b A B ⊓f ( ) =H

b A B f ( ) +H
b A ∩ ≤d A B A B2 ( \ , )H I I I I f ( ) +H

b A
≤d d s B2( ( ) − ( , ))H H

b
IB k k(2 + 1) + 2( − 1).

From now on we suppose that ∩ ≠ ∅w A( )b
IB . Since w ( )b B is a singleton, it follows

that ∩ ∅w A( ) =b
IB . Then, by Claim 3.5(d), ⊔ ≥f k( ) 2 + 2H

b A B . If =A X, then, by
Claim 3.5(b), ⊓ ≥f k( ) 2H

b X Y , otherwise =A Y and then, by Claim 3.5(c),
⊓ ≥f k( ) 2H

b X Y ; in both cases, ⊓ ≥f k( ) 2H
b A B . Recall that B is a blocking bi‐set and

w ( )b B is a singleton. Then, by 12, we have

∩ ∣ ∣ ∩ ≤d d s A B f k w d s A B k( ) − ( , ) = ( ( ) − ( ) ) − ( , ) .H H H H
b

I I
b b

I IB B B (★★)

Then, by the symmetry of fH
b , by 5 applied for ⊔A B and ⊔A B, since the edges between

∪A BI I and B A\I I enterB but not ∩A BI I, since A is a blocking bi‐set and by ★★, we have
the following contradiction: ≤ ⊔k k f f(2 + 2) + 2 ( ) +H H

b bA B ⊓( ) =A B ⊔f ( ) +H
b A B

⊔f ( ) =H
b A B f ( ) +H

b A ∪ ≤d A B B A2 ( , \ )H I I I I f ( ) +H
b A ∩ ≤d d s A B2( ( ) − ( , ))H H

b
I IB

k k(2 + 1) + 2 . ■

Claim 3.8. The bi‐sets X and Y have the same wall.

Proof. By Claim 3.7 and 10, both w ( )b X and w ( )b Y are singletons. For a contradiction
suppose that ≠w w( ) ( )b bX Y , that is, ∩ ∅w w( ) ( ) =b bX Y . We have three cases.

Case 1. ∣ ⊔ ∣w ( ) = 2b X Y . Then, ⊓ ∅w ( ) =b X Y . By Claim 3.5(a), ⊓ ≥f k( ) 2H
b X Y . Hence, by

7, 11 applied for X, and by the facts that Y is a blocking bi‐set and if Y is dangerous,

then ∈ ∩z Y X N s( \ ) ( )HI I , we have the following contradiction: ⊔ ≤d ( )H
b X Y

∪ ≤f k f k d s X d s Y X d s X Y( ( ) − 2 ) + ( ( ) − 2 ) < ( , ) + ( , \ ) = ( , )H H H H H
b b

I I I I IX Y

⊔d ( )H
b X Y .

Case 2. ∣ ⊔ ∣w ( ) = 1b X Y . Then, we may call X and Y as A andB such that ⊓ ∅w ( ) =b A B

and ∣ ⊔ ∣w ( ) = 2b A B . If =A X, then, by Claim 3.5(c), ⊓ ≥f k( ) 2H
b X Y , otherwise

=A Y and then, by Claim 3.5(b), ⊓ ≥f k( ) 2H
b X Y ; in both cases,

⊓ ≥f k( ) 2H
b A B . Since A is a blocking bi‐set, we have, by 12,

≤ ∩f k d s A B( ) − 2 ( , )H H
b

I IA . By symmetry of fH
b and 11, f k( ) − 2 =H

b B
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f k d s B( ) − 2 < ( , )H H
b

IB . Then, 7 applied for A and B contradicts

the following: f k( ( ) − 2 ) +H
b A f k( ( ) − 2 ) <H

b B ∩ ≤d s A B d s B( , ) + ( , )H HI I I

∩ ∩d A B A B d( , ) + (H HO I I O
b ⊔ ∩ ∩d B A B A( ) + ( , ))H I O O IA B .

Case 3. ∣ ⊔ ∣w ( ) = 0b X Y . Then, ∣ ⊓ ∣w ( ) = 2b X Y . By Claim 3.5(d), since X is a blocking

bi‐set, fH
b is submodular, Y is a blocking bi‐set and by 12, we have the following

contradiction: ≤ ⊔ ≤ ⊓k k f f f f1 = (2 + 2) − (2 + 1) ( ) − ( ) ( ) − ( )H H H H
b b b bX Y X Y X Y

≤ ∩k d s X Y(2 + ( , ))H I I ∩ ∣ ⊓ ∣d s X Y k w− ( ( , ) + ( ) ) = 0H I I
b X Y .

Claims 3.7 and 3.8 and 10 prove Lemma 3.4. ■

Proposition 3.9. Let H V s E= ( + , ) be a k(2, )‐connected graph inV with ≥d s( ) 4H even.
If there exists no admissible pair incident to s, then d s u d s( , ) < ( )H H

1
2 for each neighbor u of s.

Proof. Since any pair incident to s is nonadmissible, by Lemma 3.1, there exists a bi‐set
that blocks it. By contradiction, suppose that ≥ ≥d s u d s( , ) ( ) 2H H

1
2 for some ∈u N s( )H .

Let X be a maximal blocking bi‐set for su su( , ). Clearly, we have ∈u XI. By Proposition
3.2, there exists a vertex v in N s X( )\H O. Let Y be a blocking bi‐set for the pair su sv( , ). By
Lemma 3.4, X and Y have the same wall and thus ∈u v Y w Y, \ ( ) =O

b
IX . This gives

≥ ≥d s Y d s u d s v( , ) ( , ) + ( , ) + 1H H H
d s

I
( )

2
H that contradicts Proposition 3.3. ■

3.2 | Obstacles

Let H V s E= ( + , ) be a k(2, )‐connected graph in V such that d s( )H is even. We extend the
definition of 2‐obstacle (defined in Section 1.4) as follows. The pair t( , )� is called a t‐star
k‐obstacle at s (in short, an obstacle) if

t s d s tis a neighbor of with ( , ) odd,H (13)

is a collection of critical bi‐sets,� (14)

teach element of has wall { },� (15)

the elements of are pairwise innerly disjoint,� (16)

⊆N s t V( )\{ } ( ).H I � (17)

Note that a t‐star k‐obstacle for k = 2 is a 2‐obstacle. Note also that if t( , )� is an obstacle at s,
then, by Lemma 3.1, no pair st su( , ) with ∈u N s t( )\{ }H is admissible. Some basic properties of
obstacles are proven in the following proposition.

Proposition 3.10. Let H V s E= ( + , ) be a k(2, )‐connected graph in V with d s( )H even
and t( , )� an obstacle at s. Then,
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∣ ∣ ≥ 3,� (18)

H st k V− is (2, )‐connected in . (19)

Proof. 18: By 17, 13 and d s( )H even, ∣ ∣ ≥ 1� . Let X and Y be two (not necessarily
distinct) elements of �. By 14, 15, 13, and Proposition 3.3(iv), ∪N s X Y( )\( )H O O is
nonempty. Thus, by 17, there exists an element in \{ , }X Y� .

19: Suppose that H st− is not k(2, )‐connected in V , that is, by k(2, )‐connectivity of
H , there exists in H a nontrivial tight bi‐set X of V such that ∈t XI. By 14, every

∈Y � is a tight bi‐set of V . Hence, by Proposition 2.1(b) and
∩ ∩ ≥ ≥ ⊓d X Y X Y d s t( , ) ( , ) 1,H HI O O I X Y or ⊓X Y is trivial, that is, since X and Y

are nontrivial, ⊆ XYI O or ⊆X YI O. If ⊆Y XI O for all ∈Y �, then, by 17 and ∈t XI, we
have ⊆N s X( )H O and, by the tightness of X, this contradicts Proposition 3.2. So there
exists ∈*Y � such that ⊆X Y *I O. For all ∈Y �, since H is k(2, )‐connected in V and Y is
critical, ∣ ∣ ≥d t Y d Y f k w k k k k( , ) = ( ) − ( ( ) − ( ) ) 2 − (2 − ) =H H HI I

b bY Y . By tightness of
∈t X, IX , 13, 16, 18, and ⊆X Y *I O, we have the following contradiction,

∣ ∣ ∣ ∣ ≥k k w f k w d d X d X w2 − ( ) = ( ) − ( ) = ( ) = ( ) − ( , ( ))H H H H
b b b b

I I
bX X X X X d t s( , ) +H

∑ ∈ ∩ ∅
dY w Y H\{ }, ( ) =* b

IY X�
≥ ∣ ∣t Y w k( , ) 1 + (2 − ( ) )I

b X . ■

The following lemma shows that to find an obstacle one does not have to focus on the
disjointness of the inner‐sets.

Lemma 3.11. Let H V s E= ( + , ) be a k(2, )‐connected graph in V with d s( )H even. If
there exists a pair t( , )� satisfying 13‐15 and 17, then there exists a t‐star k‐obstacle at s.

Proof. The proof applies the uncrossing method. Choose a pair t( , )� satisfying 13‐15
and 17 such that ∑ ∣ ∣

∈
XIX �

is minimum. Suppose there exist two distinct elements X and
Y in � such that ∩ ≠ ∅X YI I , that is, ⊓X Y is a nontrivial bi‐set ofV . By choice of �, none
of the bi‐sets X and Y contains the other. Hence, ⊓X Y and ⊓X Y are nontrivial bi‐sets of
V . By 13‐15, we can apply Proposition 3.3(iv), and we get that ⊔X Y is a nontrivial bi‐set
ofV . Note that critical bi‐sets are tight nontrivial bi‐sets ofV . Hence, by Proposition 2.1(a)
and (b), ⊓ ⊓,X Y X Y, and ⊓X Y are tight. The bi‐sets among them, which contain a
neighbor of s, are critical bi‐sets with wall t . Hence, they can replace X and Y in �

contradicting the minimality of ∑ ∣ ∣
∈

XIX �
. ■

4 | RESULTS

4.1 | A new splitting‐off theorem
The first result of this section shows the existence of an obstacle when no pair of edges incident
to the special vertex is admissible.

Theorem 4.1. Let H V s E= ( + , ) be a k(2, )‐connected graph in V with ≥d s( ) 2H even
and ≥k 2. If there exists no admissible pair at s, then d s( ) = 4H and there exists an obstacle at s.

Proof. Suppose that there exists no admissible splitting‐off at s.
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Claim 4.2. There exists a vertex t and a family � of dangerous blocking bi‐sets such that
15 holds for � and every pair of edges incident to s but not to t is blocked by an element
of � .

Proof. By Lemma 3.1, for each pair of edges incident to s, there exists a bi‐set that
blocks it. Let X be a maximal blocking bi‐set for a pair su sv( , ) with ∈u XI. By Proposition
3.2, there exists a neighbor z of s in XO . Let Y be a maximal blocking bi‐set for the pair
su sz( , ). By Lemma 3.4, the wall of X and the wall of Y coincide and are reduced to a
singleton, say t{ }. By ∈u XI and ∈z X t,O is different from u and from z. Thus, Y is a
dangerous blocking bi‐set.

For the same reasons, every maximal blocking bi‐set for a pair sa sb( , ) with ∈a YI and
∈b YO is a dangerous blocking bi‐set with wall t{ }. By repeating this argument once

more, we have that every pair sa sb( , ) with ∉a b t, { } is blocked by a dangerous blocking
bi‐set with wall t{ }. This proves the claim. ■

Let t and � be, respectively, the vertex and the family that exist by Claim 4.2.

Claim 4.3. The degree of s in H H t′ = − is 3.

Proof. By k(2, )‐connectivity in V of H H, ′ is k‐edge‐connected in V V t′ = − . For
every pair su sv( ′, ′) of edges in H′, by the definition of � , there exists ∈Z � for u v′, ′.
Then, by w t( ) = { }b Z and since Z is a dangerous bi‐set, d Z d( ) = ( ) =′H HI

b Z
∣ ∣ ≤f k w k( ) − ( ) + 1H

b bZ Z , that is, by ∈u v Z′, ′ I, the splitting‐off the pair su sv( ′, ′)
destroys the k‐edge‐connectivity in V ′ of H′. Hence, by ≥k 2 and Theorem 1.8, the claim
follows. ■

By d s( )H even and Claim 4.3 and Proposition 3.9, d s t( , )H is odd and smaller than d s( )H
1
2 ,

that is, d s t( , ) = 1H and d s( ) = 4H . Hence, by Proposition 3.2, the inner‐set of each element of
� contains exactly two neighbors of s and ∣ ∣ = 3� . So, for ∈ X X, = ( , )c

I
c

O
cX X� is a nontrivial

bi‐set of V and XO
c contains exactly one neighbor of s, say x . By 6, we have

≤f f d s X d s X k k( ) = ( ) − ( , ) + ( , ) 2 + 1 − 2 + 1 = 2H H H H
b c b

I O
cX X thus cX is a critical bi‐set

blocking st sx( , ). So ∈t t( , ) = ( , { : })c cX X� � satisfies 13‐15 and 17. The obstacle at s is
obtained by applying Lemma 3.11 on t( , )c� . ■

The following lemma concerns the case when an obstacle occurs after an admissible
splitting‐off.

Lemma 4.4. Let H V s E= ( + , ) be a k(2, )‐connected graph in V with ≥d s( ) 6H even,
su sv( , ) an admissible pair in H and t( , )� an obstacle at s in Hu v, .

(a) If ∈t u v{ , }, then ≥d s t( , ) 2H and st st( , ) is admissible in H .
(b) If ∉t u v{ , }, then either there exists a t‐star k‐obstacle at s in H or there exists no

obstacle at s in Ht z, for some admissible pair st sz( , ) in H .

Proof.
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(a) If the vertices t u, , and v coincide, then there is nothing to prove. So we assume that
t v= and ≠t u. By 13 in ≥H d s t d s t, ( , ) = ( , ) + 1 2u v H H, u v, . For a contradiction,

suppose that st st( , ) is nonadmissible in H , thus, by Lemma 3.1, there exists a maximal
blocking bi‐set X for this pair in H . Let Y be an element of �, if possible the one whose
inner‐set contains u. Since ∈t v X= ,I X is blocking bi‐set in H , Y is critical bi‐set in
Hu v, and by Proposition 3.3, we have ∪ ≤d s X Y d( , )H HI Iu v u v, , s X( , ) +I ≤d s Y( , )H Iu v,

≤d s X d s Y d s d s d( ( , ) − 1) + ( , ) ( ( ) − 1) + ( ( ) − 1) =H H H H HI I
1
2

1
2u v u v u v, , , s( ) −1. So, by

17 and ∈t XI, there exists a vertex ∈ ∪z N s X Y( )\( )H I Iu v, contained in the inner‐set
of an element Z of \Y� . Since none of u or v t= belongs to Z f f, ( ) = ( )H HI

b b
u v,

Z Z , that

is, Z blocks the pair st sz( , ) in H . Since ∉z XI, by Lemma 3.4, we have

∈w w t X( ) = ( ) = { }b b
IX Z , a contradiction that completes the proof of (a).

(b) Suppose that ∉t u v{ , }.

Claim 4.5. If st belongs to no admissible pair in H , then there exists a t‐star k‐obstacle in H .

Proof. By ∉t u v{ , } and 13, d s t d s t( , ) = ( , )H Hu v, is odd, thus it remains to construct a
collection � of critical bi‐sets satisfying 15‐17. By Lemma 3.11, it suffices to find one
satisfying 15 and 17.

Let ≔ ∈ ∣ ∩ ∣X u v{ ′ : ′ { , } < 2}0 IX� � . Note that either =0� � or Y= \0� � for some
∈Y � with ⊆u v{ , } Y. By 14 and 15 for � in H ,u v, 0� is a collection of critical bi‐sets in H

satisfying 15. Suppose 0� does not satisfy 17, that is, there exist some
∈ ∪z N s V t( )\( ( ) { })H I � . For any such z, since st belongs to no admissible pair, by

Lemma 3.1, there exists a maximal blocking bi‐set zX in H for the pair st sz( , ). We prove
that w t( ) = { }zb X and then zX is critical and hence ≔ ∪0� � ∈z{ :zX ∪N s V t( )\( ( ) { })}H I �

is the required collection.
Assume, by contradiction, that ≠t w{ } ( )zb X for some z, then, by 10,

∈t X w X\ ( ) =z z z
O

b
IX . We have ∩ ⊆N s V X( ) ( )H

z
I I� otherwise, there exists ∈Z � such

that ∩ ≠ ∅N s Z X( ( ) )\H
z

I I , thus by Lemma 3.4, we have ⊆w w t X( ) = ( ) = { }z zb b
IX Z , a

contradiction. If =0� � then, by Proposition 3.3 and ∩ ⊆N s V X( ) ( )H
z

I I� , we have
≥ ≥d s d s X d s( ) ( , ) ( ) − 2H H

z
H

1
2 I that contradicts ≥d s( ) 6H . Otherwise = \0 Y� � and

⊆u v z Y{ , , } I. Note that if zX is dangerous, then ∈ ∩z X Yz
I I. Hence, by ⊆ ∪N s X Y( )H

z
I I

and Proposition 3.3, the following contradiction completes the proof of Claim 4.5:
∩d s d s Y d s X d s X Y d s Y d s( ) = ( , ) + ( , ) − ( , ) = ( ( , ) + 2) + ( ( ,H H H

z
H

z
H HI I I I Iu v, X d s) − ( ,z

HI

∩ ≤X Y ))z
I I d s d s d s( ( ( ) − 2) − 1) + 2 + ( ( ) − 1) = ( ) − 1H H H

1
2

1
2 . ■

Claim 4.6. If st sz( , ) is an admissible pair in H and t( ′, ′)� is a t′‐star k‐obstacle in Ht z, ,
then t t= ′.

Proof. By contradiction, assume that there exist an admissible pair st sz( , ) in H and an
obstacle t( ′, ′)� in Ht z, such that ≠t t′. If t′ belongs to an element of � , then denote X this
element and let ∅ ∅= ( , )X otherwise. If t belongs to an element of ′� , then denote ′X this
element and let ∅ ∅′ = ( , )X otherwise. First, we prove that
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∩ ∅V X V X( ( )\ ) ( ( ′)\ ′ ) = .I I I I� � (20)

For a contradiction, suppose that there exists ∈ \{ }Y X� and ∈′ ′\{ ′}Y X� such that ∩Y Y ′I I is
nonempty, that is, ⊓ ′Y Y is nontrivial. Then, since ∣ ⊔ ∣ ∣ ∣w t t( ′) = { , ′} = 2b Y Y , 7
can be applied for Y and ′Y . By ∉t Y ′I and ≠t t′, we have ∉t Y ′O thus
f f( ′) = ( ′)H H

b b
t z,

Y Y . Hence, by 7, since ′Y is critical in Ht z, and, by 11 applied
for the critical bi‐set Y of Hu v, , we have the following contradiction:

≤ ⊔ ≤f k f k d f k f k d s Y0 ( ( ′) − 2 ) + ( ( ) − 2 ) − ( ′) ( ( ′) − 2 ) + ( ( ) − 2 ) − ( , )H H H H H H
b b b b b

IY Y Y Y Y Y

≤f k f k d s Y= ( ( ′) − 2 ) + ( ( ) − 2 ) − ( , ) 0 − 1,H H H
b b

It z u v u v, , ,Y Y which completes the proof
of 20.

Now, denote H H st su sv sz′ = − { , , , }. Observe that, by ≠t t′ and 17, if ∈t N s′ ( )Hu v, , then
∈t V′ ( )I � so ∉t N s X′ ( )\H Iu v, . For the same reason, ∉t N s X( )\ ′H It z, . Hence,

by 17 and 20, we have, ∪ ⊆ ∩ ⊆N s X X N s X N s X( )\( ′ ) ( ( )\ ) ( ( )\ ′ )′H H HI I I Iu v t z, , ∩V X( ( )\ )I I�

∅V X( ( ′)\ ′ ) =I I� . Hence, by Proposition 3.3 and 13, we have ≤d s d( ) − 4 ′H H

≤ ≤ ≤s d s X d s X d s X d s X( ) ( , ) + ( , ′ ) ( , ) + ( , ′ )′ ′H H H HI I I Iu v t z, , ⌊ ⌋d s d s t( ( ) − ( , )) +H H
1
2 u v u v, ,

≤d s d s d s d s( ( ) − 1) ( ( ) − 1 − 1) + ( ( ) − 2) = ( ) − 4H H H H
1
2

1
2

1
2t z, . So equality holds

everywhere. In particular, st su sv, , , and sz are distinct edges (even if some of them may be
parallel), z does not belong to XI, none of u or v belongs to X ′I and d s t d s t( , ) = ( , ) = 1H Hu v, .
Hence, ∈z N s t( )\{ }Hu v, , so by 17 in H z,u v, belongs to the inner‐set of an element ∈ \{ }Z X� .
Since st sz( , ) is admissible in H and Z is critical in Hu v, , we have

≥ ≥k f f k2 = ( ) ( ) − 2 (2 + 1) − 2H H
b b

u v,
Z Z , and hence ZI contains u or v, say u. Then, by

∈ ∈u \{ }Z X� and 16, we have ∈u V X( )\I I� but since ∉t V X( )\I I� , we have ≠u t′ thus, by
17 in H u,t z, belongs to the inner‐set of an element ∈′ ′\{ ′}Y X� . This contradicts 20 and hence
completes the proof of Claim 4.6. ■

Suppose there exists no t‐star k‐obstacle at s in H . Hence, by Claim 4.5, there exists an
admissible pair st sz( , ) in H . By Claim 4.6, if there exists an obstacle in Ht z, , then it is a t‐star
k‐obstacle t( , ′)� . By ∉t u v{ , } and 13 in H d s t, ( , )u v H, is odd. Hence, by 13 in H z t, =t z, . Thus,
t( , ′)� is a t‐star k‐obstacle in H , and this contradiction completes the proof of (b). ■

Now, we are in the position to prove our main result that characterizes the existence of a
complete admissible splitting‐off.

Theorem 4.7. Let H V s E= ( + , ) be a k(2, )‐connected graph inV with ≥k 2 and d s( )H
even. There exists a complete admissible splitting‐off at s if and only if there exists no obstacle
at s.

Proof. Suppose there exists an obstacle t( , )� at s. By 13, every sequence of d s( )H
1
2

splitting‐off of disjoint admissible pairs at s contains a pair st su( , ) with ∈u N s t( )\{ }H . As
we noticed after the definition of an obstacle, such a pair is not admissible in H and so
not admissible in any graph arising from H by a sequence of splitting‐off of disjoint
admissible pairs. Thus, there is no admissible complete splitting‐off at s.

Now, we prove, by induction on d s( )H , that if there exists no obstacle at s, then there
exists an admissible complete splitting‐off at s. For d s( ) = 0H , there is nothing to prove.
For d s( ) = 2H , the only splitting‐off is obviously admissible. Suppose d s( ) = 4H and there
exists no obstacle at s. By Theorem 4.1, there exists an admissible splitting‐off su sv( , ) at s.
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Since the only possible splitting‐off in Hu v, is admissible, there exists an admissible
complete splitting‐off at s in H .

Now, suppose that the theorem is true for every graph H′ that satisfies the conditions
with d s i( ) = 2H′ for ≤ ℓi for some ℓ ≥ 2. Let H V s E= ( + , ) be a k(2, )‐connected graph
in V such that ℓ ≥d s( ) = 2 + 2 6H and there exists no obstacle at s. By Theorem 4.1,
there exists an admissible splitting‐off su sv( , ) at s. If there exists no obstacle at s in Hu v, ,
then, by induction, there exists an admissible complete splitting‐off at s and we are done.
So we may assume that there exists a t‐star k‐obstacle at s in Hu v, . Since there exists no
obstacle at s in H , if Case (b) of Lemma 4.4 occurs, then there exists some admissible pair
st sw( , ) in H such that there exists no obstacle at s in Ht w, . Thus, by induction, there exists
an admissible complete splitting‐off at s in H and we are done. So we may assume that
Case (a) of Lemma 4.4 occurs and we consider Ht t, that is k(2, )‐connected in V . If there
exists an obstacle t( ′, ′)� at s in Ht t, , for the same reason as above, we may suppose that
Case (a) of Lemma 4.4 occurs. Hence, t t= ′ and t( , ′)� is an obstacle in H , a
contradiction. So no obstacle exists in Ht t, and, by induction, the proof of Theorem 4.7 is
completed. ■

4.2 | Construction of k(2, )‐connected graphs
In this section, we provide a construction of the family of k(2, )‐connected graphs for k even.
The special case k = 2 has been previously proved by Jordán [8].

We need the following extension of Lemma 5.1 of [8] for k even. Let G V E= ( , ) be a k(2, )‐
connected graph, s a vertex of even degree, t( , )� and t( , ′)� two obstacles at s. We say that t( , )�

is a refinement of t( , ′)� if for all ∈X �, there exists ∈′ ′X � such that ⊑ ′X X . An obstacle that
has no proper refinement is called finest.

Lemma 4.8. Let G V E= ( , ) be a k(2, )‐connected graph with k even. Let s be a vertex of
degree k2 and t( , )� a finest obstacle at s. Let ∈ s, ′X � a vertex in XI of degree k2 and
t( ′, ′)� an obstacle at s′. Then, there exists ∈′ ′X � such that ⊆X X′I I.

Proof. Note that G is k(2, )‐connected in V s− and also in V s− ′. By contradiction, we
assume that the lemma is false.

Suppose ∈t X′ I. By 16 and 18 for ′� , there exists ∈′ ′X � such that ∉t X ′I . By
assumption, for each ∈ ≠ ∅X X′ ′, ′ \I IX � . Then, ⊓ ′X X is a nontrivial bi‐set ofV s− ′ and
∣ ⊔ ∣ ∣ ∣w t t( ′) = { , ′} = 2b X X . Hence, by Proposition 2.2 and since X and ′X are tight, we
have ≥ ⊔ ≥ ≥d d s X0 + 0 ( ′) ( ′, ′ ) 1G G

b
IX X , a contradiction. Hence, ∉t X′ I.

Suppose ≠t t′ . If t belongs to the inner‐set of an element of ′� , then call ′Z this
element and define ∅ ∅′ = ( , )Z otherwise. Note that if t is a neighbor of s′, then the first
case occurs. Thus, by Proposition 3.3(iii), we have ∪ ≤d s X Z d s X( ′, ′ ) ( ′, ) +G GI I O

≤d s Z d d s k k k d s( ′, ′ ) ( ) + ( ( ′) − 1) = + ( − 1) = 2 − 1 = ( ′) − 1G G G GI
b 1

2
X . Hence, by

17, there exists ∈′ ′Y � with ∩ ≠ ∅Y X′I I and ∉t Y ′I . Thus, ⊓ ′X Y is a nontrivial
bi‐set of V s− and ∣ ⊔ ∣ ∣ ∣w t t( ′) = { , ′} = 2b X Y . Since X and ′Y are both tight, by
Proposition 2.2 and 13, we have ≥ ∩ ∩ ≥ ≥d X Y X Y d t s0 + 0 ( ′ , ′ ) ( ′, ′) 1G GO O I I , a
contradiction. So we proved that t t= ′.

By k(2, )‐connectivity ofG and d s k( ′) = 2G , we get ≤d s t k( ′, )G . Thus, by 13 for ′� and
k even, d s t k( ′, ) <G . Hence, d s X d s t d s X k d( ′, ) = ( ′, ) + ( ′, ) < + ( ) =G G G GI O

b X
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f k d s( ) = 2 = ( ′)G G
b X . Thus, by 17, there exists ∈′ ′Y � with ∩ ≠ ∅Y X′I I . Then, by

∣ ∣ ≥′ 3� and assumption, ⊔ ′X Y is a nontrivial bi‐set of V , thus, by Proposition 2.1(a) with
U V= , we get that ⊓ ′X Y is a tight bi‐set with wall t .

Note also that ∈ ∩s X′ ′I IY and, by assumption, ∩ ≠ ∅X ′I IY , thus, by Proposition 2.1
(b) with U V= , we get that ⊓ ′X Y is a tight bi‐set with wall t . Thus, in , X� can be
replaced by the bi‐sets among ⊓ ′X Y and ⊓ ′X Y , which contain at least one neighbor of s
in their inner‐set. Hence, t( , )� is not a finest obstacle at s, a contradiction. ■

We can now describe and prove the construction of the family of k(2, )‐connected graphs for
k even. We recall that K k

3 is the graph on 3 vertices where each pair of vertices is connected by k
parallel edges. Note that K k

3 is k(2, )‐connected and it is the only minimally k(2, )‐connected
graph on 3 vertices.

Theorem 4.9. A graph G is k(2, )‐connected with k even if and only if G can be obtained
from K k

3 by a sequence of the following two operations:

(a) adding a new edge,
(b) pinching a set F of k edges such that for all vertices ≤v d v k, ( )F .

Proof. First, we prove the sufficiency, that is, these operations preserve k(2, )‐
connectivity. It is clearly true for (a). Let G′ be a graph obtained from a k(2, )‐connected
graph G V E= ( , ) by the operation (b) and call s the new vertex. We must show that for
every nontrivial bi‐set X of V s+ , we have ≥f k( ) 2G

b
′ X . Since this inequality trivially holds

whenever ∣ ∣ ≥w ( ) 2b X , we assume that ∣ ∣ ≤w ( ) 1b X in what follows. If X is a nontrivial
bi‐set of V , then ∉s XO and, by k(2, )‐connectivity of G, we have

∣ ∣ ≥ ∣ ∣ ≥f d k w d k w f k( ) = ( ) + ( ) ( ) + ( ) = ( ) 2G G G G
b b b b b b
′ ′X X X X X X , and we are done. From

now on, by symmetry of fG
b
′, we may assume that ∈s XO. If ⊂s X{ } I, then X is a nontrivial

bi‐set of V and, by symmetry of fG
b
′, we are done again. If s X{ } = I, then, by d s k( ) = 2′G

and ≤d w k( ( ))F
b X , we have ∣ ∣f d k w d s( ) = ( ) + ( ) = ( ) −G G G

b b b
′ ′ ′X X X d s w( , ( )) +G

b′ X
∣ ∣ ∣ ∣ ≥k w d s d w k w k( ) = ( ) − ( ( )) + ( ) 2G F

b b b′X X X . If ⊆s X X w{ } \ =O I
b ( )X , then,

by ∣ ∣ ≤w ( ) 1b X , we have w s( ) = { }b X and then ∅ ≠ ≠X VI . Hence, by
∣ ∣F k= and k(2, )‐connectivity of G, we have ∣f d k( ) = ( ) +G G

b b
′ ′X X wb ∣( ) =X

d X d X( ( ) − ( ))G FI I ≥ ∣ ∣ ≥k d X F k k+ ( ) − + 2G I .
To see the necessity, letG be a k(2, )‐connected graph with at least 4 vertices. Note that

the inverse operation of (a) is deleting an edge and that of (b) is a complete splitting‐off at
a vertex s of degree k2 such that ≤d s v k( , )G for all ∈v V . Note also that these inverse
operations must preserve k(2, )‐connectivity. Thus, we may assume that, on the one
hand, G is minimally k(2, )‐connected and hence, by Theorem 1.9, G contains a vertex of
degree k2 , and, on the other hand, for every such vertex u, there exists no admissible
complete splitting‐off at u, that is, by Theorem 4.7, there exists an obstacle at u.

We choose in u t d u k t{( , ( , ), ): ( ) = 2 , ( , )GX� � a finest obstacle at ∈u, }X � a triple
u t( , ( , ), )* * * *X� with *X minimal for inclusion. By Theorem 1.9, there exists a vertex u′ of
degree k2 in X *I . Then, as we have seen, there exists a finest obstacle t( ′, ′)� at u′. By
Lemma 4.8, there exists ∈′ ′X � such that ⊆X X′ *I I . Since ∪ ⊆X u X′ { ′} *I I , the triple
u t( ′, ( ′, ′), ′)X� contradicts the choice of u t( , ( , ), )* * * *X� . ■
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We mention that the condition k is even is necessary in Lemma 4.8 and Theorem 4.9.
Consider the graph obtained from K4 by adding a new vertex t and 3 edges between t and each
vertex of K4. This graph is minimally (2, 3)‐connected but there exists no complete admissible
splitting‐off at any of the 4 vertices of degree 6. Indeed, if s a b c, , , denote the vertices of degree
6, then a t a b t b c t c{({ , }, { }), ({ , }, { }), ({ , }, { })} is a t‐star 3‐obstacle at s.

4.3 | Augmentation theorem

In this section, we answer the following question for ≥k 2: given a graph what is the minimum
number of edges to be added to make it k(2, )‐connected. For k = 1, that is, for 2‐vertex‐
connectivity, this problem had been already solved by Eswaran and Tarjan [4].

We shall need the following definitions. Let G V E= ( , ) be a graph. An s‐extension of G is a
graph ∪H V s E F= ( + , ), where F is a set of edges betweenV and the new vertex s. The size of
an s‐extension of G is defined by ∣ ∣F .

We mimic the approach of Frank [5] for the augmentation problem: first, we prove a result
on minimal extensions and then, by applying our splitting‐off theorem, we get a result on
minimal augmentation.

Lemma 4.10. Let G V E= ( , ) be a graph such that ∣ ∣ ≥V 3 and k a positive integer. The
minimum size of an s‐extension of G, that is, k(2, )‐connected in V , is equal to maximum of
∑ ∈

k f{ (2 − ( ))}G
b XX �

, where � is a family of nontrivial pairwise innerly disjoint bi‐sets
of V .

Proof. If ∪H V s E F′ = ( + , ′) is an s‐extension of G, that is, k(2, )‐connected in V and
′� is an arbitrary family of nontrivial pairwise innerly disjoint bi‐sets of V , then

∑ ∑ ∑≤ ≤ ∣ ∣
∈ ∈ ∈

k f f f d F(2 − ( ′)) ( ( ′) − ( ′)) = ( ′) ′ .′G H G V s F
′ ′

b

′ ′

b b

′ ′
( + , )
bX X X X

X X X� � �

This shows that ≤max min.
To prove that equality holds, we provide a family � of nontrivial pairwise innerly

disjoint bi‐sets of V and an s‐extension of G, that is, k(2, )‐connected in V of size ∑ ∈X �

k f(2 − ( ))G
b X . Let M be defined as the maximum value of k f2 − ( ′)G

b X over all bi‐set ′X of
V . If ≤M 0, then G is k(2, )‐connected and we are done. Suppose that M > 0. We
consider the s‐extension of G whose set of new edges consists of M parallel edges sv, for
each ∈v V . This extension is obviously k(2, )‐connected in V . Then, we remove as many
new edges as possible without destroying the k(2, )‐connectivity in V . Let F be the set of
remaining edges and ∪H V s E F= ( + , ). In H , by minimality of F , each edge e of F
enters a tight bi‐set of V . Let � be a family of nontrivial tight bi‐sets of V such that

Feach edge of enters at least one element of and� (21)

∑ ∣ ∣
∈

X is minimal.I
X �

(22)
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Claim 4.11. The elements of � are pairwise innerly disjoint.

Proof. Note that the degree of each tight bi‐set X in � is at least one, thus ∣ ∣ ≤w ( ) 1b X .
Suppose there exist two distinct elements X and Y in � such that ∩ ≠ ∅X YI I , that is,

⊓X Y is a nontrivial bi‐set of V .
If ⊔X Y is a nontrivial bi‐set ofV , then, by k(2, )‐connectivity in V of H , tightness of X

and Y and Proposition 2.1(a), ⊔X Y is tight. Since all the edges of F entering XI or YI
enters ⊔( )IX Y , the family obtained from � by substituting ⊔X Y for X and Y satisfies 21
and, by ∩ ≠ ∅X YI I , contradicts 22. So ∪X Y V=O O .

If ⊓X Y and ⊓X Y are nontrivial bi‐sets of V , then, by k(2, )‐connectivity in V of H ,
tightness of X and Y and Proposition 2.1(b), both ⊓X Y and ⊓X Y are tight and

∩ ∩ ∩ ∩d X Y X Y d Y X Y X( , ) = ( , ) = 0H HO I I O I O O I . Hence, all the edges of F entering the
set XI or the set YI enters the set ⊓( )IX Y or ⊓( )IX Y . Thus, the family obtained from � by
substituting ⊓X Y and ⊓X Y for X and Y satisfies 21 and, by ∩ ≠ ∅X YI I , contradicts 22.
So, by symmetry, we may assume that ⊆X YI O.

We have ∩ ⊈N s X Y( )H I I otherwise − X� satisfies 21 and contradicts the minimality
of �. Thus, by ⊆ ≥X Y d s w, ( , ( )) 1HI O

b Y and, since ∪X Y V=O O and Y is nontrivial,
∪w Y X Y X Y Y V Y( )\ = \ = ( )\ = \b

O O O O O O OX is nonempty. So ∣ ⊔ ∣ ≥w ( ) 2b X Y .
For the same reason as above, ∩ ⊈N s Y X( )H I I. Thus, by ∣ ∣ ≤w ( ) 1b X and ≠ ∅w Y( )\b

OX ,
the set Y X Y X\ = \I O I I contains a neighbor of s, that is, ⊓X Y is nontrivial. Thus, by
symmetry of fH

b , tightness of X and Y and 7, we have the following contradiction
≥ ∩ ∩ ≥ ≥f k f k d X Y X Y d s w0 + 0 = ( ( ) − 2 ) + ( ( ) − 2 ) ( , ) ( , ( )) 1H H H H

b b
I O O I

bX Y Y , which
completes the proof of Claim 4.11. ■

By Claim 4.11, 21 and by tightness of the elements of �, we have

∑ ∑ ∑∣ ∣
∈ ∈ ∈

F d f f k f= ( ) = ( ( ) − ( )) = (2 − ( )),V s F H G G( + , )
b b b bX X X X

X X X� � �

which completes the proof of Lemma 4.10. ■

The augmentation theorem goes as follows.

Theorem 4.12. Let G V E= ( , ) be a graph such that ∣ ∣ ≥V 3 and ≥k 2 an integer. The
minimum cardinality γ of a set F of edges such that ∪V E F( , ) is k(2, )‐connected is
equal to

⎡
⎢⎢

⎤
⎥⎥∑

∈{ }α k f= 1
2

max (2 − ( )) ,G
b X

X �

where � is a family of nontrivial pairwise innerly disjoint bi‐sets of V .

Proof. We first prove ≥γ α. Let � be a family of nontrivial bi‐sets of V such that the
elements of � are pairwise innerly disjoint. For each ∈X �, we must add at least

k f2 − ( )G
b X new edges entering the bi‐set X when this quantity is positive. Since the

elements of � are pairwise innerly disjoint, a new edge may enter at most 2 elements of
�. Hence, ≥ ∑ ∈

γ k f2 (2 − ( ))G
b XX �

thus, since γ is integer, ≥γ α follows.
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We now prove ≤γ α. By Lemma 4.10, there exists an s‐extension ∪H V s E F= ( + , )
of G, that is, k(2, )‐connected in V and a family � of nontrivial pairwise innerly disjoint
bi‐sets of V such that

∑∣ ∣
∈

F k f= (2 − ( )).G
b X

X �

If ∣ ∣F is odd, then there exists a vertex ∈u V such that d s u( , )H is odd, in this case, let
∪F F su′ = { } otherwise let F F′ = . So, in the graph ∪H V s E F d s′ = ( + , ′), ( )H′ is even.

Suppose there exists an obstacle t( , )� at s. By 19, H st′ − is k(2, )‐connected in V . If
H H= ′ this contradicts the minimality of ∣ ∣F . Then, d s( )H is odd and F F su′ = + for
some vertex ∈u V such that d s u( , )H is odd. If ∈u XI for some ∈X �, then we have
f f k( ) = ( ) − 1 = 2 − 1H H′X X , a contradiction to the k(2, )‐connectivity of H . Thus, by 17,
u t= and hence d s t d s t( , ) = ( , ) + 1′H H is even, which contradicts 13.

Hence, no obstacle exists at s, and, by Theorem 4.7, there exists an admissible complete
splitting‐off at s in H′. Let us denote by F″ the set of edges obtained by this complete
splitting‐off. Then, ∪V E F( , ″) is k(2, )‐connected and

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥∑∣ ∣ ∣ ∣ ∣ ∣

∈
F F F k f X′′ = 1

2
′ = 1

2
= 1

2
(2 − ( )) .

X G
b

�

This proves ≤γ α and completes the proof of Theorem 4.12. ■

REFERENCES

[1] D. W. Barnette and B. Grünbaum, On Steinitz’s theorem concerning convex 3‐polytopes and some properties of
planar graphs, The many facets of graph theory, Lecture Notes in Mathematics, G. Chartrand, S. F. Kapoor
(Eds.), Springer, 1969, pp. 27–40.

[2] A. R. Berg, and T. Jordán, Two‐connected orientations of Eulerian graphs, J. Graph Theory 52 (2006), no. 3,
230–242.

[3] O. Durand de Gevigney, On Frank's conjecture on k‐connected orientations. J. Combin. Theory Ser. B
(submitted), 2012, ArXiv:1212.4086.

[4] K. P. Eswaran, and R. E. Tarjan, Augmentation problems, SIAM J. Comput. 5 (1976), no. 4, 653–665.
[5] A. Frank, Augmenting graphs to meet edge‐connectivity requirements, SIAM J. Discrete Math. 5 (1992), no. 1,

25–53.
[6] A. Frank, Connectivity and network flows, Handb. Combin. (1995), 111–177.
[7] B. Jackson, and T. Jordán, Independence free graphs and vertex connectivity augmentation, J. Combin.

Theory Ser. B 94 (2005), no. 1, 31–77.
[8] T. Jordán, A characterization of weakly four‐connected graphs, J. Graph Theory 52 (2006), 217–229.
[9] A. Kaneko, and K. Ota, On minimally n λ( , )‐connected graphs, J. Combin. Theory Ser. A 80 (2000), no. 1,

156–171.
[10] L. Lovász, Combinatorial problems and exercises, North‐Holland, Amsterdam, 1979.
[11] W. Mader, A reduction method for edge‐connectivity in graphs, Annals of Discrete Math 3 (1978), 145–164.
[12] C. St. J. A. Nash‐Williams, On orientations, connectivity and odd‐vertex‐pairings in finite graphs, Canad. J.

Math. 12 (1960), 555–567.
[13] H. E. Robbins, A theorem on graphs, with an application to a problem of traffic control, Amer. Math.

Monthly 46 (1939), no. 5, 281–283.

20 | DURAND DE GEVIGNEY AND SZIGETI



[14] C. Thomassen, Strongly 2‐connected orientations of graphs, J. Combin. Theory Ser. A 110 (2015), 67–78.
[15] W. T. Tutte, A theory of 3‐connected graphs, Indag. Math. 23 (1961), 441–455.
[16] T. Watanabe, and A. Nakamura, Edge‐connectivity augmentation problems, Comp. System Sci. 35 (1987),

96–144.

How to cite this article: Durand de Gevigney O, Szigeti Z. On k(2, )‐connected graphs. J
Graph Theory. 2018;1–21. https://doi.org/10.1002/jgt.22433

DURAND DE GEVIGNEY AND SZIGETI | 21

https://doi.org/10.1002/jgt.22433



