DOI: 10.1002/jgt.22433

ORIGINAL MANUSCRIPT

WILEY

On (2, k)-connected graphs

Olivier Durand de Gevigney¹ | Zoltán Szigeti²

¹Routific, Vancouver, British, Columbia, Canada

²Univ. Grenoble Alpes, Grenoble INP, CNRS, G-SCOP, Grenoble, France

Correspondence

Olivier Durand de Gevigney, Routific, Vancouver, British Columbia, Canada. Email: odegevigney@gmail.com

Abstract

A graph G is called (2, k)-connected if G is 2k-edgeconnected and G - v is k-edge-connected for every vertex v. The study of (2, 2)-connected graphs is motivated by a theorem of Thomassen [J. Combin. Theory Ser. A 110 (2015), pp. 67-78] (that was a conjecture of Frank [SIAM J. Discrete Math. 5 (1992), no. 1, pp. 25-53]), which states that a graph has a 2-vertex-connected orientation if and only if it is (2,2)-connected. In this paper, we provide a construction of the family of (2, k)-connected graphs for k even, which generalizes the construction given by Jordán [J. Graph Theory 52 (2006), pp. 217-229] for (2,2)connected graphs. We also solve the corresponding connectivity augmentation problem: given a graph Gand an integer $k \ge 2$, what is the minimum number of edges to be added to make G(2, k)-connected. Both these results are based on a new splitting-off theorem for (2, k)-connected graphs.

KEYWORDS

connectivity, connectivity augmentation, orientation, splitting-off

1 | INTRODUCTION

Let G = (V, E) be an undirected graph (in short, a graph), in which loops and parallel edges are allowed. A subset of *V* is called *nontrivial* if it is different from the empty set and the whole set *V*. For *U*, $W \subset V$, $d_G(U, W)$ denotes the number of edges with one end-vertex in $U \setminus W$ and the other end-vertex in $W \setminus U$. For the sake of convenience, $d_G(U, \overline{U})$ is denoted by $d_G(U)$. Given a set of edges $F \subseteq E$, we define $d_F(U) = d_{(V,F)}(U)$.

Let H = (V + s, E) be a graph with a special vertex s such that no loop is incident to s. For convenience, in this paper, H will always denote a graph with such a special vertex s. ²└─WILEY-

1.1 | Connectivity

In this paper, we will need the following mixed-connectivity concepts of graphs introduced by Kaneko and Ota [9]. Let ℓ and k be positive integers. The graph G is called (ℓ, k) -connected if $|V| > \ell$ and for all $U \subseteq V$, $F \subseteq E$ such that $k|U| + |F| < \ell k$, G - U - F is connected. This notion contains both vertex-connectivity (for k = 1) and edge-connectivity (for $\ell = 1$). Indeed, G is ℓ -vertex-connected if and only if $|V| > \ell$ and for all $U \subset V$ such that $|U| < \ell$, G - U is connected. Furthermore, G is k-edge-connected if and only if at least k edges enter all nontrivial sets of V. The graph H = (V + s, E) is called k-edge-connected graphs. Observe that G is (2, k)-connected if $|V| \ge 3$, G is 2k-edge-connected and, for all $v \in V$, G - v is k-edge-connected. Note that (2, k)-connectivity is stronger than 2k-edge-connectivity but much weaker than 2k-vertex-connectivity.

We will need some connectivity concepts in directed graphs as well. Let D = (V, A) be a directed graph. We say that *D* is *strongly connected* if for every nontrivial vertex set *X* of *V*, there exists an arc entering *X*. The digraph *D* is called ℓ -arc-connected if, for all $F \subseteq A$ such that $|F| < \ell$, D - F is strongly connected. Note that *D* is ℓ -arc-connected if and only if at least ℓ arcs enter all nontrivial sets of *V*. The digraph *D* is called ℓ -vertex-connected if $|V| > \ell$ and for all $X \subset V$ such that $|X| < \ell$, D - X is strongly connected.

To motivate our problems, let us recall some results on orientations, constructions, splittingoff, and augmentations of graphs.

1.2 | Orientations

We start with the classic result on edge-connectivity.

Theorem 1.1 (Nash-Williams [12]). An undirected graph has a k-arc-connected orientation if and only if it is 2k-edge-connected.

Inspired by Theorem 1.1, Frank [6] proposed a conjecture concerning vertex-connectivity.

Conjecture 1.1 (Frank [6]). An undirected graph G = (V, E) has a k-vertex-connected orientation if and only if G is (k, 2)-connected.

Recently, some breakthroughs have been achieved on this conjecture. On the one hand, Durand de Gevigney [3] proved that Conjecture 1.1 is false for $k \ge 3$.

Theorem 1.2 (Durand de Gevigney [3]). For every $k \ge 3$, there exist (k, 2)-connected undirected graphs that have no k-vertex-connected orientation. Moreover, for every $k \ge 3$, it is NP-complete to decide whether an undirected graph has a k-vertex-connected orientation.

On the other hand, Thomassen [14] proved that Conjecture 1.1 is true for k = 2.

Theorem 1.3 (Thomassen [14]). An undirected graph has a 2-vertex-connected orientation *if and only if it is* (2, 2)-connected.

We mention that the special case of Theorem 1.3 when the graph is Eulerian was earlier proved by Berg and Jordán [2].

1.3 | Constructions

Theorem 1.1 can easily be proved by applying the following construction of Lovász [10] of 2k-edge-connected graphs. Let K_2^{2k} be the graph on 2 vertices with 2k edges between them. The operation *pinching* k edges is defined as follows: subdivide each of the k edges by a new vertex and identify these new vertices.

Theorem 1.4 (Lovász [10]). A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching k edges.

Conjecture 1.1 drew attention on the family of (2, 2)-connected graphs. Jordán [8] gave the following construction of this family, similar to the above construction of 4-edge-connected graphs. For $k \ge 2$, let K_3^k be the graph on 3 vertices with k edges between each pair of vertices. Note that a (2, 2)-connected graph must contain at least 3 vertices, this is why the starting graph is different.

Theorem 1.5 (Jordán [8]). A graph is (2, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching 2 edges such that if one of them is a loop, then the other one is not adjacent to it.

Unfortunately, this construction does not help prove Conjecture 1.1 for k = 2. We will generalize Theorem 1.5 in Theorem 4.9.

We mention that concerning vertex-connectivity, a few results are known. Constructions are given only for 2- and 3-vertex-connected graphs, see Robbins [13], Barnette and Grünbaum [1], and also Tutte [15].

1.4 | Splitting-off

To prove Theorem 1.4, one has to consider the inverse operations: deleting an edge and complete splitting-off at a vertex of degree 2k. Let us now introduce the operation of *complete splitting-off at a vertex s* of even degree. It consists of partitioning the set of edges incident to *s* into pairs, replacing each pair (*su*, *sv*) by a new edge *uv* and then deleting *s*. If the graph is minimally 2k-edge-connected, that is, when no edge can be deleted without destroying 2k-edge-connectivity, then the following result shows that there exists a vertex of degree 2k.

Theorem 1.6 (Mader [11]). *Every minimally* 2*k*-edge-connected graph contains a vertex of degree 2*k*.

Then, the following splitting-off theorem of Lovász [10] implies the existence of a complete splitting-off at this vertex that preserves 2k-edge-connectivity.

3

WILF

▲ WILEY

Theorem 1.7 (Lovász [10]). Let H = (V + s, E) be an ℓ -edge-connected graph for $\ell \ge 2$, where s is a vertex of even degree. Then, there exists a complete splitting-off at s such that the new graph is ℓ -edge-connected.

We will also need the splitting-off result of Mader [11]. Let (su, sv) be a pair of (possibly parallel) edges in H = (V + s, E). Splitting-off the pair (su, sv) at s in H consists in replacing the edges su, sv by a new edge uv. The graph arising from this splitting-off at s is denoted by $H_{u,v}$.

Theorem 1.8 (Mader [11]). Let H = (V + s, E) be an ℓ -edge-connected graph in V for $\ell \ge 2$ such that $d_H(s) \ne 3$ and $d_H(s) \ge 2$. Then, there exists a pair of edges (su, sv) in H such that $H_{u,v}$ is ℓ -edge-connected in V.

For a pair (*su*, *sv*) of (possibly parallel) edges of *H*, if *H* and $H_{u,v}$ are (2, *k*)-connected in *V*, then the pair (*su*, *sv*) is called (2, *k*)-*admissible* (in short, *admissible* when *k* is clear from the context). A complete splitting-off is called *admissible* if the resulting graph is (2, *k*)-connected in *V*.

To get Theorem 1.5, one has to consider the inverse operations: deleting an edge and complete splitting-off at a vertex of degree 4. If the graph is minimally (2, k)-connected, that is, when no edge can be deleted without destroying (2, k)-connectivity, then the following result [9, Lemma 7] shows that there exists a vertex of degree 2k. For the definitions of inner-set and tight bi-set, see Section 2.

Theorem 1.9 (Kaneko and Ota [9]). Let G = (V, E) be a minimally (2, k)-connected graph. Then, the inner-set of every tight bi-set contains a vertex of degree 2k.

We mention that Theorem 1.9 will be used in the proof of Theorem 4.9.

Jordán [8] proved a splitting-off theorem on (2, 2)-connected graphs. Here, it is possible that there exists no complete splitting-off preserving (2, 2)-connectivity, in this case a special kind of obstacle exists. Let H = (V + s, E) be a graph with $d_H(s) = 4$, and $\{t, x, y, z\}$ the set of neighbors of *s*. The quadruple (t, X, Y, Z) is called a 2-*obstacle* at *s* if *X*, *Y*, and *Z* are pairwise disjoint vertex sets of V - t, $x \in X$, $y \in Y$, $z \in Z$ and $d_{H-t}(X) = d_{H-t}(Y) = d_{H-t}(Y) = 2$.

Theorem 1.10 (Jordán [8]). Let H = (V + s, E) be a (2, 2)-connected graph such that $|V| \ge 3$ and $d_H(s) = 4$. Then, there exists a (2, 2)-admissible complete splitting-off at s if and only if there exists no 2-obstacle at s.

We will generalize Theorem 1.10 in Theorem 4.7.

1.5 | Augmentation

Theorem 1.7 has other applications, among others, it can be used to solve the ℓ -edge-connected augmentation problem (see Frank [5]).

Theorem 1.11 (Watanabe and Nakamura [16]). Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

where X is a family of nontrivial pairwise disjoint sets of V.

The (2, k)-connectivity augmentation problem can be formulated as follows: what is the minimum number of edges whose addition results in a (2, k)-connected graph. The min-max theorem on this problem is presented in Theorem 4.12.

The ℓ -vertex-connectivity augmentation problem is still open. For fixed ℓ , Jackson and Jordán [7] provided a polynomial algorithm.

This paper is devoted to the study of (2, k)-connected graphs and is organized as follows. We give the necessary definitions in Section 2 and then some preliminary results in Section 3. The main results are presented in Section 4. First, we provide a new splitting-off theorem for (2, k)-connected graphs. As in the special case k = 2, the existence of a complete splitting-off preserving (2, k)-connectivity depends on the nonexistence of an obstacle. Second, we give a construction of the family of (2, k)-connected graphs for k even. These are the natural generalizations of the previous results of Jordán [8] on (2,2)-connected graphs. Finally, we solve the (2, k)-connectivity augmentation problem. We follow Frank's [5] approach: we find a minimal extension and then we apply our splitting-off theorem. This way we provide a new case for connectivity augmentation when a min-max formula exists.

2 DEFINITIONS

Let Ω be a ground set. A subset of Ω is called *trivial* if it coincides with \emptyset or Ω . The *complement* of a subset $U \subseteq \Omega$ is defined by $\overline{U} = \Omega \setminus U$. For $X_I \subseteq X_O \subseteq \Omega$, the pair of sets $X = (X_O, X_I)$ is called *a bi-set* of Ω . The sets X_I, X_O , and $w^b(X) = X_O \setminus X_I$ are the *inner-set*, the *outer-set*, and the *wall* of X, respectively¹. If $X_I = \emptyset$ or $X_O = \Omega$, then the bi-set X is called *trivial*. The *intersection* and the *union* of two bi-sets $X = (X_O, X_I)$ and $Y = (Y_O, Y_I)$ are defined by $X \sqcap Y = (X_O \cap Y_O, X_I \cap Y_I)$ and $X \sqcup Y = (X_O \cup Y_O, X_I \cup Y_I)$, respectively. We encourage the readers to use figures like Figure 1 to check properties of bi-sets.

Note that

$$|w^{b}(X)| + |w^{b}(Y)| = |w^{b}(X \sqcap Y)| + |w^{b}(X \sqcup Y)|.$$
(1)

We say that Y *contains* X, denoted by $X \sqsubseteq Y$, if $X_O \subseteq Y_O$ and $X_I \subseteq Y_I$; while Y *strictly contains* X, denoted by $X \sqsubset Y$, if $X \sqsubseteq Y$ and $X \neq Y$. We say that X and Y are *innerly disjoint* if the innersets X_I and Y_I are disjoint. We extend the complement operation to bi-sets by defining the *complement* of X as $\overline{X} = (\overline{X_I}, \overline{X_O})$. For a family \mathcal{F} of bi-sets of Ω , we denote by $\Omega_I(\mathcal{F}) = \bigcup_{X \in \mathcal{F}} X_I$ the union of the innersets of the members of \mathcal{F} . A bi-set function h^b is called *submodular* if, for all bi-sets X and Y,

$$h^{\mathbf{b}}(\mathsf{X}) + h^{\mathbf{b}}(\mathsf{Y}) \ge h^{\mathbf{b}}(\mathsf{X} \sqcap \mathsf{Y}) + h^{\mathbf{b}}(\mathsf{X} \sqcup \mathsf{Y}).$$
⁽²⁾

5

WILEY-

¹In this study, we use a small letter b to differentiate bi-set functions from set functions. We also use a sans serif typeface (such as X) to differentiate bi-sets from sets.

FIGURE 1 The intersection and the union of two bi-sets [Color figure can be viewed at wileyonlinelibrary.com]

Let G = (V, E) be a graph. An edge e of G enters a bi-set $X = (X_O, X_I)$ of V, if one of the endvertices of e belongs to $\overline{X_O}$ and the other one to X_I . The *degree* of X, denoted by $d_G^b(X)$, is the number of edges of G entering X. Note that the degree function of bi-sets is a generalization of the degree function of sets since $d_G(U) = d_G^b((U, U))$ for any subset U of V. Observe that d_G^b is symmetric with respect to the complement operation of bi-sets and satisfies the following equation for all bi-sets X and Y of V.

$$d_G^{b}(\mathsf{X}) + d_G^{b}(\mathsf{Y}) = d_G^{b}(\mathsf{X} \sqcap \mathsf{Y}) + d_G^{b}(\mathsf{X} \sqcup \mathsf{Y}) + d_G(\overline{X_0} \cap Y_0, X_{\mathrm{I}} \cap \overline{Y_{\mathrm{I}}}) + d_G(\overline{Y_0} \cap X_0, Y_{\mathrm{I}} \cap \overline{X_{\mathrm{I}}})$$
(3)

that can be established by checking that any edge contributes to the same amount on each side. It directly follows from 3 that d_G^b is submodular.

Let *k* be a positive integer. Recall that the graph *G* is 2k-edge-connected if and only if $d_G(X) \ge 2k$ for all nontrivial sets *X* of *V*, that is, $d_G^b(X) \ge 2k$ for all nontrivial bi-sets X of *V* such that $w^b(X)$ is empty. Moreover, for any vertex *v*, the graph G - v is *k*-edge-connected if and only if $d_{G-v}(X) \ge k$ for all nontrivial set *X* of *V*, that is, $d_G^b(X) \ge k$ for all nontrivial bi-sets X of *V* such that $w^b(X) = \{v\}$. Note that if $|w^b(X)| \ge 2$, then $k|w^b(X)| \ge 2k$. These arguments show that (2, k)-connectivity can be reformulated using bi-sets as follows: the graph *G* is (2, k)-connected if and only if $|V| \ge 3$ and, for all nontrivial bi-sets X of *V*,

$$f_G^{\mathbf{b}}(\mathsf{X}) \coloneqq d_G^{\mathbf{b}}(\mathsf{X}) + k|w^{\mathbf{b}}(\mathsf{X})| \ge 2k.$$
(4)

A bi-set X that satisfies 4 with equality is called *tight*. Equations 1 and 3 imply that, for all bi-sets X and Y of V, we have

$$f_G^{\mathbf{b}}(\mathsf{X}) + f_G^{\mathbf{b}}(\mathsf{Y}) = f_G^{\mathbf{b}}(\mathsf{X} \sqcap \mathsf{Y}) + f_G^{\mathbf{b}}(\mathsf{X} \sqcup \mathsf{Y}) + d_G(\overline{X_0} \cap Y_0, X_{\mathrm{I}} \cap \overline{Y_{\mathrm{I}}}) + d_G(\overline{Y_0} \cap X_0, Y_{\mathrm{I}} \cap \overline{X_{\mathrm{I}}}).$$
(5)

Let H = (V + s, E) be a graph. We denote by $N_H(s)$ the set of neighbors of s in H. The graph H is called (2, k)-connected in V if $|V| \ge 3$, and 4 holds in H for all nontrivial bi-sets X of V. Note that, considering the graph H, for a set X (resp. a bi-set X), the complement \overline{X} (resp. \overline{X}) is taken with respect to the ground set $\Omega = V + s$. We will also need the complement X^c (resp. X^c) with respect to V, that is, $X^c := V \setminus X$ and $X^c := (X_1^c, X_0^c) = (V \setminus X_1, V \setminus X_0)$. Observe that

$$f_{H}^{b}(X) - d_{H}(s, X_{I}) = d_{H}(X_{I}, X \setminus X_{O}) + k|w^{b}(X)| = f_{H}^{b}(X^{c}) - d_{H}(s, X_{O}^{c}).$$
(6)

By 5 and 4, we have immediately the following results.

Proposition 2.1. Let H = (V + s, E) be a (2, k)-connected graph in U, where U = V or U = V + s, X and Y tight bi-sets of U.

- (a) If $X \sqcap Y$ and $X \sqcup Y$ are nontrivial bi-sets of U, then $X \sqcap Y$ and $X \sqcup Y$ are tight and $d_H(\overline{X_0} \cap Y_0, X_I \cap \overline{Y_I}) = d_H(\overline{Y_0} \cap X_0, Y_I \cap \overline{X_I}) = 0$.
- **(b)** If $X \sqcap \overline{Y}$ and $\overline{X} \sqcap Y$ are nontrivial bi-sets of U, then $X \sqcap \overline{Y}$ and $\overline{X} \sqcap Y$ are tight and $d_H(\overline{X_0} \cap \overline{Y_1}, X_1 \cap Y_0) = d_H(Y_1 \cap X_0, \overline{Y_0} \cap \overline{X_1}) = 0$.

Proposition 2.2. Let H = (V + s, E) be a graph, X and Y bi-sets of V + s such that $f_H^b(X \sqcap Y) \ge 2k$ and $|w^b(X \sqcup Y)| \ge 2$. Then,

$$(f_H^{\mathbf{b}}(\mathsf{X}) - 2k) + (f_H^{\mathbf{b}}(\mathsf{Y}) - 2k) \ge d_H^{\mathbf{b}}(\mathsf{X} \sqcup \mathsf{Y}) + d_H(\overline{X_0} \cap Y_0, X_{\mathrm{I}} \cap \overline{Y_{\mathrm{I}}}) + d_H(\overline{Y_0} \cap X_0, Y_{\mathrm{I}} \cap \overline{X_{\mathrm{I}}}).$$
(7)

3 | PRELIMINARIES

In this section, we provide the preliminary results that will be needed in the proofs of our main theorems.

3.1 | Blocking bi-sets

We introduce a special type of bi-sets that help characterize pairs of adjacent edges not to be admissible. Then, we provide a useful lemma about such bi-sets to be applied frequently in the later proofs.

Let H = (V + s, E) be a (2, *k*)-connected graph in *V* with a special vertex *s* and (*su*, *sv*) a pair of edges. A nontrivial bi-set X of *V* is called *a blocking bi-set* for the pair (*su*, *sv*) if either 8 or 9 is satisfied.

$$f_{H}^{b}(\mathsf{X}) \le 2k + 1 \text{ and } X_{\mathrm{I}} \text{ contains both } u \text{ and } v,$$
 (8)

 $f_H^{\rm b}(\mathsf{X}) = 2k, X_{\rm I}$ contains one of u and v, and $w^{\rm b}(\mathsf{X})$ consists of the other one. (9)

Let X be a blocking bi-set for the pair (su, sv). Then, we say that X blocks (su, sv). If 8 occurs, then X is called *dangerous* and if 9 occurs, then X is called *critical*. Note that critical bi-sets are tight. The blocking bi-set X for the pair (su, sv) is called *maximal* if no blocking bi-set for (su, sv) contains strictly X. The term blocking is justified by the following lemma.

Lemma 3.1. Let H = (V + s, E) be a (2, k)-connected graph in V. A pair (su, sv) is nonadmissible if and only if there exists a bi-set of V blocking (su, sv).

7

WILEY

Proof. The sufficiency is clear. Let us see the necessity. Since (su, sv) is nonadmissible, there exists a nontrivial bi-set X of V, which violates 4 in $H_{u,v}$. Since $f_H^b(X) \ge 2k$, either $d_{H_{u,v}}^b(X) = d_H^b(X) - 2$, that is, $u, v \in X_I$ and $f_H^b(X) \le 2k + 1$, or $d_{H_{u,v}}^b(X) = d_H^b(X) - 1$, that is, $u \in X_I$ and $\{v\} = w^b(X)$ (or $v \in X_I$ and $\{u\} = w^b(X)$), and $f_H^b(X) \le 2k$.

Note that if a bi-set X blocks a pair (su, sv), then after any sequence of splitting-off of admissible pairs not containing su nor sv, X still blocks (su, sv). Hence, a nonadmissible pair in H remains nonadmissible in any graph arising from H by a sequence of splitting-off of admissible pairs. Note also that, by 8 and 9, for a blocking bi-set X,

$$|w^{\mathsf{b}}(\mathsf{X})| \le 1,\tag{10}$$

$$f_{H}^{b}(X) - 2k \le d_{H}(s, X_{I}) - 1.$$
(11)

Proposition 3.2. Let H = (V + s, E) be a (2, k)-connected graph in V and X either a tight bi-set of V such that X_I contains a neighbor of s or a blocking bi-set. Then, $N_H(s)$ is not contained in X_O .

Proof. By assumption, X satisfies 11 and X^c is a nontrivial bi-set of V, and hence, 6 and (2, k)-connectivity of H in V provide that $d_H(s, X_0^c) \ge 1$ and we are done.

Proposition 3.3. Let H = (V + s, E) be a (2, k)-connected graph in V with $d_H(s)$ even.

- (i) For a nontrivial bi-set X of V, $d_H(s, X_I) \le \lfloor \frac{1}{2} (d_H(s) d_H(s, w^b(X)) + f_H^b(X) 2k) \rfloor$.
- (ii) If X is a dangerous bi-set of V, then $d_H(s, X_I) \leq \frac{1}{2}d_H(s)$.
- (iii) If X is a critical bi-set of V, then $d_H(s, X_I) \leq \frac{1}{2}d_H(s) 1$.
- (iv) If X and Y are critical bi-sets of V with the same wall w and $d_H(s, w)$ is odd, then $N_H(s)$ is not contained in $X_O \cup Y_O$.

Proof. (i) follows from $d_H(s, X_0^c) = d_H(s) - d_H(s, w^b(X)) - d_H(s, X_I)$, 6, (2, k)-connectivity of H in V and since $d_H(s, X_I)$ is integer.

(ii) and (iii) follow from (i) and from the conditions that X is dangerous (resp. X is critical) and $d_H(s)$ is even.

(iv) follows from $w^{b}(X) = \{w\} = w^{b}(Y)$, (i), and from the facts that X and Y are critical and $d_{H}(s) - d_{H}(s, w)$ is odd, as follows: $d_{H}(s, X_{O} \cup Y_{O}) \le d_{H}(s, X_{I}) + d_{H}(s, Y_{I}) + d_{H}(s, w) < \frac{1}{2}(d_{H}(s) - d_{H}(s, w)) + \frac{1}{2}(d_{H}(s) - d_{H}(s, w)) + d_{H}(s, w) = d_{H}(s)$.

We will heavily rely on the following lemma whose proof is quite technical.

Lemma 3.4. Let H = (V + s, E) be a (2, k)-connected graph in V with $d_H(s)$ even. Let X be a maximal blocking bi-set for a pair (su, sv) with $u \in X_I$. Let $z \in N_H(s) \setminus X_I$ and Y a blocking bi-set for the pair (su, sz). Then, $w^b(X)$ and $w^b(Y)$ coincide and are a singleton.

Proof. Note that

if Y is dangerous or
$$w^{b}(Y) \cap X_{I} = \emptyset$$
, then $u \in X_{I} \cap Y_{I} \cap N_{H}(s)$. (12)

We prove the lemma through the following claims.

Claim 3.5. The bi-sets X and Y satisfy the following:

- (a) If $w^{b}(Y) \cap X_{I}$ is empty, then $f_{H}^{b}(X \sqcap Y) \ge 2k$.
- **(b)** If $w^{b}(\overline{X} \sqcap Y)$ is empty, then $f_{H}^{b}(\overline{X} \sqcap Y) \ge 2k$.
- (c) If $w^{b}(X \sqcap \overline{Y})$ is empty, then $f^{b}_{H}(X \sqcap \overline{Y}) \ge 2k$.
- (d) If $w^{b}(X \sqcup Y)$ is empty, then $f^{b}_{H}(X \sqcup Y) \ge 2k + 2$.

Proof. By the (2, k)-connectivity of H in V and since none of X_0 and Y_0 contains V, proving (a), (b), or (c) reduces to check that the inner-set of the bi-set resulting from the intersection is nonempty.

- (a) By $w^{b}(Y) \cap X_{I} = \emptyset$ and $u \in X_{I} \cap Y_{O} = X_{I} \cap Y_{I}$.
- (b) By $w^{b}(\overline{X} \sqcap Y) = \emptyset$ and $z \in \overline{X_{I}} \cap Y_{O} = (\overline{X_{O}} \cap Y_{I}) \cup w^{b}(\overline{X} \sqcap Y) = \overline{X_{O}} \cap Y_{I}$.
- (c) If $X_{I} \cap \overline{Y_{O}} = \emptyset$, then $X_{O} \cap \overline{Y_{I}} = w^{b}(X \sqcap \overline{Y}) \cup (X_{I} \cap \overline{Y_{O}}) = \emptyset$, that is, $X_{O} \subseteq Y_{I}$. So, by 8 or 9, $u, v \in Y_{I}$, thus Y blocks (*su*, *sv*). Since $z \in Y_{O} \setminus X_{I}$, we have either $z \in Y_{I} \setminus X_{I}$ or $z \in Y_{O} \setminus Y_{I}$. In the first case, $X_{I} \subsetneq Y_{I}$ and in the latter case, $X_{O} \subsetneq Y_{O}$. It follows that Y strictly contains X that contradicts the maximality of X.
- (d) Suppose that $w^{b}(X \sqcup Y) = \emptyset$. Then, $u, v \in X_{O} \cup Y_{O} = X_{I} \cup Y_{I}$. Thus, by $z \in Y_{O} \setminus X_{I} = Y_{I} \setminus X_{I}$, $X \sqcup Y$ strictly contains X and $X_{I} \cup Y_{I} \neq \emptyset$. Since X and Y are blocking bi-sets, by Proposition 3.3 and 12, we have $d_{H}(s, X_{I} \cup Y_{I}) = d_{H}(s, X_{I}) + d_{H}(s, Y_{I}) d_{H}(s, X_{I} \cap Y_{I}) \leq \frac{1}{2}d_{H}(s) + \frac{1}{2}d_{H}(s) 1 = d_{H}(s) 1$, that is, there exists a neighbor of *s* in $V \setminus (X_{I} \cup Y_{I})$, and hence $V \neq X_{O} \cup Y_{O}$. It follows that $X \sqcup Y$ is a nontrivial bi-set of *V* containing *u* and *v* in its inner-set. Hence, by the maximality of X, $X \sqcup Y$ does not block (*su*, *sv*), and then, $f_{H}^{b}(X \sqcup Y) \geq 2k + 2$.

Claim 3.6. At least one of $w^{b}(X)$ and $w^{b}(Y)$ is not empty.

Proof. Suppose that $w^{b}(X) = \emptyset = w^{b}(Y)$. Then, the conditions of Claim 3.5 are satisfied and $f_{H}^{b}(X \sqcap Y) = d_{H}(X_{I} \cap Y_{I}), f_{H}^{b}(\overline{X} \sqcap Y) = d_{H}(Y_{I} \backslash X_{I}), f_{H}^{b}(X \sqcap \overline{Y}) = d_{H}(X_{I} \backslash Y_{I}),$ and $f_{H}^{b}(X \sqcup Y) = d_{H}(X_{I} \cup Y_{I})$. Since X and Y are blocking bi-sets, by 12 and Claim 3.5, we have $4k + 2 = (2k + 1) + (2k + 1) \ge d_{H}(X_{I}) + d_{H}(Y_{I}) = d_{H}(\overline{X_{I}} \cup \overline{Y_{I}}, X_{I} \cap Y_{I}) + d_{H}(X_{I} \backslash Y_{I}, Y_{I} \land X_{I}) + \frac{1}{2}(d_{H}(X_{I} \cap Y_{I}) + d_{H}(X_{I} \backslash Y_{I}) + d_{H}(Y_{I} \backslash X_{I}) + d_{H}(X_{I} \cup Y_{I})) \ge 1 + 0 + \frac{1}{2}(2k + 2k + 2k + (2k + 2)) = 4k + 2$. Thus, equality holds everywhere, in particular, $d_{H}(X_{I})$ is odd and $d_{H}(X_{I} \cap Y_{I})$ and $d_{H}(X_{I} \backslash Y_{I})$ are even. This contradicts $d_{H}(X_{I}) = d_{H}(X_{I} \cap Y_{I}) + d_{H}(X_{I} \backslash Y_{I}) - 2d_{H}(X_{I} \cap Y_{I}, X_{I} \backslash Y_{I})$.

Claim 3.7. None of $w^{b}(X)$ and $w^{b}(Y)$ is empty.

9

WILEY

\perp Wiley-

Proof. By contradiction suppose that the claim is false. Then, by Claim 3.6 and 10, one of X and Y has an empty wall, call it A, and the other one has a wall of size one, call it B. Suppose that $w^{b}(B) \cap A_{I} = \emptyset$. By Claim 3.5(a), $f_{H}^{b}(A \sqcap B) \ge 2k$. If A = X, then, by Claim 3.5(c), $f_{H}^{b}(X \sqcap \overline{Y}) \ge 2k$, otherwise A = Y and then, by Claim 3.5(b), $f_{H}^{b}(\overline{X} \sqcap Y) \ge 2k$; in both cases, $f_{H}^{b}(A \sqcap \overline{B}) \ge 2k$. Since B is a blocking bi-set and $w^{b}(B)$ is a singleton, we have, by 11,

$$d_{H}^{b}(\mathsf{B}) - d_{H}(s, B_{\mathrm{I}}) = (f_{H}^{b}(\mathsf{B}) - k|w^{b}(\mathsf{B})|) - d_{H}(s, B_{\mathrm{I}}) \le k - 1.$$
 (*)

Then, by $w^{b}(A) = \emptyset$, 5 applied for $A \sqcap B$ and $A \sqcap \overline{B}$, since the edges between $A_{I} \backslash B_{I}$ and $A_{I} \cap B_{I}$ enter B but not s, A is a blocking bi-set and by \bigstar , we have the following contradiction: $2k + 2k \leq f_{H}^{b}(A \sqcap B) + f_{H}^{b}(A \sqcap \overline{B}) = f_{H}^{b}(A) + 2d_{H}(A_{I} \backslash B_{I}, A_{I} \cap B_{I}) \leq f_{H}^{b}(A) + 2(d_{H}^{b}(B) - d_{H}(s, B_{I})) \leq (2k + 1) + 2(k - 1).$

From now on we suppose that $w^{b}(B) \cap A_{I} \neq \emptyset$. Since $w^{b}(B)$ is a singleton, it follows that $w^{b}(B) \cap \overline{A_{I}} = \emptyset$. Then, by Claim 3.5(d), $f_{H}^{b}(A \sqcup B) \ge 2k + 2$. If A = X, then, by Claim 3.5(b), $f_{H}^{b}(\overline{X} \sqcap Y) \ge 2k$, otherwise A = Y and then, by Claim 3.5(c), $f_{H}^{b}(X \sqcap \overline{Y}) \ge 2k$; in both cases, $f_{H}^{b}(\overline{A} \sqcap B) \ge 2k$. Recall that B is a blocking bi-set and $w^{b}(B)$ is a singleton. Then, by 12, we have

$$d_H^{\mathbf{b}}(\mathbf{B}) - d_H(s, A_{\mathbf{I}} \cap B_{\mathbf{I}}) = (f_H^{\mathbf{b}}(\mathbf{B}) - k|w^{\mathbf{b}}(\mathbf{B})|) - d_H(s, A_{\mathbf{I}} \cap B_{\mathbf{I}}) \le k. \quad (\bigstar \bigstar)$$

Then, by the symmetry of f_H^b , by 5 applied for $A \sqcup B$ and $A \sqcup \overline{B}$, since the edges between $\overline{A_I \cup B_I}$ and $B_I \backslash A_I$ enter B but not $A_I \cap B_I$, since A is a blocking bi-set and by $\bigstar \bigstar$, we have the following contradiction: $(2k + 2) + 2k \le f_H^b (A \sqcup B) + f_H^b (\overline{A} \sqcap B) = f_H^b (A \sqcup B) + f_H^b (A \sqcup \overline{B}) = f_H^b (A \sqcup B) + 2d_H (\overline{A_I \cup B_I}, B_I \backslash A_I) \le f_H^b (A) + 2(d_H^b (B) - d_H (s, A_I \cap B_I)) \le (2k + 1) + 2k.$

Claim 3.8. The bi-sets X and Y have the same wall.

Proof. By Claim 3.7 and 10, both $w^{b}(X)$ and $w^{b}(Y)$ are singletons. For a contradiction suppose that $w^{b}(X) \neq w^{b}(Y)$, that is, $w^{b}(X) \cap w^{b}(Y) = \emptyset$. We have three cases.

- **Case 1.** $|w^{b}(X \sqcup Y)| = 2$. Then, $w^{b}(X \sqcap Y) = \emptyset$. By Claim 3.5(a), $f_{H}^{b}(X \sqcap Y) \ge 2k$. Hence, by 7, 11 applied for X, and by the facts that Y is a blocking bi-set and if Y is dangerous, then $z \in (Y_{I} \setminus X_{I}) \cap N_{H}(s)$, we have the following contradiction: $d_{H}^{b}(X \sqcup Y) \le (f_{H}^{b}(X) 2k) + (f_{H}^{b}(Y) 2k) < d_{H}(s, X_{I}) + d_{H}(s, Y_{I} \setminus X_{I}) = d_{H}(s, X_{I} \cup Y_{I}) \le d_{H}^{b}(X \sqcup Y)$.
- **Case 2.** $|w^{b}(X \sqcup Y)| = 1$. Then, we may call X and Y as A and B such that $w^{b}(A \sqcap \overline{B}) = \emptyset$ and $|w^{b}(A \sqcup \overline{B})| = 2$. If A = X, then, by Claim 3.5(c), $f_{H}^{b}(X \sqcap \overline{Y}) \ge 2k$, otherwise A = Y and then, by Claim 3.5(b), $f_{H}^{b}(\overline{X} \sqcap Y) \ge 2k$; in both cases, $f_{H}^{b}(A \sqcap \overline{B}) \ge 2k$. Since A is a blocking bi-set, we have, by 12, $f_{H}^{b}(A) - 2k \le d_{H}(s, A_{I} \cap B_{I})$. By symmetry of f_{H}^{b} and 11, $f_{H}^{b}(\overline{B}) - 2k =$

 $f_H^{b}(\mathsf{B}) - 2k < d_H(s, B_{\mathrm{I}})$. Then, 7 applied for A and $\overline{\mathsf{B}}$ contradicts the following: $(f_H^{b}(\mathsf{A}) - 2k) + (f_H^{b}(\overline{\mathsf{B}}) - 2k) < d_H(s, A_{\mathrm{I}} \cap B_{\mathrm{I}}) + d_H(s, B_{\mathrm{I}}) \le d_H(\overline{A_{\mathrm{O}}} \cap \overline{B_{\mathrm{I}}}, A_{\mathrm{I}} \cap B_{\mathrm{O}}) + (d_H^{b}(\mathsf{A} \sqcup \overline{\mathsf{B}}) + d_H(B_{\mathrm{I}} \cap A_{\mathrm{O}}, \overline{B_{\mathrm{O}}} \cap \overline{A_{\mathrm{I}}})).$

Case 3. $|w^{b}(X \sqcup Y)| = 0$. Then, $|w^{b}(X \sqcap Y)| = 2$. By Claim 3.5(d), since X is a blocking bi-set, f_{H}^{b} is submodular, Y is a blocking bi-set and by 12, we have the following contradiction: $1 = (2k + 2) - (2k + 1) \le f_{H}^{b}(X \sqcup Y) - f_{H}^{b}(X) \le f_{H}^{b}(Y) - f_{H}^{b}(X \sqcap Y) \le (2k + d_{H}(s, X_{I} \cap Y_{I})) - (d_{H}(s, X_{I} \cap Y_{I}) + k|w^{b}(X \sqcap Y)|) = 0.$

Claims 3.7 and 3.8 and 10 prove Lemma 3.4.

Proposition 3.9. Let H = (V + s, E) be a(2, k)-connected graph in V with $d_H(s) \ge 4$ even. If there exists no admissible pair incident to s, then $d_H(s, u) < \frac{1}{2}d_H(s)$ for each neighbor u of s.

Proof. Since any pair incident to *s* is nonadmissible, by Lemma 3.1, there exists a bi-set that blocks it. By contradiction, suppose that $d_H(s, u) \ge \frac{1}{2}d_H(s) \ge 2$ for some $u \in N_H(s)$. Let X be a maximal blocking bi-set for (su, su). Clearly, we have $u \in X_I$. By Proposition 3.2, there exists a vertex v in $N_H(s) \setminus X_O$. Let Y be a blocking bi-set for the pair (su, sv). By Lemma 3.4, X and Y have the same wall and thus $u, v \in Y_O \setminus w^b(X) = Y_I$. This gives $d_H(s, Y_I) \ge d_H(s, u) + d_H(s, v) \ge \frac{d_H(s)}{2} + 1$ that contradicts Proposition 3.3.

3.2 | Obstacles

Let H = (V + s, E) be a (2, k)-connected graph in V such that $d_H(s)$ is even. We extend the definition of 2-obstacle (defined in Section 1.4) as follows. The pair (t, C) is called a *t*-star *k*-obstacle at *s* (in short, an obstacle) if

t is a neighbor of s with
$$d_H(s, t)$$
 odd, (13)

$$C$$
 is a collection of critical bi-sets, (14)

each element of *C* has wall
$$\{t\}$$
, (15)

the elements of C are pairwise innerly disjoint, (16)

$$N_H(s) \setminus \{t\} \subseteq V_I(C). \tag{17}$$

Note that a *t*-star *k*-obstacle for k = 2 is a 2-obstacle. Note also that if (t, C) is an obstacle at *s*, then, by Lemma 3.1, no pair (st, su) with $u \in N_H(s) \setminus \{t\}$ is admissible. Some basic properties of obstacles are proven in the following proposition.

Proposition 3.10. Let H = (V + s, E) be a (2, k)-connected graph in V with $d_H(s)$ even and (t, C) an obstacle at s. Then,

-WILEY

 $\frac{12}{12}$ Wiley

$$|C| \ge 3,\tag{18}$$

$$H - st \text{ is } (2, k) \text{-connected in } V.$$
(19)

Proof. 18: By 17, 13 and $d_H(s)$ even, $|C| \ge 1$. Let X and Y be two (not necessarily distinct) elements of C. By 14, 15, 13, and Proposition 3.3(iv), $N_H(s) \setminus (X_O \cup Y_O)$ is nonempty. Thus, by 17, there exists an element in $C \setminus \{X, Y\}$.

19: Suppose that H - st is not (2, k)-connected in V, that is, by (2, k)-connectivity of H, there exists in H a nontrivial tight bi-set X of V such that $t \in X_{I}$. By 14, every $Y \in C$ is а tight bi-set of V. Hence, by Proposition 2.1(b) and $d_H(X_I \cap Y_O, \overline{X_O} \cap \overline{Y_I}) \geq d_H(s, t) \geq 1, \overline{X} \sqcap Y$ or $X \sqcap \overline{Y}$ is trivial, that is, since X and Y are nontrivial, $Y_1 \subseteq X_0$ or $X_1 \subseteq Y_0$. If $Y_1 \subseteq X_0$ for all $Y \in C$, then, by 17 and $t \in X_1$, we have $N_H(s) \subseteq X_0$ and, by the tightness of X, this contradicts Proposition 3.2. So there exists $Y^* \in C$ such that $X_I \subseteq Y_0^*$. For all $Y \in C$, since H is (2, k)-connected in V and Y is critical, $d_H(t, Y_I) = d_H(Y_I) - (f_H^b(\mathbf{Y}) - k|w^b(\mathbf{Y})|) \ge 2k - (2k - k) = k$. By tightness of X, $t \in X_{\rm I}$, 13, 16, 18, and $X_{\rm I} \subseteq Y_{\rm O}^*$, we have the following contradiction, $2k - k|w^{\rm b}({\rm X})| = f_{\rm H}^{\rm b}({\rm X}) - k|w^{\rm b}({\rm X})| = d_{\rm H}^{\rm b}({\rm X}) = d_{\rm H}(X_{\rm I}) - d_{\rm H}(X_{\rm I}, w^{\rm b}({\rm X})) \ge d_{\rm H}(t, s) +$ $\sum_{\mathsf{Y}\in C\setminus\{Y^*\},w^{\mathsf{b}}(\mathsf{X})\cap Y_{\mathsf{I}}=\emptyset} d_H(t, Y_{\mathsf{I}}) \ge 1 + (2 - |w^{\mathsf{b}}(\mathsf{X})|)k.$

The following lemma shows that to find an obstacle one does not have to focus on the disjointness of the inner-sets.

Lemma 3.11. Let H = (V + s, E) be a (2, k)-connected graph in V with $d_H(s)$ even. If there exists a pair (t, \mathcal{F}) satisfying 13-15 and 17, then there exists a t-star k-obstacle at s.

Proof. The proof applies the uncrossing method. Choose a pair (t, C) satisfying 13-15 and 17 such that $\sum_{X \in C} |X_I|$ is minimum. Suppose there exist two distinct elements X and Y in C such that $X_I \cap Y_I \neq \emptyset$, that is, $X \sqcap Y$ is a nontrivial bi-set of V. By choice of C, none of the bi-sets X and Y contains the other. Hence, $X \sqcap \overline{Y}$ and $\overline{X} \sqcap Y$ are nontrivial bi-sets of V. By 13-15, we can apply Proposition 3.3(iv), and we get that $X \sqcup Y$ is a nontrivial bi-set of V. Note that critical bi-sets are tight nontrivial bi-sets of V. Hence, by Proposition 2.1(a) and (b), $X \sqcap Y, X \sqcap \overline{Y}$, and $\overline{X} \sqcap Y$ are tight. The bi-sets among them, which contain a neighbor of s, are critical bi-sets with wall t. Hence, they can replace X and Y in C contradicting the minimality of $\sum_{X \in C} |X_I|$.

4 | RESULTS

4.1 | A new splitting-off theorem

The first result of this section shows the existence of an obstacle when no pair of edges incident to the special vertex is admissible.

Theorem 4.1. Let H = (V + s, E) be a (2, k)-connected graph in V with $d_H(s) \ge 2$ even and $k \ge 2$. If there exists no admissible pair at s, then $d_H(s) = 4$ and there exists an obstacle at s.

Proof. Suppose that there exists no admissible splitting-off at *s*.

Claim 4.2. There exists a vertex *t* and a family \mathcal{F} of dangerous blocking bi-sets such that 15 holds for \mathcal{F} and every pair of edges incident to *s* but not to *t* is blocked by an element of \mathcal{F} .

Proof. By Lemma 3.1, for each pair of edges incident to *s*, there exists a bi-set that blocks it. Let X be a maximal blocking bi-set for a pair (su, sv) with $u \in X_I$. By Proposition 3.2, there exists a neighbor *z* of *s* in $\overline{X_0}$. Let Y be a maximal blocking bi-set for the pair (su, sz). By Lemma 3.4, the wall of X and the wall of Y coincide and are reduced to a singleton, say $\{t\}$. By $u \in X_I$ and $z \in \overline{X_0}$, *t* is different from *u* and from *z*. Thus, Y is a dangerous blocking bi-set.

For the same reasons, every maximal blocking bi-set for a pair (*sa*, *sb*) with $a \in Y_1$ and $b \in \overline{Y_0}$ is a dangerous blocking bi-set with wall {*t*}. By repeating this argument once more, we have that every pair (*sa*, *sb*) with $a, b \notin \{t\}$ is blocked by a dangerous blocking bi-set with wall {*t*}. This proves the claim.

Let *t* and \mathcal{F} be, respectively, the vertex and the family that exist by Claim 4.2.

Claim 4.3. The degree of s in H' = H - t is 3.

Proof. By (2, k)-connectivity in V of H, H' is k-edge-connected in V' = V - t. For every pair (su', sv') of edges in H', by the definition of \mathcal{F} , there exists $Z \in \mathcal{F}$ for u', v'. Then, by $w^{b}(Z) = \{t\}$ and since Z is a dangerous bi-set, $d_{H'}(Z_{I}) = d_{H}^{b}(Z) = f_{H}^{b}(Z) - k|w^{b}(Z)| \le k + 1$, that is, by $u', v' \in Z_{I}$, the splitting-off the pair (su', sv') destroys the k-edge-connectivity in V' of H'. Hence, by $k \ge 2$ and Theorem 1.8, the claim follows.

By $d_H(s)$ even and Claim 4.3 and Proposition 3.9, $d_H(s, t)$ is odd and smaller than $\frac{1}{2}d_H(s)$, that is, $d_H(s, t) = 1$ and $d_H(s) = 4$. Hence, by Proposition 3.2, the inner-set of each element of \mathcal{F} contains exactly two neighbors of *s* and $|\mathcal{F}| = 3$. So, for $X \in \mathcal{F}$, $X^c = (X_I^c, X_O^c)$ is a nontrivial bi-set of *V* and X_O^c contains exactly one neighbor of *s*, say *x*. By 6, we have $f_H^b(X^c) = f_H^b(X) - d_H(s, X_I) + d_H(s, X_O^c) \le 2k + 1 - 2 + 1 = 2k$ thus X^c is a critical bi-set blocking (st, sx). So $(t, \mathcal{F}^c) = (t, \{X^c : X \in \mathcal{F}\})$ satisfies 13-15 and 17. The obstacle at *s* is obtained by applying Lemma 3.11 on (t, \mathcal{F}^c) .

The following lemma concerns the case when an obstacle occurs after an admissible splitting-off.

Lemma 4.4. Let H = (V + s, E) be a (2, k)-connected graph in V with $d_H(s) \ge 6$ even, (su, sv) an admissible pair in H and (t, C) an obstacle at s in $H_{u,v}$.

- (a) If $t \in \{u, v\}$, then $d_H(s, t) \ge 2$ and (st, st) is admissible in H.
- **(b)** If $t \notin \{u, v\}$, then either there exists a t-star k-obstacle at s in H or there exists no obstacle at s in $H_{t,z}$ for some admissible pair (st, sz) in H.

Proof.

WILE

- (a) If the vertices *t*, *u*, and *v* coincide, then there is nothing to prove. So we assume that t = v and $t \neq u$. By 13 in $H_{u,v}$, $d_H(s, t) = d_{H_{u,v}}(s, t) + 1 \ge 2$. For a contradiction, suppose that (st, st) is nonadmissible in *H*, thus, by Lemma 3.1, there exists a maximal blocking bi-set X for this pair in *H*. Let Y be an element of *C*, if possible the one whose inner-set contains *u*. Since $t = v \in X_I$, X is blocking bi-set in *H*, Y is critical bi-set in $H_{u,v}$ and by Proposition 3.3, we have $d_{H_{u,v}}(s, X_I \cup Y_I) \le d_{H_{u,v}}(s, X_I) + d_{H_{u,v}}(s, Y_I) \le (d_H(s, X_I) 1) + d_{H_{u,v}}(s, Y_I) \le (\frac{1}{2}d_H(s) 1) + (\frac{1}{2}d_{H_{u,v}}(s) 1) = d_{H_{u,v}}(s) 1$. So, by 17 and $t \in X_I$, there exists a vertex $z \in N_{H_{u,v}}(s) \setminus (X_I \cup Y_I)$ contained in the inner-set of an element Z of *C*\Y. Since none of *u* or v = t belongs to Z_I , $f_H^b(Z) = f_{H_{u,v}}^b(Z)$, that is, Z blocks the pair (st, sz) in *H*. Since $z \notin X_I$, by Lemma 3.4, we have $w^b(X) = w^b(Z) = \{t\} \in X_I$, a contradiction that completes the proof of (a).
- **(b)** Suppose that $t \notin \{u, v\}$.

⊥_WILEY-

Claim 4.5. If *st* belongs to no admissible pair in *H*, then there exists a *t*-star *k*-obstacle in *H*.

Proof. By $t \notin \{u, v\}$ and 13, $d_H(s, t) = d_{H_{u,v}}(s, t)$ is odd, thus it remains to construct a collection \mathcal{F} of critical bi-sets satisfying 15-17. By Lemma 3.11, it suffices to find one satisfying 15 and 17.

Let $\mathcal{F}_0 := \{X' \in C : |X'_1 \cap \{u, v\}| < 2\}$. Note that either $\mathcal{F}_0 = C$ or $\mathcal{F}_0 = C \setminus Y$ for some $Y \in C$ with $\{u, v\} \subseteq Y$. By 14 and 15 for *C* in $H_{u,v}$, \mathcal{F}_0 is a collection of critical bi-sets in *H* satisfying 15. Suppose \mathcal{F}_0 does not satisfy 17, that is, there exist some $z \in N_H(s) \setminus (V_1(C) \cup \{t\})$. For any such *z*, since *st* belongs to no admissible pair, by Lemma 3.1, there exists a maximal blocking bi-set X^z in *H* for the pair (st, sz). We prove that $w^b(X^z) = \{t\}$ and then X^z is critical and hence $\mathcal{F} := \mathcal{F}_0 \cup \{X^z: z \in N_H(s) \setminus (V_1(C) \cup \{t\})\}$ is the required collection.

Assume, by contradiction, that $\{t\} \neq w^{b}(X^{z})$ for some z, then, by 10, $t \in X_{O}^{z} \setminus w^{b}(X^{z}) = X_{I}^{z}$. We have $N_{H}(s) \cap V_{I}(C) \subseteq X_{I}^{z}$ otherwise, there exists $Z \in C$ such that $(N_{H}(s) \cap Z_{I}) \setminus X_{I}^{z} \neq \emptyset$, thus by Lemma 3.4, we have $w^{b}(X^{z}) = w^{b}(Z) = \{t\} \subseteq X_{I}^{z}$, a contradiction. If $\mathcal{F}_{0} = C$ then, by Proposition 3.3 and $N_{H}(s) \cap V_{I}(C) \subseteq X_{I}^{z}$, we have $\frac{1}{2}d_{H}(s) \geq d_{H}(s, X_{I}^{z}) \geq d_{H}(s) - 2$ that contradicts $d_{H}(s) \geq 6$. Otherwise $\mathcal{F}_{0} = C \setminus Y$ and $\{u, v, z\} \subseteq Y_{I}$. Note that if X^{z} is dangerous, then $z \in X_{I}^{z} \cap Y_{I}$. Hence, by $N_{H}(s) \subseteq X_{I}^{z} \cup Y_{I}$ and Proposition 3.3, the following contradiction completes the proof of Claim 4.5: $d_{H}(s) = d_{H}(s, Y_{I}) + d_{H}(s, X_{I}^{z}) - d_{H}(s, X_{I}^{z} \cap Y_{I}) = (d_{H_{u,v}}(s, Y_{I}) + 2) + (d_{H}(s, X_{I}^{z}) - d_{H}(s, X_{I}^{z} \cap Y_{I})) \leq (\frac{1}{2}(d_{H}(s) - 2) - 1) + 2 + (\frac{1}{2}d_{H}(s) - 1) = d_{H}(s) - 1$.

Claim 4.6. If (st, sz) is an admissible pair in H and (t', C') is a t'-star k-obstacle in $H_{t,z}$, then t = t'.

Proof. By contradiction, assume that there exist an admissible pair (*st*, *sz*) in *H* and an obstacle (*t'*, *C'*) in $H_{t,z}$ such that $t \neq t'$. If *t'* belongs to an element of *C*, then denote X this element and let $X = (\emptyset, \emptyset)$ otherwise. If *t* belongs to an element of *C'*, then denote X' this element and let $X' = (\emptyset, \emptyset)$ otherwise. First, we prove that

$$(V_{\mathrm{I}}(C)\backslash X_{\mathrm{I}}) \cap (V_{\mathrm{I}}(C')\backslash X'_{\mathrm{I}}) = \emptyset.$$
⁽²⁰⁾

WILEY

For a contradiction, suppose that there exists $Y \in C \setminus \{X\}$ and $Y' \in C' \setminus \{X'\}$ such that $Y_{I} \cap Y'_{I}$ is nonempty, that is, $Y \sqcap Y'$ is nontrivial. Then, since $|w^{b}(Y \sqcup Y')| = |\{t, t'\}| = 2$, 7 can be applied for Y and Y'. By $t \notin Y'_{I}$ and $t \neq t'$, we have $t \notin Y'_{O}$ thus $f^{b}_{H}(Y') = f^{b}_{H_{t,z}}(Y')$. Hence, by 7, since Y' is critical in $H_{t,z}$ and, by 11 applied for the critical bi-set Y of $H_{u,v}$, we have the following contradiction: $0 \leq (f^{b}_{H}(Y') - 2k) + (f^{b}_{H}(Y) - 2k) - d^{b}_{H}(Y \sqcup Y') \leq (f^{b}_{H}(Y') - 2k) + (f^{b}_{H}(Y) - 2k) - d_{H}(s, Y_{I})$ $= (f^{b}_{H_{t,z}}(Y') - 2k) + (f^{b}_{H_{u,v}}(Y) - 2k) - d_{H_{u,v}}(s, Y_{I}) \leq 0 - 1$, which completes the proof of 20.

Now, denote $H' = H - \{st, su, sv, sz\}$. Observe that, by $t \neq t'$ and 17, if $t' \in N_{H_{u,v}}(s)$, then $t' \in V_{I}(C)$ so $t' \notin N_{H_{u,v}}(s) \setminus X_{I}$. For the same reason, $t \notin N_{H_{t,z}}(s) \setminus X'_{I}$. Hence, by 17 and 20, we have, $N_{H'}(s) \setminus (X_{I} \cup X'_{I}) \subseteq (N_{H_{u,v}}(s) \setminus X_{I}) \cap (N_{H_{t,z}}(s) \setminus X'_{I}) \subseteq (V_{I}(C) \setminus X_{I}) \cap (V_{I}(C') \setminus X'_{I}) = \emptyset$. Hence, by Proposition 3.3 and 13, we have $d_{H}(s) - 4 \leq d_{H'}$, $(s) \leq d_{H'}(s, X_{I}) + d_{H'}(s, X'_{I}) \leq d_{H_{u,v}}(s, X_{I}) + d_{H_{t,z}}(s, X'_{I}) \leq \lfloor \frac{1}{2}(d_{H_{u,v}}(s) - d_{H_{u,v}}(s, t)) \rfloor + (\frac{1}{2}d_{H_{t,z}}(s) - 1) \leq (\frac{1}{2}d_{H}(s) - 1 - 1) + (\frac{1}{2}d_{H}(s) - 2) = d_{H}(s) - 4$. So equality holds everywhere. In particular, st, su, sv, and sz are distinct edges (even if some of them may be parallel), z does not belong to X_{I} , none of u or v belongs to X'_{I} and $d_{H}(s, t) = d_{H_{u,v}}(s, t) = 1$. Hence, $z \in N_{H_{u,v}}(s) \setminus \{t\}$, so by 17 in $H_{u,v}$, z belongs to the inner-set of an element $Z \in C \setminus \{X\}$. Since (st, sz) is admissible in H and Z is critical in $H_{u,v}$, we have $2k = f_{H_{u,v}}^{b}(Z) \geq f_{H}^{b}(Z) - 2 \geq (2k + 1) - 2$, and hence Z_{I} contains u or v, say u. Then, by $u \in Z \in C \setminus \{X\}$ and 16, we have $u \in V_{I}(C) \setminus X_{I}$ but since $t \notin V_{I}(C) \setminus X_{I}$, we have $u \neq t'$ thus, by 17 in $H_{t,z}$, u belongs to the inner-set of an element 20 and hence completes the proof of Claim 4.6.

Suppose there exists no *t*-star *k*-obstacle at *s* in *H*. Hence, by Claim 4.5, there exists an admissible pair (*st*, *sz*) in *H*. By Claim 4.6, if there exists an obstacle in $H_{t,z}$, then it is a *t*-star *k*-obstacle (*t*, *C'*). By $t \notin \{u, v\}$ and 13 in $H_{u,v}$, $d_H(s, t)$ is odd. Hence, by 13 in $H_{t,z}$, z = t. Thus, (*t*, *C'*) is a *t*-star *k*-obstacle in *H*, and this contradiction completes the proof of (b).

Now, we are in the position to prove our main result that characterizes the existence of a complete admissible splitting-off.

Theorem 4.7. Let H = (V + s, E) be a (2, k)-connected graph in V with $k \ge 2$ and $d_H(s)$ even. There exists a complete admissible splitting-off at s if and only if there exists no obstacle at s.

Proof. Suppose there exists an obstacle (t, C) at *s*. By 13, every sequence of $\frac{1}{2}d_H(s)$ splitting-off of disjoint admissible pairs at *s* contains a pair (st, su) with $u \in N_H(s) \setminus \{t\}$. As we noticed after the definition of an obstacle, such a pair is not admissible in *H* and so not admissible in any graph arising from *H* by a sequence of splitting-off of disjoint admissible pairs. Thus, there is no admissible complete splitting-off at *s*.

Now, we prove, by induction on $d_H(s)$, that if there exists no obstacle at *s*, then there exists an admissible complete splitting-off at *s*. For $d_H(s) = 0$, there is nothing to prove. For $d_H(s) = 2$, the only splitting-off is obviously admissible. Suppose $d_H(s) = 4$ and there exists no obstacle at *s*. By Theorem 4.1, there exists an admissible splitting-off (*su*, *sv*) at *s*.

WILEY-

Since the only possible splitting-off in $H_{u,v}$ is admissible, there exists an admissible complete splitting-off at *s* in *H*.

Now, suppose that the theorem is true for every graph H' that satisfies the conditions with $d_{H'}(s) = 2i$ for $i \le \ell$ for some $\ell \ge 2$. Let H = (V + s, E) be a (2, k)-connected graph in V such that $d_H(s) = 2\ell + 2 \ge 6$ and there exists no obstacle at s. By Theorem 4.1, there exists an admissible splitting-off (su, sv) at s. If there exists no obstacle at s in $H_{u,v}$, then, by induction, there exists an admissible complete splitting-off at s and we are done. So we may assume that there exists a t-star k-obstacle at s in $H_{u,v}$. Since there exists no obstacle at s in H, if Case (b) of Lemma 4.4 occurs, then there exists some admissible pair (st, sw) in H such that there exists no obstacle at s in $H_{t,w}$. Thus, by induction, there exists an admissible complete $t_{t,v}$. Thus, by induction, there exists an admissible complete $t_{t,v}$. Thus, by induction, there exists an admissible complete $t_{t,v}$. Thus, by induction, there exists an admissible complete splitting-off at s in H and we are done. So we may assume that Case (a) of Lemma 4.4 occurs and we consider $H_{t,t}$ that is (2, k)-connected in V. If there exists an obstacle (t', C') at s in $H_{t,t}$, for the same reason as above, we may suppose that Case (a) of Lemma 4.4 occurs. Hence, t = t' and (t, C') is an obstacle in H, a contradiction. So no obstacle exists in $H_{t,t}$ and, by induction, the proof of Theorem 4.7 is completed.

4.2 | Construction of (2, k)-connected graphs

In this section, we provide a construction of the family of (2, k)-connected graphs for k even. The special case k = 2 has been previously proved by Jordán [8].

We need the following extension of Lemma 5.1 of [8] for k even. Let G = (V, E) be a (2, k)connected graph, s a vertex of even degree, (t, C) and (t, C') two obstacles at s. We say that (t, C)is a *refinement* of (t, C') if for all $X \in C$, there exists $X' \in C'$ such that $X \sqsubseteq X'$. An obstacle that has no proper refinement is called *finest*.

Lemma 4.8. Let G = (V, E) be a (2, k)-connected graph with k even. Let s be a vertex of degree 2k and (t, C) a finest obstacle at s. Let $X \in C$, s' a vertex in X_I of degree 2k and (t', C') an obstacle at s'. Then, there exists $X' \in C'$ such that $X'_I \subseteq X_I$.

Proof. Note that G is (2, k)-connected in V - s and also in V - s'. By contradiction, we assume that the lemma is false.

Suppose $t' \in X_{I}$. By 16 and 18 for C', there exists $X' \in C'$ such that $t \notin X'_{I}$. By assumption, for each $X' \in C'$, $X'_{I} \setminus X_{I} \neq \emptyset$. Then, $\overline{X} \sqcap X'$ is a nontrivial bi-set of V - s' and $|w^{b}(\overline{X} \sqcup X')| = |\{t, t'\}| = 2$. Hence, by Proposition 2.2 and since \overline{X} and X' are tight, we have $0 + 0 \ge d_{G}^{b}(\overline{X} \sqcup X') \ge d_{G}(s', X'_{I}) \ge 1$, a contradiction. Hence, $t' \notin X_{I}$.

Suppose $t' \neq t$. If t belongs to the inner-set of an element of C', then call Z' this element and define $Z' = (\emptyset, \emptyset)$ otherwise. Note that if t is a neighbor of s', then the first case occurs. Thus, by Proposition 3.3(iii), we have $d_G(s', \overline{X_I} \cup Z'_1) \leq d_G(s', \overline{X_O}) + d_G(s', Z'_1) \leq d_G^b(X) + (\frac{1}{2}d_G(s') - 1) = k + (k - 1) = 2k - 1 = d_G(s') - 1$. Hence, by 17, there exists $Y' \in C'$ with $Y'_1 \cap X_I \neq \emptyset$ and $t \notin Y'_1$. Thus, $X \cap Y'$ is a nontrivial bi-set of V - s and $|w^b(X \sqcup Y')| = |\{t, t'\}| = 2$. Since X and Y' are both tight, by Proposition 2.2 and 13, we have $0 + 0 \geq d_G(\overline{X_O} \cap Y'_O, X_I \cap \overline{Y'_1}) \geq d_G(t', s') \geq 1$, a contradiction. So we proved that t = t'.

By (2, k)-connectivity of G and $d_G(s') = 2k$, we get $d_G(s', t) \le k$. Thus, by 13 for C' and k even, $d_G(s', t) < k$. Hence, $d_G(s', \overline{X_1}) = d_G(s', t) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) + d_G(s', \overline{X_0}) < k + d_G^b(X) = d_G(s', t) + d_G(s', \overline{X_0}) + d_G($

 $f_G^{b}(X) = 2k = d_G(s')$. Thus, by 17, there exists $Y' \in C'$ with $Y'_I \cap X_I \neq \emptyset$. Then, by $|C'| \ge 3$ and assumption, $X \sqcup Y'$ is a nontrivial bi-set of *V*, thus, by Proposition 2.1(a) with U = V, we get that $X \sqcap Y'$ is a tight bi-set with wall *t*.

Note also that $s' \in X_I \cap \overline{Y'}_I$ and, by assumption, $\overline{X_I} \cap Y'_I \neq \emptyset$, thus, by Proposition 2.1 (b) with U = V, we get that $X \sqcap \overline{Y'}$ is a tight bi-set with wall *t*. Thus, in *C*, X can be replaced by the bi-sets among $X \sqcap \overline{Y'}$ and $X \sqcap \overline{Y'}$, which contain at least one neighbor of *s* in their inner-set. Hence, (t, C) is not a finest obstacle at *s*, a contradiction.

We can now describe and prove the construction of the family of (2, k)-connected graphs for k even. We recall that K_3^k is the graph on 3 vertices where each pair of vertices is connected by k parallel edges. Note that K_3^k is (2, k)-connected and it is the only minimally (2, k)-connected graph on 3 vertices.

Theorem 4.9. A graph G is (2, k)-connected with k even if and only if G can be obtained from K_3^k by a sequence of the following two operations:

(a) adding a new edge,

(b) pinching a set F of k edges such that for all vertices $v, d_F(v) \le k$.

Proof. First, we prove the sufficiency, that is, these operations preserve (2, k)connectivity. It is clearly true for (a). Let G' be a graph obtained from a (2, k)-connected graph G = (V, E) by the operation (b) and call s the new vertex. We must show that for every nontrivial bi-set X of V + s, we have $f_{G'}^{b}(X) \ge 2k$. Since this inequality trivially holds whenever $|w^{b}(X)| \geq 2$, we assume that $|w^{b}(X)| \leq 1$ in what follows. If X is a nontrivial bi-set of V, then $s \notin X_0$ and, by (2, k)-connectivity of G, we have $f_{G'}^{b}(X) = d_{G'}^{b}(X) + k|w^{b}(X)| \ge d_{G}^{b}(X) + k|w^{b}(X)| = f_{G}^{b}(X) \ge 2k$, and we are done. From now on, by symmetry of $f_{G'}^{b}$, we may assume that $s \in X_{O}$. If $\{s\} \subset X_{I}$, then \overline{X} is a nontrivial bi-set of V and, by symmetry of $f_{G'}^b$, we are done again. If $\{s\} = X_I$, then, by $d_{G'}(s) = 2k$ and $d_F(w^b(X)) \le k$, we have $f_{G'}^b(X) = d_{G'}^b(X) + k|w^b(X)| = d_{G'}(s) - d_{G'}(s, w^b(X)) + k|w^b(X)| = d_{G'}(s) - d_{G'}(s) - d_{G'}(s) - d_{G'}(s) + k|w^b(X)| = d_{G'}(s) - d_{G'}(s) - d_{G'}(s) + d_{G'}(s) - d_{G'}(s) + d_{G'}(s$ $k|w^{b}(\mathsf{X})| = d_{G'}(s) - d_{F}(w^{b}(\mathsf{X})) + k|w^{b}(\mathsf{X})| \ge 2k.$ If $\{s\} \subseteq X_{\mathcal{O}} \setminus X_{\mathcal{I}} = w^{\mathsf{b}}(\mathsf{X}),$ then, by $|w^{b}(X)| \leq 1$, we have $w^{b}(X) = \{s\}$ and then $\emptyset \neq X_{I} \neq V$. Hence, by |F| = k and (2, k)-connectivity of G, we have $f_{G'}^{b}(X) = d_{G'}^{b}(X) + k|w^{b}(X)| =$ $(d_G(X_{\rm I}) - d_F(X_{\rm I})) + k \ge d_G(X_{\rm I}) - |F| + k \ge 2k.$

To see the necessity, let *G* be a (2, k)-connected graph with at least 4 vertices. Note that the inverse operation of (a) is deleting an edge and that of (b) is a complete splitting-off at a vertex *s* of degree 2k such that $d_G(s, v) \le k$ for all $v \in V$. Note also that these inverse operations must preserve (2, k)-connectivity. Thus, we may assume that, on the one hand, *G* is minimally (2, k)-connected and hence, by Theorem 1.9, *G* contains a vertex of degree 2k, and, on the other hand, for every such vertex *u*, there exists no admissible complete splitting-off at *u*, that is, by Theorem 4.7, there exists an obstacle at *u*.

We choose in $\{(u, (t, C), X): d_G(u) = 2k, (t, C) \text{ a finest obstacle at } u, X \in C\}$ a triple $(u^*, (t^*, C^*), X^*)$ with X* minimal for inclusion. By Theorem 1.9, there exists a vertex u' of degree 2k in X_1^* . Then, as we have seen, there exists a finest obstacle (t', C') at u'. By Lemma 4.8, there exists $X' \in C'$ such that $X_1' \subseteq X_1^*$. Since $X_1' \cup \{u'\} \subseteq X_1^*$, the triple (u', (t', C'), X') contradicts the choice of $(u^*, (t^*, C^*), X^*)$.

-WILEY

WILEY-

We mention that the condition k is even is necessary in Lemma 4.8 and Theorem 4.9. Consider the graph obtained from K_4 by adding a new vertex t and 3 edges between t and each vertex of K_4 . This graph is minimally (2, 3)-connected but there exists no complete admissible splitting-off at any of the 4 vertices of degree 6. Indeed, if s, a, b, c denote the vertices of degree 6, then $\{(\{a, t\}, \{a\}), (\{b, t\}, \{b\}), (\{c, t\}, \{c\})\}$ is a t-star 3-obstacle at s.

4.3 | Augmentation theorem

In this section, we answer the following question for $k \ge 2$: given a graph what is the minimum number of edges to be added to make it (2, k)-connected. For k = 1, that is, for 2-vertex-connectivity, this problem had been already solved by Eswaran and Tarjan [4].

We shall need the following definitions. Let G = (V, E) be a graph. An *s*-extension of G is a graph $H = (V + s, E \cup F)$, where F is a set of edges between V and the new vertex s. The size of an s-extension of G is defined by |F|.

We mimic the approach of Frank [5] for the augmentation problem: first, we prove a result on minimal extensions and then, by applying our splitting-off theorem, we get a result on minimal augmentation.

Lemma 4.10. Let G = (V, E) be a graph such that $|V| \ge 3$ and k a positive integer. The minimum size of an s-extension of G, that is, (2, k)-connected in V, is equal to maximum of $\{\sum_{X \in X} (2k - f_G^b(X))\}$, where X is a family of nontrivial pairwise innerly disjoint bi-sets of V.

Proof. If $H' = (V + s, E \cup F')$ is an *s*-extension of *G*, that is, (2, *k*)-connected in *V* and X' is an arbitrary family of nontrivial pairwise innerly disjoint bi-sets of *V*, then

$$\sum_{\mathsf{X}'\in \mathcal{X}'} \left(2k - f^{\mathsf{b}}_{G}(\mathsf{X}')\right) \leq \sum_{\mathsf{X}'\in \mathcal{X}'} \left(f^{\mathsf{b}}_{H}(\mathsf{X}') - f^{\mathsf{b}}_{G}(\mathsf{X}')\right) = \sum_{\mathsf{X}'\in \mathcal{X}'} d^{\mathsf{b}}_{(V+s,F\prime)}(\mathsf{X}') \leq |F'|.$$

This shows that $\max \leq \min$.

To prove that equality holds, we provide a family X of nontrivial pairwise innerly disjoint bi-sets of V and an *s*-extension of G, that is, (2, k)-connected in V of size $\sum_{X \in X} (2k - f_G^b(X))$. Let M be defined as the maximum value of $2k - f_G^b(X')$ over all bi-set X' of V. If $M \le 0$, then G is (2, k)-connected and we are done. Suppose that M > 0. We consider the *s*-extension of G whose set of new edges consists of M parallel edges *sv*, for each $v \in V$. This extension is obviously (2, k)-connected in V. Then, we remove as many new edges as possible without destroying the (2, k)-connectivity in V. Let F be the set of remaining edges and $H = (V + s, E \cup F)$. In H, by minimality of F, each edge e of F enters a tight bi-set of V. Let X be a family of nontrivial tight bi-sets of V such that

each edge of F enters at least one element of X and (21)

$$\sum_{\mathsf{X}\in\mathcal{X}} |X_{\mathsf{I}}| \text{ is minimal.}$$
(22)

Claim 4.11. The elements of *X* are pairwise innerly disjoint.

Proof. Note that the degree of each tight bi-set X in X is at least one, thus $|w^{b}(X)| \leq 1$. Suppose there exist two distinct elements X and Y in X such that $X_{I} \cap Y_{I} \neq \emptyset$, that is, $X \sqcap Y$ is a nontrivial bi-set of V.

If $X \sqcup Y$ is a nontrivial bi-set of V, then, by (2, k)-connectivity in V of H, tightness of X and Y and Proposition 2.1(a), $X \sqcup Y$ is tight. Since all the edges of F entering X_I or Y_I enters ($X \sqcup Y$)_I, the family obtained from X by substituting $X \sqcup Y$ for X and Y satisfies 21 and, by $X_I \cap Y_I \neq \emptyset$, contradicts 22. So $X_O \cup Y_O = V$.

If $X \sqcap \overline{Y}$ and $\overline{X} \sqcap Y$ are nontrivial bi-sets of V, then, by (2, k)-connectivity in V of H, tightness of X and Y and Proposition 2.1(b), both $X \sqcap \overline{Y}$ and $\overline{X} \sqcap Y$ are tight and $d_H(\overline{X_0} \cap \overline{Y_1}, X_I \cap Y_0) = d_H(Y_I \cap X_0, \overline{Y_0} \cap \overline{X_I}) = 0$. Hence, all the edges of F entering the set X_I or the set Y_I enters the set $(X \sqcap \overline{Y})_I$ or $(\overline{X} \sqcap Y)_I$. Thus, the family obtained from X by substituting $X \sqcap \overline{Y}$ and $\overline{X} \sqcap Y$ for X and Y satisfies 21 and, by $X_I \cap Y_I \neq \emptyset$, contradicts 22. So, by symmetry, we may assume that $X_I \subseteq Y_0$.

We have $N_H(s) \cap X_I \nsubseteq Y_I$ otherwise X - X satisfies 21 and contradicts the minimality of X. Thus, by $X_I \subseteq Y_O$, $d_H(s, w^b(Y)) \ge 1$ and, since $X_O \cup Y_O = V$ and Y is nontrivial, $w^b(X) \setminus Y_O = X_O \setminus Y_O = (X_O \cup Y_O) \setminus Y_O = V \setminus Y_O$ is nonempty. So $|w^b(\overline{X} \sqcup Y)| \ge 2$.

For the same reason as above, $N_H(s) \cap Y_I \not\subseteq X_I$. Thus, by $|w^b(X)| \leq 1$ and $w^b(X) \setminus Y_O \neq \emptyset$, the set $Y_I \setminus X_O = Y_I \setminus X_I$ contains a neighbor of *s*, that is, $\overline{X} \sqcap Y$ is nontrivial. Thus, by symmetry of f_H^b , tightness of X and Y and 7, we have the following contradiction $0 + 0 = (f_H^b(\overline{X}) - 2k) + (f_H^b(Y) - 2k) \geq d_H(X_I \cap Y_O, \overline{X_O} \cap \overline{Y_I}) \geq d_H(s, w^b(Y)) \geq 1$, which completes the proof of Claim 4.11.

By Claim 4.11, 21 and by tightness of the elements of X, we have

$$|F| = \sum_{\mathsf{X} \in \mathcal{X}} d^{\mathsf{b}}_{(V+s,F)}(\mathsf{X}) = \sum_{\mathsf{X} \in \mathcal{X}} (f^{\mathsf{b}}_{H}(\mathsf{X}) - f^{\mathsf{b}}_{G}(\mathsf{X})) = \sum_{\mathsf{X} \in \mathcal{X}} (2k - f^{\mathsf{b}}_{G}(\mathsf{X})),$$

which completes the proof of Lemma 4.10.

The augmentation theorem goes as follows.

Theorem 4.12. Let G = (V, E) be a graph such that $|V| \ge 3$ and $k \ge 2$ an integer. The minimum cardinality γ of a set F of edges such that $(V, E \cup F)$ is (2, k)-connected is equal to

$$\alpha = \left\lceil \frac{1}{2} \max\left\{ \sum_{\mathsf{X} \in \mathcal{X}} \left(2k - f_G^{\mathsf{b}}(\mathsf{X}) \right) \right\} \right\rceil,$$

where X is a family of nontrivial pairwise innerly disjoint bi-sets of V.

Proof. We first prove $\gamma \ge \alpha$. Let X be a family of nontrivial bi-sets of V such that the elements of X are pairwise innerly disjoint. For each $X \in X$, we must add at least $2k - f_G^b(X)$ new edges entering the bi-set X when this quantity is positive. Since the elements of X are pairwise innerly disjoint, a new edge may enter at most 2 elements of X. Hence, $2\gamma \ge \sum_{X \in X} (2k - f_G^b(X))$ thus, since γ is integer, $\gamma \ge \alpha$ follows.

WILEY

We now prove $\gamma \leq \alpha$. By Lemma 4.10, there exists an *s*-extension $H = (V + s, E \cup F)$ of *G*, that is, (2, *k*)-connected in *V* and a family *X* of nontrivial pairwise innerly disjoint bi-sets of *V* such that

$$|F| = \sum_{\mathsf{X} \in \mathcal{X}} (2k - f_G^{\mathsf{b}}(\mathsf{X})).$$

If |F| is odd, then there exists a vertex $u \in V$ such that $d_H(s, u)$ is odd, in this case, let $F' = F \cup \{su\}$ otherwise let F' = F. So, in the graph $H' = (V + s, E \cup F'), d_{H'}(s)$ is even.

Suppose there exists an obstacle (t, C) at *s*. By 19, H' - st is (2, k)-connected in *V*. If H = H' this contradicts the minimality of |F|. Then, $d_H(s)$ is odd and F' = F + su for some vertex $u \in V$ such that $d_H(s, u)$ is odd. If $u \in X_I$ for some $X \in C$, then we have $f_H(X) = f_{H'}(X) - 1 = 2k - 1$, a contradiction to the (2, k)-connectivity of *H*. Thus, by 17, u = t and hence $d_{H'}(s, t) = d_H(s, t) + 1$ is even, which contradicts 13.

Hence, no obstacle exists at *s*, and, by Theorem 4.7, there exists an admissible complete splitting-off at *s* in *H'*. Let us denote by F'' the set of edges obtained by this complete splitting-off. Then, $(V, E \cup F'')$ is (2, k)-connected and

$$|F''| = \frac{1}{2}|F'| = \left\lceil \frac{1}{2}|F| \right\rceil = \left\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (2k - f_G^{\rm b}(X)) \right\rceil.$$

This proves $\gamma \leq \alpha$ and completes the proof of Theorem 4.12.

REFERENCES

- D. W. Barnette and B. Grünbaum, On Steinitz's theorem concerning convex 3-polytopes and some properties of planar graphs, The many facets of graph theory, Lecture Notes in Mathematics, G. Chartrand, S. F. Kapoor (Eds.), Springer, 1969, pp. 27–40.
- [2] A. R. Berg, and T. Jordán, Two-connected orientations of Eulerian graphs, J. Graph Theory 52 (2006), no. 3, 230–242.
- [3] O. Durand de Gevigney, On Frank's conjecture on k-connected orientations. J. Combin. Theory Ser. B (submitted), 2012, ArXiv:1212.4086.
- [4] K. P. Eswaran, and R. E. Tarjan, Augmentation problems, SIAM J. Comput. 5 (1976), no. 4, 653-665.
- [5] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Math. 5 (1992), no. 1, 25–53.
- [6] A. Frank, Connectivity and network flows, Handb. Combin. (1995), 111-177.
- [7] B. Jackson, and T. Jordán, Independence free graphs and vertex connectivity augmentation, J. Combin. Theory Ser. B 94 (2005), no. 1, 31–77.
- [8] T. Jordán, A characterization of weakly four-connected graphs, J. Graph Theory 52 (2006), 217–229.
- [9] A. Kaneko, and K. Ota, On minimally (n, λ)-connected graphs, J. Combin. Theory Ser. A 80 (2000), no. 1, 156–171.
- [10] L. Lovász, Combinatorial problems and exercises, North-Holland, Amsterdam, 1979.
- [11] W. Mader, A reduction method for edge-connectivity in graphs, Annals of Discrete Math 3 (1978), 145–164.
- [12] C. St. J. A. Nash-Williams, On orientations, connectivity and odd-vertex-pairings in finite graphs, Canad. J. Math. 12 (1960), 555–567.
- [13] H. E. Robbins, A theorem on graphs, with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939), no. 5, 281–283.

20

- [15] W. T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961), 441-455.
- [16] T. Watanabe, and A. Nakamura, Edge-connectivity augmentation problems, Comp. System Sci. 35 (1987), 96–144.

How to cite this article: Durand de Gevigney O, Szigeti Z. On (2, *k*)-connected graphs. *J Graph Theory*. 2018;1–21. https://doi.org/10.1002/jgt.22433

-WILE