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Abstract

We propose a further development in the theory of packing arborescences. First we review some of
the existing results on packing arborescences and then we provide common generalizations of them to
directed hypergraphs. We introduce and solve the problem of reachability-based packing of matroid-
rooted hyperarborescences and we also solve the minimum cost version of this problem. Furthermore, we
introduce and solve the problem of matroid-based packing of matroid-rooted mixed hyperarborescences.
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1. Introduction

We study packings of arborescences in this paper. An r-arborescence is a directed tree on a vertex-
set containing the root vertex r in which each vertex has in-degree 1 except r. Throughout this paper,
by packing subgraphs in a directed (hyper)graph, we mean a set of arc-disjoint subgraphs. (For other
definitions, see the next section.) The starting point of the research on arborescence-packings is the
following famous result of Edmonds [6] on packing spanning arborescences.

Theorem 1 ([6]). There exists a packing of k spanning r-arborescences in a digraph ~G = (V,A) if and
only if

̺A(X) ≥ k (1)

holds for all ∅ 6= X ⊆ V \ r where ̺A(X) denotes the in-degree of X.

This result has extensions in many directions. For our purposes let us mention four of them: the
result of Kamiyama, Katoh, Takizawa [13] on packing reachability arborescences (Theorem 4 in this
paper), Theorem 5 on packing matroid-rooted arborescences with matroid constraint by Durand de
Gevigney, Nguyen, Szigeti [5], Theorem 3 on packing spanning hyperarborescences (Frank, T. Király,
Z. Király [10]) and Theorem 7 on packing spanning mixed arborescences (Frank [9]). Figure 1 shows all
possible combinations of these extensions. The results without citations corresponding to black boxes of
the diagram are presented in this paper, the ones in gray are yet to be proved to be in P (see Section
7.1).

The main contribution of this work is to show how the existing hypergraphical results can be derived
directly from their graphical counterparts. We note that the original proofs of these results were different.
Both Frank, Z. Király and T. Király [10] and Bérczi and Frank [2] showed that a directed hypergraph
satisfying their condition for the packing problem can be reduced – by an operation called trimming – to
a digraph satisfying the condition of the graphical counterpart of their problem.
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Figure 1: All possible common generalizations of the 4 problems mentioned in the introduction.

Our method looks a bit similar to this; however, we also add some extra vertices to the digraph to
ensure that the condition of the graphical result holds automatically for the digraph if the hypergraphical
condition holds for the directed hypergraph. We also note that this method allows us to find a minimum
cost solution of these problems for any cost function on the set of directed hyperedges.

Using the same method, we solve the problem of reachability-based packing of matroid-rooted hy-
perarborescences, that is, a common generalization of three of the above four extensions, excluding the
mixed one. We also consider a generalization of other three of the above four extensions, excluding the
reachability one this time, namely the problem of matroid-based packing of matroid-rooted mixed hyper-
arborescences. Using a new orientation result (Theorem 11) on hypergraphs covering intersecting super-
modular functions, we reduce this problem to its directed version, the problem of matroid-based packing
of matroid-rooted hyperarborescences, which in turn is a special case of the problem of reachability-based
packing of matroid-rooted hyperarborescences.

2. Definitions

In this paper, H = (V, E) will be a hypergraph. We assume that all the hyperedges in E are of size
at least 2. When all the hyperedges are of size 2, that is, when the hypergraph is a graph, we will denote
it by G = (V,E). For a vertex set X , iE(X) denotes the number of hyperedges in E that are contained
in X . For a partition P = {V0, V1, . . . , Vℓ} of V , where only V0 can be empty, we denote by eE(P) the
number of hyperedges in E intersecting at least two members of P .

Let ~H = (V,A) be a directed hypergraph (dypergraph for short) where V denotes the set of vertices

and A denotes the set of dyperedges of ~H. By a dyperedge we mean a pair (Z, z) such that z ∈ Z ⊆ V ,
where z is the head of the dyperedge (Z, z) and the elements of Z \z are the tails of the dyperedge (Z, z).
We assume that each dyperedge has one head and at least one tail. When a dypergraph is a digraph,
we will denote it by ~G = (V,A). Let X ⊆ V . We say that the dyperedge (Z, z) enters X if the head of
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(Z, z) is in X and at least one tail of (Z, z) is not in X . We define the in-degree ̺A(X) of X as the
number of dyperedges in A entering X .

For a set function h on V, we say that the dypergraph ~H covers h if

̺A(X) ≥ h(X) for all X ⊆ V. (2)

By trimming the dypergraph ~H we mean replacing each dyperedge (Z, z) of ~H by an arc tz where t

is one of the tails of the dyperedge (Z, z).

By an orientation of H, we mean a dypergraph ~H obtained from H by choosing, for every Z ∈ E ,
an orientation of Z, that is by choosing a head z for Z.

Let p be a set function on V. We call p supermodular if for every X,Y ⊆ V,

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (3)

We say that p is intersecting supermodular if (3) is satisfied for every X,Y ⊆ V when X ∩Y 6= ∅.
A set function b is called submodular if −b is supermodular. It is well known that iE is supermodular
and that ̺A is submodular (see e.g. in [8]).

In a dypergraph ~H = (V,A), we say that a vertex w can be reached from a vertex u if there exists
an alternating sequence v1 = u, Z1, v2, . . . , vi, Zi, vi+1, . . . , vj = w of vertices and dyperedges such that
vi is a tail of Zi and vi+1 is the head of Zi. For a set X ⊆ V , we denote by PA(X) the set of vertices

from which X can be reached in ~H and by QA(X) the set of vertices that can be reached from X in ~H.

Let R = {R1, . . . , Rt} be a list of t not necessarily distinct sets of vertices of ~H. We call the pair ( ~H,R)
a rooted dypergraph. For X ⊆ V , we define pR(X) as the number of members of R disjoint from

X and qR
A
(X) as the number of Ri’s which do not intersect X but from which X is reachable in ~H, in

other words: qRA (X) = |{i : Ri ∩X = ∅, QA(Ri) ∩X 6= ∅}|. When each Ri consists of a single vertex ri,
we denote R by R.

For a non-empty set R ⊆ U , a subdigraph of ~G = (V,A) is called an R-branching if it consists of |R|
vertex-disjoint arborescences whose roots are in R. The results of Frank, Z. Király and T. Király [10] and
Bérczi and Frank [2] inspire us to extend the definition of arborescences and branchings to dypergraphs,

as follows. Let ~T = (U,A′) be a subdypergraph of ~H = (V,A) such that U is the vertex set spanned

by A′ and R ⊆ U . Let U ′ be the set of vertices in U whose in-degree in ~T is not 0. We say that ~T is
an R-hyperbranching if it can be trimmed to an R-branching with vertex-set U ′ ∪ R. (It is easy to
see that this is equivalent to the following: R ⊆ U, ̺A′(r) = 0 for all r ∈ R, ̺A′(u) = 1 for all u ∈ U ′,
̺A′(X) ≥ 1 for all X ⊆ V \ R,X ∩ U ′ 6= ∅.) When R = {r}, an R-hyperbranching is also called an
r-hyperarborescence.

Remark 1. R-hyperbranchings and R-branchings coincide for digraphs, and our subsequent definitions
for hypergraphs are also straightforward generalizations of the original definitions for graphs. Therefore,
we will define everything only for the general hypergraphical case.

We call ~T a reachability R-hyperbranching in ~H if U ′ ∪ R contains the set QA(R), in other

words, if QA′(R) = QA(R). If all the vertices can be reached from R in ~H, then a reachability R-

hyperbranching is called spanning. In a rooted dypergraph ( ~H,R = {R1, . . . , Rk}), a set of arc-disjoint
spanning (reachability, resp.) hyperbranchings is called a packing of spanning (reachability, resp.) R-
hyperbranchings. Examples of a spanning hyperarborescence and of a reachability hyperarborescence
can be found in Figure 2.
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Figure 2: ~T1 is a spanning r1-hyperarborescence while ~T2 is a reachability r2-hyperarborescence of the dypergraph.

We also need some basic notions from matroid theory (for more details we refer to [8, Chapter 5]).
Let M be a matroid on S with rank function rM. It is well known that rM is non-negative, monotone,
subcardinal and submodular. We define SpanM(Q) := {s ∈ S : rM(Q ∪ {s}) = rM(Q)}.

A matroid-rooted dypergraph is a quadruple ( ~H = (V,A),M, S, π) where ~H is a dypergraph,
M is a matroid on the set S = {s1, . . . , s|S|} with rank function rM and π is a map from S to V. In
general, π is not injective; different elements of S may be mapped to the same vertex of V. The elements
{s1, . . . , s|S|} mapped to the vertices of V are called the matroid-roots. For X ⊆ V , we denote by SX

the set of matroid-roots mapped to X by π. We say that π is M-independent if Sv is independent in
M for all v ∈ V.

A matroid-rooted hyperarborescence is a triple (~T , r, s) where ~T is an r-hyperarborescence
and s is an element of S mapped to r. We say that s is the matroid-root of the matroid-rooted hy-
perarborescence (~T , r, s). A matroid-based packing of matroid-rooted hyperarborescences in

( ~H,M, S, π) is a set {(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} of pairwise dyperedge-disjoint matroid-rooted hyper-
arborescences such that for each v ∈ V , the set Bv of matroid-roots of the matroid-rooted hyperarbores-
cences in which the vertex v can be reached from their roots forms a base of the matroid M, that is
Bv = {si ∈ S : v ∈ QA(~Ti)

(ri)} is a base of S. A reachability-based packing of matroid-rooted hy-

perarborescences in ( ~H,M, S, π) is a set {(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} of pairwise dyperedge-disjoint
matroid-rooted hyperarborescences such that for each v ∈ V , the set Bv is a base of SPA(v).

Remark 2. Let ( ~H = (V,A),R = {R1, ..., Rk}) be a rooted dypergraph. Let SR :=
⋃∗ R (as a multiset),

let π map each occurrence of r in SR to the vertex r ∈ V , and let MR be the partition matroid on
SR given by R where a set P ⊆ SR is independent if and only if |P ∩ Ri| ≤ 1 for i = 1, ..., k. Then
the problem of matroid-based (reachability-based, resp.) packing of matroid-rooted hyperarborescences in

( ~H,MR, S, π) and that of packing spanning (reachability, resp.) R-hyperbranchings coincide.

Let F = (V, E ∪A) be a mixed hypergraph where E is the set of hyperedges and A is the set of dyper-
edges of F . The definitions of a rooted mixed hypergraph (F ,R) and a matroid-rooted mixed
hypergraph (F ,M, S, π) are similar to the previous definitions of a rooted and a matroid-rooted dyper-
graph, respectively. By a mixed r-hyperarborescence (mixed R-hyperbranching, respectively) in
a mixed hypergraph, we mean a mixed subhypergraph which, after a proper orientation of its hyperedges,
can become an r-hyperarborescence (R-hyperbranching, respectively). A matroid-rooted mixed hy-
perarborescence is a triple (T , r, s) where T is a mixed r-hyperarborescence and s is an element of
S mapped to r. We define a matroid-based packing of matroid-rooted mixed hyperarbores-
cences in (F ,M, S, π) as a set {(T1, r1, s1), . . . , (T|S|, r|S|, s|S|)} of pairwise (hyper-and-dyperedge)-disjoint
matroid-rooted mixed hyperarborescences in (F ,M, S, π) such that, by a proper orientation of the hy-
peredges of each (Ti, ri, si), one can get a matroid-based packing of matroid-rooted hyperarborescences

{(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} with the same roots. When a rooted (matroid-rooted, respectively) mixed
hypergraph has no dyperedges, it is a rooted (matroid-rooted, respectively) hypergraph. We call a
mixed hyperarborescence without dyperedges a hypertree.
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3. Previous results

First we mention the strong form of Theorem 1 that considers a more general problem where we want
to find a packing of spanning R-branchings in ~G.

Theorem 2 ([6]). In a rooted digraph (~G = (V,A),R), there exists a packing of spanning R-branchings
if and only if

̺A(X) ≥ pR(X) (4)

holds for all ∅ 6= X ⊆ V.

This result was generalized for rooted dypergraphs by Frank, T. Király and Z. Király [10] by observing
that a dypergraph satisfying condition (5) of the following theorem (which is an equivalent form of the
result of [10] using the notion of hyperbranchings) can be trimmed to a digraph satisfying (4). We should
also cite here the paper of Frank, T. Király and Kriesell [11] for the corresponding result on packing
hypertrees.

Theorem 3 ([10]). In a rooted dypergraph ( ~H = (V,A),R), there exists a packing of spanning R-
hyperbranchings if and only if

̺A(X) ≥ pR(X) (5)

holds for all ∅ 6= X ⊆ V.

A generalization of Theorem 2 for reachability branchings was given by Kamiyama, Katoh and Tak-
izawa [13], as follows.

Theorem 4 ([13]). There exists a packing of reachability R-branchings in a rooted digraph (~G =
(V,A),R) if and only if

̺A(X) ≥ qRA (X) (6)

holds for all ∅ 6= X ⊆ V.

Observe that, (4) holds if and only if (6) holds and each vertex v ∈ V is reachable from each set
Ri ∈ R. Bérczi and Frank [2] noted that Theorem 4 extends to dypergraphs.

Recently, Durand de Gevigney, Nguyen and Szigeti [5] and Cs. Király [15] extended Theorems 2 and
4 to matroid-rooted digraphs, as follows.

Theorem 5 ([5]). Let (~G = (V,A),M, S, π) be a matroid-rooted digraph. There exists a matroid-based

packing of matroid-rooted arborescences in (~G,M, S, π) if and only if π is M-independent and

̺A(X) ≥ rM(S)− rM(SX) (7)

holds for all ∅ 6= X ⊆ V .

Theorem 6 ([15]). Let (~G = (V,A),M, S, π) be a matroid-rooted digraph. There exists a reachability-

based packing of matroid-rooted arborescences in (~G,M, S, π) if and only if π is M-independent and

̺A(X) ≥ rM(SPA(X))− rM(SX) (8)

holds for all ∅ 6= X ⊆ V .

In Section 4, we extend Theorems 5 and 6 to dypergraphs.

An extension of Theorem 1 for mixed graphs was given by Frank [9] as an application of an orientation
result. We provide a common generalization of this result and Theorem 2 later.

Theorem 7 ([9]). There exists a packing of k spanning mixed r-arborescences in a mixed graph F =
(V,E ∪ A) if and only if

eE(P) ≥
ℓ

∑

1

(k − ̺A(Vi)) (9)

holds for every partition P = {r ∈ V0, V1, . . . , Vℓ} of V.

5



4. Reachability-based packing of matroid-rooted hyperarborescences

The following theorem, which is the main contribution of the present paper, provides a common
generalization of Theorems 3 and 6.

Theorem 8. Let ( ~H = (V,A),M, S, π) be a matroid-rooted dypergraph. There exists a reachability-based

packing of matroid-rooted hyperarborescences in ( ~H,M, S, π) if and only if π is M-independent and

̺A(X) ≥ rM(SPA(X))− rM(SX) (10)

holds for all X ⊆ V.

Proof. To prove the necessity, let {(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} be a reachability-based packing of

matroid-rooted hyperarborescences in ( ~H,M, S, π). For any v ∈ V , since Sv ⊆ Bv and Bv is independent
in M, so is Sv, and hence π is M-independent. Let now X ⊆ V and B =

⋃

v∈X Bv. Since SpanM is
monotone, Bv is a base of SPA(v) and by definition of PA(X), we have SpanM(B) ⊇

⋃

v∈X SpanM(Bv) ⊇
⋃

v∈X SPA(v) = SPA(X). Then, since rM is monotone, (⋆) rM(B) ≥ rM(SPA(X)).
For each matroid-root si ∈ B \ SX , there exists a vertex v ∈ X such that si ∈ Bv and then since

~Ti is an ri-hyperarborescence and v ∈ QA(~Ti)
(ri) ∩ X , there exists a dyperedge of ~Ti that enters X.

Since these matroid-rooted hyperarborescences are dyperedge-disjoint, rM is subcardinal, submodular,
and monotone, and by (⋆), we have ̺A(X) ≥ |B \ SX | ≥ rM(B \ SX) ≥ rM(B ∪ SX) − rM(SX) ≥
rM(B)− rM(SX) ≥ rM(SPA(X))− rM(SX) that is, (10) is satisfied.

To prove the sufficiency, let ( ~H = (V,A),M, S, π) be a matroid-rooted dypergraph such that π is

M-independent and (10) holds. First we define a matroid-rooted digraph (~G = (V ′, A),M, S, π) for
which the conditions of Theorem 6 hold. We define V ′ := V ∪ A hence π is still well defined and M-
independent in V ′. Let A1 := {(Z, z)z : (Z, z) ∈ A} and A2 := {t(Z, z) : (Z, z) ∈ A, t ∈ Z \ z}. Let
A := A1 ∪ (rM(S) ·A2) where rM(S) ·A2 denotes the multiset consisting of the union of rM(S) copies of
A2. For the construction see Figure 3.

z

(Z, z)

(Z, z)

z

rM(S)

Figure 3: The construction.

Observe that ̺A(X) ≥ rM(SPA(X))− rM(SX) for a subset X ⊆ V ′ whenever there exist a dyperedge

(Z, z) and a tail vertex t ∈ Z \ z in ~H such that, in ~G, (Z, z) ∈ X and t 6∈ X since then the rM(S) copies

of the arc t(Z, z) enter X in ~G and hence ̺A(X) ≥ rM(S) ≥ rM(SPA(X)) − rM(SX). Moreover, if there
is no such dyperedge, then ̺A(X) = ̺A(X ∩ V ), rM(SPA(X)) = rM(SPA(X∩V )), rM(SX) = rM(SX∩V )
and hence (8) follows from (10).

Therefore, there exists a reachability-based packing of matroid-rooted arborescences {(~T1, r1, s1), . . . ,

(~T|S|, r|S|, s|S|)} in (~G,M, S, π) by Theorem 6. We define ~Ti (i = 1, . . . , |S|) to be the subdypergraph of ~H

induced by dyperedges (Z, z) ∈ A such that the vertex (Z, z) has out-degree 1 in ~Ti. It is easy to check

that ~Ti is an ri-hyperarborescence with matroid-root si and the set of vertices of ~Ti with in-degree 1 is
the same as the set of vertices in V of in-degree 1 in ~Ti. Moreover, the hyperarborescences ~T1, . . . , ~T|S|
are dyperedge-disjoint since each vertex (Z, z) ∈ A has out-degree 1 in ~G. Hence, as the reachability

of the vertices in V from ri coincides in ~Ti and ~Ti (i = 1, . . . , |S|), {(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} is a

reachability-based packing of matroid-rooted hyperarborescences in ( ~H,M, S, π).
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As a corollary of Theorem 8 (or from Theorem 5 with a proof similar to the previous one), one can
get the following result on matroid-based packing of matroid-rooted hyperarborescences.

Corollary 1. Let ( ~H = (V,A),M, S, π) be a matroid-rooted dypergraph. There exists a matroid-based

packing of matroid-rooted hyperarborescences in ( ~H,M, S, π) if and only if π is M-independent and

̺A(X) ≥ rM(S)− rM(SX) (11)

holds for all ∅ 6= X ⊆ V .

Similarly, one can get Theorem 3 and the result of Bérczi and Frank [2], that is, the extensions of
Theorems 2 and 4 for dypergraphs.

5. Algorithmic aspects

Bérczi and Frank [1] gave a TDI polyhedral description of the – so called – arborescence packable
subgraphs. Using this result it can be shown that there is a polynomial algorithm to find a minimum cost
packing of spanning (reachability, resp.) R-branchings for any cost function on the arc-set of a rooted

digraph (~G,R). [5] provided also an algorithm for the problem of minimum cost matroid-based packing
of matroid-rooted arborescences and recently Bérczi, T. Király and Kobayashi [3, 4] solved the problem
of minimum cost reachability-based packing of matroid-rooted arborescences.

As noted before, Frank, T. Király and Z. Király [10] showed that it is possible to trim a dypergraph
satisfying (5) to a digraph satisfying (4). However, this method fails to work for the generalization
of the problem where we are seeking minimum cost dyperedge-disjoint spanning hyperbranchings as
Figure 4 shows. Note that the minimum cost spanning hyperarborescence of solid, red dyperedges of the
dypergraph on the left-hand side of the figure has cost 0 while in the trimmed digraph on the right-hand
side there is only one spanning arborescence and it has cost 1.

r r

11

0 0 0 0

Figure 4: The trimming operation does not preserve minimum cost arborescence packings.

Let us now assume that, in a matroid-rooted dypergraph ( ~H,M, S, π), a cost function c is given
on the dyperedges. Recall the proof of Theorem 8. Observe that if we take a cost function c′ on
the arc-set of the defined digraph to be 0 on the arcs with a head in A and c((Z, z)) on the arc with
a tail (Z, z) for every (Z, z) ∈ A, then a minimum cost reachability-based packing of matroid-rooted

arborescences in (~G,M, S, π) gives rise to a minimum cost reachability-based packing of matroid-rooted

hyperarborescences in ( ~H,M, S, π) with the same cost. By using the above algorithms and similar
deductions, we obtain the following result.

Theorem 9. There exists polynomial algorithms that, for an input consisting of a dypergraph ~H = (V,A),
a cost function c on A, and a family R of some non-empty subsets of V or a matroid M on S along
with a map π : S → V , output the following:
(a) a minimum cost packing of spanning R-hyperbranchings in ( ~H,R),

(b) a minimum cost packing of reachability R-hyperbranchings in ( ~H,R),

(c) a minimum cost matroid-based packing of matroid-rooted hyperarborescences in ( ~H,M, S, π),

(d) a minimum cost reachability-based packing of matroid-rooted hyperarborescences in ( ~H,M, S, π).

7



6. Packing mixed hyperarborescences

A common generalization of Theorem 7 and Corollary 1 can be formulated as follows.

Theorem 10. There exists a matroid-based packing of matroid-rooted mixed hyperarborescences in a
matroid-rooted mixed hypergraph (F = (V, E ∪ A),M, S, π) if and only if π is M-independent and

eE(P) ≥
ℓ

∑

1

(rM(S)− rM(SVi
)− ̺A(Vi)) (12)

holds for every partition P = {V0, V1, . . . , Vℓ} of V.

We prove this theorem using the method of Frank [9]. To this end, we need the following general
orientation result on hypergraphs. The proof of [8, Theorem 15.4.13] (the corresponding result for graphs)
– with the necessary straightforward modifications – can be extended to hypergraphs. We mention that
this result can also be obtained by using the techniques from [10].

Theorem 11. Let H = (V, E) be a hypergraph and h an integer-valued, intersecting supermodular function
(with possible negative values) such that h(V ) = 0. There exists an orientation of H that covers h if and
only if

eE(P) ≥
ℓ

∑

1

h(Vi) (13)

holds for every partition P = {V0, V1, . . . , Vℓ} of V.

Note that in (12) and in (13) the index i starts at 1 (and not at 0). This means that we consider here
all the subpartitions of V.

Now we are ready to prove Theorem 10.

Proof of Theorem 10. Let (F = (V, E ∪ A),M, S, π) be a matroid-rooted mixed hypergraph. Let
us introduce the following function h⋆, which is integer-valued, intersecting supermodular and satisfies
h⋆(V ) = 0.

h⋆(X) =

{

rM(S)− rM(SX)− ̺A(X) if ∅ 6= X ⊆ V ,
0 if X = ∅.

Theorem 11, applied for (V, E) (the undirected part of the mixed hypergraph F) and h⋆, provides the
following result.

Lemma 1. There exists an orientation of a matroid-rooted mixed hypergraph (F ,M, S, π) satisfying (11)
if and only if (12) is satisfied.

We get Theorem 10 by Corollary 1 and Lemma 1. ��

Note that Theorem 10 reduces to the following result when A = ∅. This result is a generalization
of a result of Katoh and Tanigawa [14] for hypergraphs. Recall that by a matroid-based packing of
matroid-rooted hypertrees we mean that the hypertrees can be oriented such that we get a matroid-
based packing of matroid-rooted hyperarborescences with the same roots.

Corollary 2. Let (H,M, S, π) be a matroid-rooted hypergraph. There exists a matroid-based packing of
matroid-rooted hypertrees in (H,M, S, π) if and only if π is M-independent and

eE(P) ≥
∑

X∈P

(rM(S)− rM(SX)) (14)

holds for every partition P of V.

8



Remark 3. We note that Theorem 10 in the case where F is a mixed graph is a common generalization
of the above mentioned result of Katoh and Tanigawa [14] and Theorem 5.

By Remark 2, we get the following corollary of Theorem 10 that, in the case where F is a mixed
graph, generalizes Theorem 7 for packing of mixed branchings.

Corollary 3. In a rooted mixed hypergraph (F = (V, E ∪A),R), there exists a packing of spanning mixed
R-hyperbranchings if and only if

eE(P) ≥
ℓ

∑

1

(pR(Vi)− ̺A(Vi)) (15)

holds for every partition P = {V0, V1, . . . , Vℓ} of V.

7. Concluding remarks

We finish this paper with some remarks on other possible generalizations.

7.1. Packing of reachability mixed-arborescences

The first problem is about packing reachability mixed-arborescences. We just mention the orientation
version of the problem. Let (F = (V,E∪A),R) be a rooted mixed graph. For a set X ⊆ V , we denote by
QE∪A(X) the set of vertices that can be reached from X in F and by qR

E∪A
(X) the number of indices

i such that Ri ∩X = ∅ and QE∪A(Ri) ∩X 6= ∅. When does there exist an orientation ~E of E such that

(V, ~E ∪A) covers qRE∪A? Let us consider the following two conditions that are clearly necessary: for every
partition P = {V0, V1, . . . , Vℓ} of V ,

eE(P) ≥
ℓ

∑

1

(qRE∪A(Vi)− ̺A(Vi)), (16)

eE(P) ≥
ℓ

∑

1

(qRE∪A(V \ Vi)− ̺A(V \ Vi)). (17)

The following example shows that conditions (16) and (17) are not sufficient. Let F = (V,E ∪ A)
and R = {{r1}, {r2}} be defined as follows. V = {a, b, c, d}, E = {ab}, A = {ca, cb, ad, bd}, r1 = a and
r2 = b. It is easy to check that (16) and (17) are satisfied. However, the required orientation does not
exist since the edge ab should be oriented in both directions.

7.2. Infinite dypergraphs

In this paper, we considered finite dypergraphs; however, some results can also be proved for infinite
dypergraphs. In a recent paper, Joó [12] showed that Theorem 2 is also true in infinite digraphs that
contain no forward-infinite paths. Hence using the proof technique of Theorem 8 to this result one can
extend Theorem 3 to infinite dypergraphs that contain no forward-infinite paths.

7.3. Covering intersecting bi-set families under matroid constraints in dypergraphs

Finally, we mention that Bérczi, T. Király, Kobayashi [3] have provided an abstract result on covering
intersecting bi-set families under matroid constraints that generalizes Theorem 6 and another result
of Bérczi and Frank [2]. Without going into details, we just mention that their proof also works for
dypergraphs.
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