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Abstract

We propose a further development in the theory of packing arborescences. First we review some

of the existing results on packing arborescences and then we provide common generalizations of them.

We introduce and solve the problem of reachability-based packing of matroid-rooted hyperarbores-

cences and the one of matroid-based packing of matroid-rooted mixed hyperarborescences.
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1 Introduction

The director of a secret agency, an intelligent woman, runs her network that has been carefully constructed
by herself: from each agent to any other agent some (zero, one or more) secret channels are available.

Yesterday she created, from a given set of information, some messages that she assigned to agents.
To avoid the interception of all the information, each message was assigned to one agent and an agent
could have been assigned to zero, one or more messages. The messages can then be propagated through
the network: any agent may send any message they know to any of their contacts.

Today the security rules changed: from now on, the transmission of at most one message is allowed
via the same channel. The new rules pose serious questions that the director must consider. Is it possible
for each agent to receive all the messages? She then realizes that it is not guaranteed that all the agents
could have received all the messages with the old rules. So is it possible today that each agent receives
the messages that he or she could have received with the old rules?

She knew that all the messages she gave to her agents were not independent: it is possible that given
a subset of messages, one would get no extra information by adding another message to the set. The
director currently wonders whether it is now possible that each agent receives only independent messages
that contain all the information, or all the information they could have received before the new rules.

The director could have constructed her network in a more efficient way: a channel would be from a
whole group of agents to one agent and any agent from that group may send a message to that contact.
After having this idea, she reconsiders all her previous questions in this more general framework.

For each channel (from a (group of) agent(s) to a contact) it must be decided which message will be
sent (if any) and from which agent. The director then knows that the minimal set of channels through
which the same message is sent forms an arborescence.

We study packings of arborescences in this paper. The famous result of Edmonds [4] on packing
spanning arborescences, Theorem 2 in this paper, has extensions in many directions. For our purposes
let us mention four of them: Theorem 4 on packing reachability arborescences (Kamiyama, Katoh, Tak-
izawa [9]), Theorem 5 on packing matroid-rooted arborescences with matroid constraint (Durand de
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Figure 1: All possible common generalizations of the 4 problems mentioned in the introduction.

Gevigney, Nguyen, Szigeti [3]), Theorem 7 on packing spanning hyperarborescences (Frank, T. Király,
Kriesell [7]) and Theorem 12 on packing spanning mixed arborescences (Frank [5]). Figure 1 shows all
the possible common generalizations of these extensions. The results corresponding to black boxes of the
diagram are presented in this paper, the ones in gray are yet to be proved.

Here we propose a common generalization of three of the above four extensions, not the mixed
one, namely the problem of reachability-based packing of matroid-rooted hyperarborescences in directed
hypergraphs. As the main contribution of the this work we present the solution to this problem, by
reducing it, using the trimming operation, to its special case in digraphs. The latter result, Theorem 6,
on reachability-based packing of matroid-rooted arborescences in digraphs was proved by Cs. Király [11]
and is a common generalization of the above mentioned results on packing reachability arborescences [9]
and on packing matroid-rooted arborescences with matroid constraint [3]. By Theorem 1, the reduction
by trimming can be applied if the directed hypergraph covers an intersecting supermodular function.
In our case the reduction is not so straightforward since the function, which appears in the necessary
condition of the problem, is not intersecting supermodular and hence we cannot apply Theorem 1.

We also consider a generalization of other three of the above four extensions, not the reachability one
this time, namely the problem of matroid-based packing of matroid-rooted mixed hyperarborescences.
Using a new orientation result (Theorem 20) on hypergraphs covering intersecting supermodular func-
tions, we reduce this problem to its directed version, the problem of matroid-based packing of matroid-
rooted hyperarborescences, which in turn is a special case of the problem of reachability-based packing of
matroid-rooted hyperarborescences. The proof of Theorem 20 imitates the proof (see in [5]) of its special
case in graphs.

The techniques of this paper and many of its results are presented and explained in the recent book
of Frank [5].

The rest of this paper is organized as follows. In Section 2 we provide all the basic definitions needed
in the other sections. In Sections 3 and 4 we present some results about rooted digraphs and matroid-
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rooted digraphs. Section 5 contains results about rooted directed hypergraphs. We introduce and prove
our main result on matroid-rooted directed hypergraphs in Section 6. Sections 7 and 8 consider undirected
graphs, mixed graphs and matroid-rooted mixed graphs. In Sections 9 and 10 we present results about
rooted mixed hypergraphs and matroid-rooted mixed hypergraphs. To prove the results about mixed
hypergraphs we need an orientation theorem which we present and demonstrate in Section 11. Finally,
Section 12 contains some remarks on further generalizations.

2 Definitions

Let H = (V, E) be a hypergraph where V denotes the set of vertices and E denotes the set of hyperedges
of H. We suppose that all the hyperedges in E are of size at least 2. For a vertex set X , iE(X) denotes
the number of hyperedges in E that are contained in X , while jE(X) denotes the number of hyperedges
in E that intersect X (that is contains at least one element of X). Note that the functions iE and jE
are closely related: every hyperedge is either completely contained in X or intersects V \X therefore the
following formula holds.

iE(X) + jE (V \X) = |E|. (1)

Let P = {V0, V1, . . . , Vℓ} be a partition of V where V0 can be empty but the other Vi’s cannot. We
denote by eE(P) the number of hyperedges in E intersecting at least two members of P . Since every
hyperedge is either completely contained in some Vi or intersects at least two Vi’s, the following formula
holds.

eE(P) +

ℓ
∑

0

iE(Vi) = |E|. (2)

For a set function h on V, we say that the hypergraph H is h-subpartition-connected if

eE(P) ≥
ℓ

∑

1

h(Vi) for every partition P = {V0, V1, . . . , Vℓ} of V. (3)

Please note that in (3) the index i starts at 1 (and not at 0). This means that we consider here all
the subpartitions of V.

Let ~H = (V,A) be a directed hypergraph (shortly dypergraph) where V denotes the set of vertices

and A denotes the set of hyperarcs of ~H. By a hyperarc we mean a pair (Z, z) such that z ∈ Z ⊆ V ,
where z is the head of the hyperarc (Z, z) and the elements of Z \ z are the tails of the hyperarc (Z, z).
We suppose that each hyperarc has one head and at least one tail. Let X,Y ⊆ V . We say that the
hyperarc (Z, z) enters X if the head of (Z, z) is in X and at least one tail of (Z, z) is not in X, that is
z ∈ X and (Z \ z) ∩ (V \X) 6= ∅. We define the in-degree ρA(X) of X as the number of hyperarcs in
A entering X . We denote by dA(X, Y ) the number of hyperarcs in A that are contained in X ∪ Y and
intersect both X \ Y and Y \X and by iA(X) the number of hyperarcs in A that are contained in X.
The following equalities are well known for dypergraphs:

ρA(X) + iA(X) =
∑

v∈X

ρA(v), (4)

ρA(X) + ρA(Y )− dA(X,Y ) = ρA(X ∩ Y ) + ρA(X ∪ Y ). (5)

For a set function h on V, we say that the dypergraph ~H covers h if

ρA(X) ≥ h(X) for all X ⊆ V. (6)

By trimming the dypergraph ~H we mean replacing each hyperarc (K, v) of ~H by an arc uv where u is

one of the tails of the hyperarc (K, v). If a dypergraph ~H covers a function h then it is a natural question
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to wonder when ~H can be trimmed to a digraph ~H that also covers h. The proof of Theorem 7.4.9 given
in [5] with the necessary straightforward modifications can be extended for intersecting supermodular
functions and hence we have the following theorem.

Theorem 1. Let ~H = (V,A) be a dypergraph and h an integer-valued, intersecting supermodular function

on V such that h(∅) = 0 = h(V ). If ~H covers h, then ~H can be trimmed to a digraph ~H that covers h.

By an orientation of H, we mean a dypergraph ~H obtained from H by choosing, for every Z ∈ E , an
orientation of Z, that is by choosing a head z for Z.

For a vector m : V → Z and a set X ⊆ V, we define m(X) as usual, that is

m(X) =
∑

v∈X

m(v). (7)

Let p be a set function on V. We call p supermodular if for every X,Y ⊆ V,

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (8)

We say that p is intersecting supermodular if (8) is satisfied for every X,Y ⊆ V when X ∩ Y 6= ∅. A
set function b is called submodular if −b is supermodular. It is well known that iE is supermodular and
that ρA and jE are submodular.

We also need some basic definitions from matroid theory. LetM be a matroid on S with rank function
rM. It is well known that rM is monotone non-decreasing and submodular. Let Q ⊆ S. We say that Q is
independent if rM(Q) = |Q|. Recall that every subset of an independent set is independent. A maximal
independent set in Q is a base of Q. M is called a free matroid if each subset of S is independent, that is
the only base of M is S. We define SpanM(Q) = {s ∈ S : rM(Q ∪ {s}) = rM(Q)}. Recall that SpanM
is monotone and if B is a base of Q, then Q ⊆ SpanM(B).

A matroid-rooted vertex-set is a quadruple (V,M, S, π) where V is a vertex-set, M is a matroid on
the set S = {s1, . . . , st} with rank function rM and π is a map from S to V. In general, π is not injective;
different elements of S may be mapped to the same vertex of V. The elements {s1, . . . , st} mapped to the
vertices of V are called the roots. For X ⊆ V , we denote by SX the set of roots mapped to X by π. We
say that π is M-independent if Sv is independent in M for all v ∈ V.

3 Rooted digraphs

Let ~G = (V,A) be a digraph. For a set X ⊆ V , we denote by PA(X) the set of vertices from which

X can be reached in ~G and by QA(X) the set of vertices that can be reached from X in ~G. Note that
X ⊆ PA(X), X ⊆ QA(X) and if u ∈ PA(v) then v ∈ QA(u). Let R = {r1, . . . , rt} be a list of t not

necessarily distinct vertices of ~G. We call the pair (~G,R) a rooted digraph. For X ⊆ V , we define qR

A
(X)

as the number of ri’s, which do not belong to X but from which X is reachable in ~G, in other words:
qRA(X) = |{i : ri /∈ X,QA(ri) ∩X 6= ∅}|.

3.1 Packing spanning arborescences

Let ~G = (V,A) be a digraph and r a vertex of ~G. A subgraph ~T = (U,B) of ~G is called an r-arborescence
if r ∈ U, ρB(r) = 0, ρB(u) = 1 for all u ∈ U \ r and ρB(X) ≥ 1 for all X ⊆ V \ r,X ∩ (U \ r) 6= ∅.
We mention that this definition is equivalent to the usual definitions of arborescences. This version is
convenient for us for later generalizations. Please note that the single vertex r is an r-arborescence. We
use later without any reference that any vertex of an r-arborescence can be reached from r. We call ~T a
reachability r-arborescence in ~G if U contains the set QA(r) of vertices that can be reached from r in ~G
(that is, U = QA(r)) in other words, if QB(r) = QA(r). Please note that a reachability r-arborescence
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exists always for any vertex r in ~G. If all the vertices can be reached from r in ~G (that is QA(r) = V )
then a reachability r-arborescence is called spanning.

Our starting point is the result of Edmonds [4] on packing of spanning r-arborescences.

Theorem 2 (Edmonds [4]). There exist k arc-disjoint spanning r-arborescences in a digraph ~G = (V,A)
if and only if

ρA(X) ≥ k for all non-empty X ⊆ V \ r. (9)

Note that (9) is satisfied if and only if each vertex in ~G is reachable from r and the following holds
for R = {r, . . . , r} (k times).

ρA(X) ≥ qRA(X) for all X ⊆ V. (10)

In the following we provide lots of generalizations of Theorem 2. The first one considers the case when
the roots of the arborescences can be different. Let (~G,R) be a rooted digraph with R = {r1, . . . , rt}. A

packing of spanning R-arborescences is a set {~T1, . . . , ~Tt} of pairwise arc-disjoint spanning ri-arborescences
~Ti in ~G.

Theorem 3 (Edmonds [4]). There exists a packing of spanning R-arborescences in a rooted digraph

(~G,R) if and only if each vertex in ~G is reachable from each element of R and (10) holds.

Note that Theorem 3 reduces to Theorem 2 when {r1, . . . , rt} is equal to {r, . . . , r} (k times).

3.2 Packing reachability arborescences

Let (~G,R) be a rooted digraph with R = {r1, . . . , rt}. A packing of reachability R-arborescences is a set

{~T1, . . . , ~Tt} of pairwise arc-disjoint reachability ri-arborescences ~Ti in ~G.

Kamiyama, Katoh, Takizawa [9] provided a nice extension of Theorem 3 for packing reachability
arborescences.

Theorem 4 (Kamiyama, Katoh, Takizawa [9]). There exists a packing of reachability R-arborescences

in a rooted digraph (~G,R) if and only if (10) holds.

Note that Theorem 4 reduces to Theorem 3 when each vertex in ~G is reachable from each element of
R: in this case a packing of reachability R-arborescences becomes a packing of spanning R-arborescences.

We mention here that Fujishige [8] proposed a seemingly more general result on packing arborescences
spanning convex sets, however Cs. Király showed in [11] that it is in fact equivalent to Theorem 4.

4 Matroid-rooted digraphs

Amatroid-rooted digraph, denoted by (~G,M, S, π), is a digraph ~G on a matroid-rooted vertex-set (V,M, S, π)
where S = {s1, . . . , st}.

4.1 Packing matroid-rooted arborescences

A matroid-rooted arborescence is a pair (~T , s) where ~T is an r-arborescence for some vertex r and s is one

of the elements of S mapped to r. We say that s is the root of the matroid-rooted arborescence (~T , s).

A matroid-based packing of matroid-rooted arborescences of (~G,M, S, π) is a set {(~T1, s1), . . . , (~Tt, st)} of
pairwise arc-disjoint matroid-rooted arborescences such that for each v ∈ V , the set of roots si of the
matroid-rooted arborescences (~Ti, si) which contain the vertex v forms a base of the matroid M, that
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is {si ∈ S : v ∈ V (~Ti)} is a base of S. Note that each element si of S must be the root of one of the

matroid-rooted arborescences (~Ti, si) in the packing.

Durand de Gevigney, Nguyen, Szigeti [3] provided an extension of Edmonds’ theorem in an other
direction.

Theorem 5 (Durand de Gevigney, Nguyen, Szigeti [3]). Let (~G,M, S, π) be a matroid-rooted digraph.

There exists a matroid-based packing of matroid-rooted arborescences in (~G,M, S, π) if and only if π is
M-independent and

ρA(X) ≥ rM(S)− rM(SX) for all non-empty X ⊆ V. (11)

Note that Theorem 5 is an extension of Theorem 3 if S = R, M is the free matroid on S and each
vertex in ~G is reachable from each element of R. In this case, (11) is equivalent to (10) and since M is
the free matroid, each vertex must belong to all the arborescences in the packing, that is a matroid-based
packing of matroid-rooted arborescences is a packing of spanning R-arborescences, hence Theorem 5
reduces to Theorem 3.

4.2 Reachability-based packing of matroid-rooted arborescences

Let (~G,M, S, π) be a matroid-rooted digraph where ~G = (V,A) and S = {s1, . . . , st}. A reachability-based

packing of matroid-rooted arborescences of (~G,M, S, π) is a set {(~T1, s1), . . . , (~Tt, st)} of pairwise arc-
disjoint matroid-rooted arborescences such that for each v ∈ V, the set of roots si of the matroid-rooted
arborescences (~Ti, si) which contain the vertex v forms a base of the set of the elements in S which are

mapped to the set PA(v) of vertices from which v is reachable in ~G, that is {si ∈ S : v ∈ V (~Ti)} is a base
of SPA(v).

A common generalization of Theorem 4 and Theorem 5 was given by Cs. Király [11].

Theorem 6 (Cs. Király [11]). Let (~G,M, S, π) be a matroid-rooted digraph. There exists a reachability-

based packing of matroid-rooted arborescences in (~G,M, S, π) if and only if π is M-independent and

ρA(X) ≥ rM(SPA(X))− rM(SX) for all X ⊆ V. (12)

Note that Theorem 6 reduces to Theorem 4 when S = {r1, . . . , rt} and M is the free matroid on S: in

this case (12) is equivalent to (10) and {ri ∈ S : v ∈ V (~Ti)} must be equal to SPA(v), that is if an element

v was reachable from ri in ~G then v must belong to the matroid-rooted arborescence (~Ti, ri) and hence
a reachability-based packing of matroid-rooted arborescences is a packing of reachability arborescences.
Note also that Theorem 6 reduces to Theorem 5 when (~G,M, S, π) satisfies (11): in this case (11) implies
that rM(SPA(v)) = rM(S) for all v ∈ V and hence (12) is equivalent to (11) and a reachability-based
packing of matroid-rooted arborescences is a matroid-based packing of matroid-rooted arborescences.

We generalize Theorem 6 for matroid-rooted dypergraphs in Section 6.2.

5 Rooted dypergraphs

Let ~G = (V,A) be a dypergraph. We say that a vertex w can be reached from a vertex u in ~G if there exists
an alternating sequence v1 = u, Z1, v2, . . . , vi, Zi, vi+1, . . . , vj = w of vertices and hyperarcs such that vi
is a tail of Zi and vi+1 is the head of Zi. For a set X ⊆ V , we denote by PA(X) the set of vertices from

which X can be reached in ~G and by QA(X) the set of vertices that can be reached from X in ~G. Note

that PA(PA(X)) = PA(X). Let R = {r1, . . . , rt} be a list of t not necessarily distinct vertices of ~G. We

call the pair (~G, R) a rooted dypergraph. For X ⊆ V , we define qR

A
(X) as the number of ri’s, which do not

belong to X but from which X is reachable in ~G, in other words: qRA(X) = |{i : ri /∈ X,QA(ri)∩X 6= ∅}|.
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Let ~T = (U,B) be a subhypergraph of ~G and U ′ the set of vertices in U whose in-degree in ~T is not

0. We say that ~T is an r-hyperarborescence if r ∈ U, ρB(r) = 0, ρB(u) = 1 for all u ∈ U ′, ρB(X) ≥ 1
for all X ⊆ V \ r,X ∩ U ′ 6= ∅ and each vertex u ∈ U \ r belongs to a hyperarc in B. Please note that in

an r-hyperarborescence ~T the vertices in U \ (U ′ ∪ r) can not be reached from r. We mention that ~T is

an r-hyperarborescence if and only if it can be trimmed to an r-arborescence. We call ~T a reachability
r-hyperarborescence in ~G if U ′ ∪ r contains the set QA(r) of vertices that can be reached from r in ~G

(that is U ′ = QA(r) \ r), in other words, if QB(r) = QA(r). If all the vertices can be reached from r in ~G
(that is QA(r) = V ) then a reachability r-hyperarborescence is called spanning. Examples for a spanning
hyperarborescence and for a reachability hyperarborescence can be found in Figure 2.

U ′
2

~T2

r2

r1

~T1

Figure 2: ~T1 is a spanning r1-hyperarborescence while ~T2 is a reachability r2-hyperarborescence of the
dypergraph.

5.1 Packing spanning hyperarborescences

Let (~G, R) be a rooted dypergraph with ~G = (V,A) and R = {r1, . . . , rt}. A packing of spanning R-

hyperarborescences is a set {~T1, . . . , ~Tt} of pairwise arc-disjoint spanning ri-hyperarborescences ~Ti in ~G.

Frank, T. Király, Kriesell [7] extended Edmonds’ theorem for packing spanning hyperarborescences
in dypergraphs. We present here the version with multiple roots. We should also cite here the paper
Frank, T. Király, Z. Király [6].

Theorem 7 (Frank, T. Király, Kriesell [7]). There exists a packing of spanning R-hyperarborescences in

a rooted dypergraph (~G, R) if and only if each vertex in ~G is reachable from each element of R and

ρA(X) ≥ qRA(X) for all X ⊆ V. (13)

Note that Theorem 7 reduces to Theorem 3 when ~G is a digraph.

5.2 Packing reachability hyperarborescences

Let (~G, R) be a rooted dypergraph with ~G = (V,A) and R = {r1, . . . , rt}. A packing of reachability

hyperarborescences is a set {~T1, . . . , ~Tt} of pairwise arc-disjoint reachability ri-hyperarborescences ~Ti in ~G.

A common generalization of Theorem 7 and Theorem 4 was given by Bérczi, Frank [1].

Theorem 8 (Bérczi, Frank [1]). There exists a packing of reachability hyperarborescences in a rooted

dypergraph (~G, R) if and only if (13) holds.

Note that Theorem 8 reduces to Theorem 7 when each vertex in ~G is reachable from each element
of R: in this case a packing of reachability R-hyperarborescences becomes a packing of spanning R-
hyperarborescences. Note also that Theorem 8 reduces to Theorem 4 when ~G is a digraph.

We generalize Theorem 8 in Section 6.2.
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6 Matroid-rooted dypergraphs

A matroid-rooted dypergraph, denoted by (~G,M, S, π), is a dypergraph ~G = (V,A) on a matroid-rooted
vertex-set (V,M, S, π) where M is a matroid on S = {s1, . . . , st} with rank function rM and π is a map
from S to V .

6.1 Packing matroid-rooted hyperarborescences

We generalize the matroid-based packing of matroid-rooted arborescences theorem for matroid-rooted
dypergraphs. A matroid-rooted hyperarborescence is a triple (~T , r, s) where ~T is an r-hyperarborescence
and s is an element of S mapped to r. We say that s is the root of the matroid-rooted hyperarbores-
cence (~T , r, s). A matroid-based packing of matroid-rooted hyperarborescences of (~G,M, S, π) is a set

{(~T1, r1, s1), . . . , (~Tt, rt, st)} of pairwise arc-disjoint matroid-rooted hyperarborescences such that for each

v ∈ V , the set of roots si of the matroid-rooted hyperarborescences (~Ti, ri, si) in which the vertex v can
be reached from ri forms a base of the matroid M, that is {si ∈ S : v ∈ Q

A(~Ti)
(ri)} is a base of S.

Let us introduce the following function h1, which is integer-valued and intersecting supermodular and
satisfies h1(V ) = 0 = h1(∅).

h1(X) =

{

rM(S)− rM(SX) if X 6= ∅,
0 if X = ∅.

Theorem 1, applied for ~H1 = (V,A) and h1, together with Theorem 5 provide the following result.
This result can be found in the research project report of Léonard [12] that was written under the
supervision of Szigeti.

Theorem 9. Let (~G,M, S, π) be a matroid-rooted dypergraph. There exists a matroid-based packing of

matroid-rooted hyperarborescences in (~G,M, S, π) if and only if π is M-independent and

ρA(X) ≥ rM(S)− rM(SX) for all non-empty X ⊆ V. (14)

Note that Theorem 9 reduces to Theorem 7 when S = R, M is the free matroid on S and each vertex
in ~G is reachable from each element of R. In this case, (14) is equivalent to (13) and since M is the free
matroid, each vertex must belong to all the hyperarborescences in the packing, that is a matroid-based
packing of matroid-rooted hyperarborescences is a packing of spanning R-hyperarborescences. Note also
that Theorem 9 reduces to Theorem 5 when ~G is a digraph.

We generalize Theorem 9 in Section 6.2.

6.2 Reachability-based packing of matroid-rooted hyperarborescences

Let (~G,M, S, π) be a matroid-rooted dypergraph where ~G = (V,A) and S = {s1, . . . , st}. A reachability-

based packing of matroid-rooted hyperarborescences of (~G,M, S, π) is a set {(~T1, r1, s1), . . . , (~Tt, rt, st)} of
pairwise arc-disjoint matroid-rooted hyperarborescences such that for each v ∈ V , the set Bv of roots si
of the matroid-rooted hyperarborescences (~Ti, ri, si) in which the vertex v can be reached from ri forms
a base of the set of the elements of S which are mapped to the set PA(v) of vertices from which v is

reachable in ~G, that is Bv = {si ∈ S : v ∈ Q
A(~Ti)

(ri)} is a base of SPA(v).

The following theorem which is the main contribution of the present paper provides a common gen-
eralization of Theorems 6, 8 and 9.

Theorem 10. Let (~G,M, S, π) be a matroid-rooted dypergraph where ~G = (V,A). There exists a reachability-

based packing of matroid-rooted hyperarborescences in (~G,M, S, π) if and only if π is M-independent and

ρA(X) ≥ rM(SPA(X))− rM(SX) for all X ⊆ V. (15)
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Proof. First we prove the necessity. Let {(~T1, r1, s1), . . . , (~Tt, rt, st)} be a reachability-based packing of

matroid-rooted hyperarborescences in (~G,M, S, π).

For any v ∈ V , since Sv ⊆ Bv and Bv is independent in M, so is Sv, and hence π is M-independent.

Let now X ⊆ V and B =
⋃

v∈X Bv. Since SpanM is monotone, Bv is a base of SPA(v) and by
definition of PA(X), we have SpanM(B) ⊇

⋃

v∈X SpanM(Bv) ⊇
⋃

v∈X SPA(v) = SPA(X). Then, since rM
is monotone, (⋆) rM(B) ≥ rM(SPA(X)).

For each root si ∈ B \ SX , there exists a vertex v ∈ X such that si ∈ Bv and then since ~Ti is an

ri-hyperarborescence and v ∈ Q
A(~Ti)

(ri) ∩ X , there exists an hyperarc of ~Ti that enters X. Since these

matroid-rooted hyperarborescences are arc-disjoint, rM is submodular and monotone and by (⋆), we have

ρA(X) ≥ |B \ SX |

≥ rM(B \ SX)

≥ rM(B ∪ SX)− rM(SX)

≥ rM(B)− rM(SX)

≥ rM(SPA(X))− rM(SX)

that is, (15) is satisfied.

The sufficiency follows from Theorem 6, by applying the trimming proof technique. Let us define the
set function hA as follows: hA(X) = rM(SPA(X)) − rM(SX) for all X ⊆ V. Unfortunately this function
is not intersecting supermodular so we cannot apply Theorem 1 directly. On the other hand, as we will
see, with an additional condition on the sets X and Y , one has the supermodular inequality for X and
Y . The following claim for digraphs was proved by Cs. Király in [11], see also [5]. The same proof shows
that it is also true for dypergraphs.

Claim 1 ([11]). If PA(Y ) ⊆ PA(X ∩ Y ), then hA satisfies the supermodular inequality for X and Y .

Proof. Applying PA(X) ⊆ PA(X ∪ Y ), PA(Y ) ⊆ PA(X ∩ Y ) and the monotonicity of rM, we get that
rM(SPA()) satisfies the supermodular inequality for X and Y . Then, by the supermodularity of −rM,
the claim follows.

We say that a set X is tight if ρA(X) = hA(X). Note that, for every vertex v, PA(v) is a tight set,
since ρA(PA(v)) = 0 = hA(PA(v)).

Claim 2. If X and Y are tight and PA(Y ) ⊆ PA(X ∩ Y ) then X ∩ Y is tight and dA(X,Y ) = 0.

Proof. By Claim 1, hA satisfies the supermodular inequality (8) for X and Y , so

ρA(X) + ρA(Y ) = hA(X) + hA(Y )

≤ hA(X ∩ Y ) + hA(X ∪ Y )

≤ ρA(X ∩ Y ) + ρA(X ∪ Y )

= ρA(X) + ρA(Y )− dA(X,Y )

≤ ρA(X) + ρA(Y )

and the claim follows.

Lemma 1. If ~G satisfies (15), then ~G can be trimmed to a digraph ~G = (V,A) that satisfies the following
conditions.

ρA(X) ≥ hA(X) for all X ⊆ V, (16)

rM(SPA(v)) = rM(SPA(v)) for all v ∈ V. (17)

9



Proof. We prove the lemma by induction on the sum of |K| − 2 over all hyperarcs (K, k) of ~G. If this

sum is zero, we are done. Otherwise, let (Z, z) be a hyperarc of ~G of size at least three and u one of its

tails. Let ~Gu = (V,Au) where Au = (A \ (Z, z)) ∪ (Z \ u, z). Note that PAu
(X) ⊆ PA(X).

Claim 3. If ~Gu violates one of the following conditions

ρAu
(X) ≥ hAu

(X) for all X ⊆ V, (18)

rM(SPAu
(v)) = rM(SPA(v)) for all v ∈ V, (19)

then there exists a tight set Xu in ~G such that

Z \ u ⊆ Xu ⊆ (V \ u) ∩ PA(z). (20)

Proof. If ~Gu violates (18), then there exists a set X such that ρAu
(X) + 1 ≤ rM(SPAu

(X)) − rM(SX).
Then, by the monotonicity of rM and (15), we have

ρA(X) ≤ ρAu
(X) + 1

≤ rM(SPAu
(X))− rM(SX)

≤ rM(SPA(X))− rM(SX)

≤ ρA(X)

so everywhere equality holds.

If ~Gu violates (19), then there exists a vertex v such that rM(SPAu
(v)) + 1 ≤ rM(SPA(v)). Let X =

PAu
(v). Note that ρAu

(X) = 0 and PA(X) = PA(v). Then, by (15),

1 = ρAu
(X) + 1

≥ ρA(X)

≥ rM(SPA(X))− rM(SX)

= rM(SPA(v))− rM(SPAu
(v))

≥ 1

so everywhere equality holds.

In both cases it follows that X is tight and that ρAu
(X) + 1 = ρA(X) that is Z \ u ⊆ X ⊆ V \ u.

Let Y = PA(z). As mentioned above Y is tight. By z ∈ X ∩ Y, we have PA(Y ) ⊆ PA(X ∩ Y ). By
Claim 2, Xu = X ∩ Y is tight. By definition, Z \ u ⊆ Y, and we know that Z \ u ⊆ X , so Z \ u ⊆ Xu.
Since X ⊆ V \ u and Y = PA(z), Xu ⊆ (V \ u) ∩ PA(z) so Xu satisfies (20) and Claim 3 is proved.

If ~Gu satisfies both (18) and (19) then we are done by induction. So without loss of generality we
may assume, by Claim 3, that there exists a tight set Xu that satisfies (20). By assumption, (Z, z) has
at least two tails, let w be a tail of (Z, z) distinct of u. The same argument for w gives the set Xw. By
(20) and z ∈ Xw, PA(Xu) ⊆ PA(Xu ∩Xw). Then, by Claim 2, dA(Xu, Xw) = 0, which contradicts the
existence of Z. This contradiction finishes the proof of Lemma 1.

Let ~G = (V,A) be the digraph given by Lemma 1. Since π is M-independent and (16) is satisfied,
Theorem 6 guarantees the existence of a reachability-based packing of matroid-rooted arborescences in
(~G,M, S, π). By (17), the corresponding matroid-rooted hyperarborescences form a reachability-based

packing of matroid-rooted hyperarborescences in (~G,M, S, π) and Theorem 10 is proved.

Note that Theorem 10 reduces to Theorem 6 when ~G is a digraph. Note also that Theorem 10
reduces to Theorem 8 when S = {r1, . . . , rt} and M is the free matroid on S : in this case {ri ∈ S : v ∈

Q
A(~Ti)

(ri)} must be equal to SPA(v), that is if an element v was reachable from ri in ~G then v must belong

10



to the matroid-rooted hyperarborescence (~Ti, ri, si) and hence a reachability-based packing of matroid-
rooted hyperarborescences is a packing of reachability hyperarborescences. Finally, note that Theorem 10
reduces to Theorem 9 when (~G,M, S, π) satisfies (14): in this case (14) implies that rM(SPA(v)) = rM(S)
for all v ∈ V and hence (15) is equivalent to (14) and a reachability-based packing of matroid-rooted
hyperarborescences is a matroid-based packing of matroid-rooted hyperarborescences.

7 Rooted mixed graphs

Let R = {r1, . . . , rt} be a list of t not necessarily distinct vertices of V and F = (V,E∪A) a mixed graph
where E is the set of edges and A is the set of arcs of F. We call the pair (F,R) a rooted mixed graph.

7.1 Packing spanning trees

Let G = (V,E) be a graph. A subgraph T of G is called a tree if it is connected and it contains no cycle.
Recall that T is a tree if and only if for any vertex r of T, T can be oriented to become an r-arborescence.

The undirected counterpart of Theorem 2 is the following result of Nash-Williams [13] and Tutte [14]
on packing of spanning trees.

Theorem 11 (Nash-Williams [13], Tutte [14]). There exist k edge-disjoint spanning trees in a graph
G = (V,E) if and only if

eE(P) ≥ k(|P| − 1) for every partition P of V. (21)

In this section we provide some generalizations of Theorem 11.

7.2 Packing mixed arborescences

We say that a mixed graph F = (V,E ∪ A) is a mixed r-arborescence if there exists an orientation of E
such that F becomes an r-arborescence.

A common generalization of Theorem 11 and Theorem 2 was given by Frank [5].

Theorem 12 (Frank [5]). There exist k (edge and arc)-disjoint spanning mixed r-arborescences in a
mixed graph F = (V,E ∪ A) if and only if

eE(P) ≥
ℓ

∑

1

(k − ρA(Vi)) for every partition P = {r ∈ V0, V1, . . . , Vℓ} of V. (22)

Note that Theorem 12 reduces to Theorem 11 when A = ∅ and to Theorem 2 when E = ∅.

We present here a common generalization of Theorem 12 and Theorem 3. Let (F,R) be a rooted
mixed graph with R = {r1, . . . , rt}. A packing of spanning mixed R-arborescences is a set {T1, . . . , Tt} of
pairwise arc-disjoint spanning mixed ri-arborescences Ti in F.

Theorem 13. There exists a packing of spanning mixed R-arborescences in a rooted mixed graph (F,R)
where F = (V,E ∪ A) if and only if

eE(P) ≥
ℓ

∑

1

(|R \ Vi| − ρA(Vi)) for every partition P = {V0, V1, . . . , Vℓ} of V. (23)

Note that Theorem 13 reduces to Theorem 12 when R = {r, . . . , r} (k times) and to Theorem 3 when
E = ∅. Theorem 13 is proved in Section 11.
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8 Matroid-rooted mixed graphs

A matroid-rooted graph (respectively mixed graph) is a graph G = (V,E) (respectively is a mixed graph
F = (V,E ∪ A)) on a matroid-rooted vertex-set (V,M, S, π) where M is a matroid on S = {s1, . . . , st}
with rank function rM and π is a map from S to V .

8.1 Packing matroid-rooted trees

A matroid-rooted tree is a pair (T, s) where T is a tree and s is an element of S mapped to a vertex of
T . We say that s is the root of the matroid-rooted tree (T, s). A matroid-based packing of matroid-rooted
trees of (G,M, S, π) is a set {(T1, s1), . . . , (Tt, st)} of pairwise edge-disjoint matroid-rooted trees such that

for each v ∈ V, the set of roots si of the matroid-rooted trees (~Ti, si) which contain the vertex v forms a
base of the matroid M, that is {si ∈ S : v ∈ V (Ti)} is a base of S.

Kato,Tanigawa [10] provided the following elegant generalization of Tutte’s and Nash-Williams’ the-
orem for packing matroid-rooted trees.

Theorem 14 (Kato,Tanigawa [10]). Let (G,M, S, π) be a matroid-rooted graph. There exists a matroid-
based packing of matroid-rooted trees in (G,M, S, π) if and only if π is M-independent and

eE(P) ≥
∑

X∈P

(rM(S)− rM(SX)) for every partition P of V. (24)

Note that Theorem 14 reduces to Theorem 11 when S = {s1, . . . , sk}, M is the free matroid on S

and π maps each si to r. In this case, (24) is equivalent to (21) and since M is the free matroid, each
vertex must belong to all the matroid-rooted trees in the packing, that is a matroid-based packing of
matroid-rooted trees is a packing of spanning trees.

8.2 Packing matroid-rooted mixed arborescences

A matroid-rooted mixed arborescence is a pair (T, s) where T is a mixed r-arborescence for some vertex
r and s is an element of S mapped to r. We say that s is the root of the matroid-rooted mixed ar-
borescence (T, s). A matroid-based packing of matroid-rooted mixed arborescences of (F,M, S, π) is a set
{(T1, s1), . . . , (Tt, st)} of pairwise (edge and arc)-disjoint matroid-rooted mixed arborescences such that

for each v ∈ V , the set of roots si of the matroid-rooted mixed arborescences (~Ti, si) which contain the
vertex v forms a base of the matroid M, that is {si ∈ S : v ∈ V (Ti)} is a base of S.

A common generalization of Theorem 14 and Theorem 5 can be formulated as follows. This result
can be found in the research project report of Léonard [12].

Theorem 15. Let (F,M, S, π) be a matroid-rooted mixed graph where F = (V,E ∪ A). There exists
a matroid-based packing of matroid-rooted mixed arborescences in (F,M, S, π) if and only if π is M-
independent and

eE(P) ≥
ℓ

∑

1

(rM(S)− rM(SVi
)− ρA(Vi)) for every partition P = {V0, V1, . . . , Vℓ} of V. (25)

Note that Theorem 15 reduces to Theorem 14 when A = ∅ and to Theorem 5 when E = ∅. Note
also that Theorem 15 reduces to Theorem 13 when S = R and M is the free matroid. In this case,
(25) is equivalent to (23) and since M is the free matroid, each vertex must belong to all the matroid-
rooted mixed arborescences in the packing, that is a matroid-based packing of matroid-rooted mixed
arborescences is a packing of spanning mixed r-arborescences. Theorem 15 is proved in Section 11.
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9 Rooted mixed hypergraphs

Let R = {r1, . . . , rt} be a list of t not necessarily distinct vertices of V and F = (V, E ∪ A) a mixed
hypergraph where E is the set of hyperedges and A is the set of hyperarcs of F . We call the pair (F , R)
a rooted mixed hypergraph.

9.1 Packing spanning hypertrees

Let G = (V, E) be a hypergraph. We say that a subhypergraph G′ = (V ′, E ′) of G (that is V ′ ⊆ V and

E ′ ⊆ E) is a hypertree of G if there exists an orientation ~G′ of G′ which is a hyperarborescence. A hypertree
is called spanning if |E ′| = |V | − 1.

Frank, Király, Kriesell [7] provided the following generalization of Tutte’s and Nash-Williams’ theorem
for packing spanning hypertrees, see Theorems 10.5.12 and 9.1.22 of [5].

Theorem 16 (Frank, Király, Kriesell [7]). There exists a packing of k spanning hypertrees in a hypergraph
G = (V, E) if and only if

eE(P) ≥ k(|P| − 1) for every partition P of V. (26)

Note that Theorem 16 reduces to Theorem 11 when G is a graph.

9.2 Packing spanning mixed hyperarborescences

We say that F = (V, E ∪ A) is a mixed r-hyperarborescence if there exists an orientation of E such that
F becomes an r-hyperarborescence.

A common generalization of Theorem 16 and Theorem 7 can be formulated as follows. Let (F , R) be
a rooted mixed hypergraph with R = {r1, . . . , rt}. A packing of spanning mixed R-hyperarborescences is
a set {T1, . . . , Tt} of pairwise (edge and arc)-disjoint spanning mixed ri-hyperarborescences Ti in F .

Theorem 17. There exists a packing of spanning mixed R-hyperarborescences in a rooted mixed hyper-
graph F = (V, E ∪ A) if and only if

eE(P) ≥
ℓ

∑

1

(|R \ Vi| − ρA(Vi)) for every partition P = {V0, V1, . . . , Vℓ} of V. (27)

Note that Theorem 17 reduces to Theorem 16 when A = ∅, to Theorem 7 when E = ∅ and to
Theorem 13 when F is a mixed graph. Theorem 17 is proved in Section 11.

10 Matroid-rooted mixed hypergraphs

A matroid-rooted hypergraph (respectively mixed hypergraph) is a hypergraph G = (V, E) (respectively is
a mixed hypergraph F = (V, E ∪ A)) on a matroid-rooted vertex-set (V,M, S, π) where M is a matroid
on S = {s1, . . . , st} with rank function rM and π is a map from S to V .

10.1 Packing matroid-rooted hypertrees

Amatroid-rooted hypertree is a triple (T , r, s) where T has an orientation ~T that is an r-hyperarborescence
and s is an element of S mapped to r. We say that s is the root of the matroid-rooted hypertree (T , r, s).
A matroid-based packing of matroid-rooted hypertrees of (G,M, S, π) is a set {(T1, r1, s1), . . . , (Tt, rt, st)}
of pairwise edge-disjoint matroid-rooted hypertrees such that for each v ∈ V , the set of roots si of the
matroid-rooted hyperarborescences (~Ti, ri, si) in which the vertex v can be reached from ri forms a base
of the matroid M, that is {si ∈ S : v ∈ Q

A(~Ti)
(ri)} is a base of S.

Theorem 14 can be generalized as follows.

13



Theorem 18. Let (G,M, S, π) be a matroid-rooted hypergraph. There exists a matroid-based packing of
matroid-rooted hypertrees in (G,M, S, π) if and only if π is M-independent and

eE(P) ≥
∑

X∈P

(rM(S)− rM(SX)) for every partition P of V. (28)

Note that Theorem 18 reduces to Theorem 14 when G is a graph.

10.2 Packing spanning matroid-rooted mixed hyperarborescences

A common generalization of Theorems 9, 18, 17 and 15 can be formulated as follows.

Theorem 19. There exists a matroid-based packing of matroid-rooted mixed hyperarborescences in a
matroid-rooted mixed hypergraph (F ,M, S, π) where F = (V, E ∪ A) if and only if π is M-independent
and

eE(P) ≥
ℓ

∑

1

(rM(S)− rM(SVi
)− ρA(Vi)) for every partition P = {V0, V1, . . . , Vℓ} of V. (29)

Note that Theorem 19 reduces to Theorem 9 when E = ∅, to Theorem 18 when A = ∅, to Theorem 17
when S = R, M is the free matroid on S, and to Theorem 15 when F is a mixed graph. Theorem 19 is
proved in Section 11.

11 General orientation result on hypergraphs

The results on rooted mixed graphs, matroid-rooted mixed graphs, rooted mixed hypergraphs and
matroid-rooted mixed hypergraphs can be proved by applying the following general orientation result
on hypergraphs. The proof of Theorem 15.4.13 (the corresponding result for graphs) given in [5], with
the necessary straightforward modifications, can be extended for hypergraphs. For the sake of complete-
ness we provide the proof here. We mention that this result can also be obtained by using the techniques
from [6].

Theorem 20. Let H = (V, E) be a hypergraph and h an integer-valued, intersecting supermodular function
(with possible negative values) such that h(V ) = 0. There exists an orientation of H that covers h if and
only if H is h-subpartition-connected.

Proof. If such an orientation exists then, for every partition P = {V0, V1, . . . , Vℓ}, we have by (6),

eE(P) ≥
ℓ

∑

1

ρA(Vi) ≥
ℓ

∑

1

h(Vi),

so (3) is satisfied.

To prove the sufficiency, let us suppose that (3) is satisfied. Let us introduce the following two
integer-valued set functions.

b(X) = jE(X) (30)

p(X) = h(X) + iE(X). (31)

Since jE is submodular, h is intersecting supermodular and iE is supermodular, it follows that b is
submodular and p is intersecting supermodular. Note that, by (30), (31) and h(V ) = 0,

b(V ) = jE(V ) = |E| (32)

p(V ) = h(V ) + iE(V ) = |E|. (33)
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For every Z ⊆ V and every partition {Z1, . . . , Zℓ} of Z and Z0 = V \ Z, we have, by (31), (3), (2),
(1) and (30),

ℓ
∑

1

p(Zi) =

ℓ
∑

1

h(Zi) +

ℓ
∑

1

iE(Zi)

≤ eE({Z0, Z1, . . . , Zℓ}) +
ℓ

∑

1

iE(Zi)

= jE(Z)

= b(Z).

Then, by Theorem 12.2.2 in [5], there exists an integral vector m on V such that

p(X) ≤ m(X) ≤ b(X) for every X ⊆ V. (34)

Inequalities (32), (33) and (34) provide

m(V ) = |E|. (35)

By (35) and (7), we have

|E| = m(V ) = m(X) +m(V \X) for every X ⊆ V. (36)

By (30) and (34), we have

jE(V \X) = b(V \X) ≥ m(V \X) for every X ⊆ V, (37)

and hence, by (1), (36) and (37),

(0 ≤) iE(X) ≤ m(X) for every X ⊆ V. (38)

Then, by (35), (38) and Theorem 9.4.2 in [5], there exists an orientation ~H = (V,A) of H such that

ρA(v) = m(v). (39)

Then, for every X ⊆ V, we have by (39), (34) and (31),

ρA(X) =
∑

v∈X

ρA(v)− iA(X)

=
∑

v∈X

m(v)− iE(X)

= m(X)− iE(X)

≥ p(X)− iE(X)

= h(X)

that is ~H covers h.

11.1 Orientations in rooted mixed graphs

Let (F,R) be a rooted mixed graph with F = (V,E ∪ A) and R = {r1, . . . , rt}. Let us introduce the
following function h2, which is integer-valued and intersecting supermodular and satisfies h2(V ) = 0.

h2(X) =

{

|R \X | − ρA(X) if ∅ 6= X ⊆ V ,
0 if X = ∅.

Theorem 20, applied for H2 = (V,E) and h2, provides the following result.

Theorem 21. There exists an orientation ~F of a rooted mixed graph (F,R) such that each vertex in ~F
is reachable from each element of R and (10) holds if and only if (23) is satisfied.

Note that, by Theorem 2, Theorem 13 and Theorem 21 are equivalent.
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11.2 Orientations in matroid-rooted mixed graphs

Let (F,M, S, π) be a matroid-rooted mixed graph where F = (V,E ∪ A). Let us introduce the following
function h3, which is integer-valued and intersecting supermodular and satisfies h3(V ) = 0.

h3(X) =

{

rM(S)− rM(SX)− ρA(X) if X 6= ∅,
0 if X = ∅.

Theorem 20, applied for H3 = (V,E) and h3, provides the following result.

Theorem 22. There exists an orientation of a matroid-rooted mixed graph (F,M, S, π) satisfying (11)
if and only if (25) is satisfied.

Note that Theorem 22 and Theorem 5 provide Theorem 15.
Note also that Theorem 22 reduces to Theorem 21 when S = R and M is the free matroid on S.

11.3 Orientations in rooted mixed hypergraphs

Let (F , R) be a rooted mixed hypergraph with F = (V, E ∪ A) and R = {r1, . . . , rt}. Let us introduce
the following function h4, which is integer-valued and intersecting supermodular and satisfies h4(V ) = 0.

h4(X) =

{

|R \X | − ρA(X) if ∅ 6= X ⊆ V ,
0 if X = ∅.

Theorem 20, applied for H4 = (V, E) and h4, provides the following result.

Theorem 23. There exists an orientation ~F of a rooted mixed hypergraph (F , R) such that each vertex

in ~F is reachable from each element of R and (13) holds if and only if (27) is satisfied.

Note that, by Theorem 7, Theorem 17 and Theorem 23 are equivalent.
Note that Theorem 23 reduces to Theorem 21 when F is a mixed graph.

11.4 Orientations in matroid-rooted mixed hypergraphs

Let (F ,M, S, π) be a matroid-rooted mixed hypergraph where F = (V, E ∪ A). Let us introduce the
following function h5, which is integer-valued and intersecting supermodular and satisfies h5(V ) = 0.

h5(X) =

{

rM(S)− rM(SX)− ρA(X) if X 6= ∅,
0 if X = ∅.

Theorem 20, applied for H5 = (V, E) and h5, provides the following result, which is a generalization
of both Theorem 23 and Theorem 22.

Theorem 24. There exists an orientation of a matroid-rooted mixed hypergraph (F ,M, S, π) satisfying
(14) if and only if (29) is satisfied.

Note that Theorem 24 and Theorem 9 provide Theorem 19.
Note also that Theorem 24 reduces to Theorem 23 when S = R and M is the free matroid on S.
Finally, note that Theorem 24 reduces to Theorem 22 when F is a mixed graph.

12 Further remarks

We finish this paper by mentioning some remarks on other possible generalizations.
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12.1 Packing reachability mixed arborescences

The first problem is about packing reachability mixed arborescences. We just mention the orientation
version of the problem. Let F = (V,E ∪ A) be a mixed graph and {r1, . . . , rt} a list of t not necessarily
distinct vertices of F. For a set X ⊆ V , we denote by QE∪A(X) the set of vertices that can be reached
from X in F and by qE∪A(X) the number of indices i such that ri /∈ X and QE∪A(ri) ∩X 6= ∅. When

does there exist an orientation ~E of E such that (V, ~E ∪ A) covers qE∪A? Let us consider the following
two conditions that are clearly necessary: for every partition P = {V0, V1, . . . , Vℓ} of V ,

eE(P) ≥
ℓ

∑

1

(qE∪A(Vi)− ρA(Vi)), (40)

eE(P) ≥
ℓ

∑

1

(qE∪A(V \ Vi)− ρA(V \ Vi)). (41)

The following example shows that conditions (40) and (41) are not sufficient. Let F = (V,E ∪A) and
{r1, . . . , rt} be defined as follows. V = {a, b, c, d}, E = {ab}, A = {ca, cb, ad, bd}, r1 = a and r2 = b. It is
easy to check that (40) and (41) are satisfied. However, the required orientation does not exist since the
edge ab should be oriented in both directions.

12.2 Covering intersecting bi-set families under matroid constraints in dyper-

graphs

Finally, we mention that Bérczi, T. Király, Kobayashi [2] have provided an abstract result on covering
intersecting bi-set families under matroid constraints that generalizes Theorem 6 and another result of
Bérczi and Frank [1]. We do not want to go into details, we just mention that their proof also works for
dypergraphs.
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[1] K. Bérczi, A. Frank, Variations for Lovász’ submodular ideas, In: M. Grötschel, G.O.H. Ka-
tona(eds.), Building Bridges Between Mathematics and Computer Science, Bolyai Society, Series:
Mathematical Studies, 19, Springer (2008)137-164
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[7] A. Frank, T. Király, M. Kriesell, On decomposing a hypergraph into k connected sub-hypergraphs.
Discrete Applied Mathematics 131 (2) (2003) 373-383

[8] S. Fujishige, A note on disjoint arborescences, Combinatorica 30(2) (2010) 247-252

17



[9] N. Kamiyama, N. Katoh, A. Takizawa, Arc-disjoint in-trees in digraphs. Combinatorica 29(2) (2009)
197-214

[10] N. Katoh, S. Tanigawa, Rooted-Tree Decompositions with Matroid Constraints and the Infinitesimal
Rigidity of Frameworks with Boundaries, SIAM Journal on Disc. Math. 27/1 (2013) 155-185
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