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Abstract

A relatively simple proof is presented for the min-max theorem of Lovász on the graphic matroid

parity problem.

1 Introduction

The graph matching problem and the matroid intersection problem are two well-solved problems in Combi-
natorial Theory in the sense of min-max theorems [2], [3] and polynomial algorithms [4], [3] for finding an
optimal solution. The matroid parity problem, a common generalization of them, turned out to be much
more difficult. For the general problem there does not exist polynomial algorithm [6], [8]. Moreover, it
contains NP-complete problems. On the other hand, for linear matroids Lovász provided a min-max formula
in [7] and a polynomial algorithm in [8]. There are several earlier results which can be derived from Lovász’
theorem, e.g. Tutte’s result on f -factors [15], a result of Mader on openly disjoint A-paths [11] (see [9]), a
result of Nebesky concerning maximum genus of graphs [12] (see [5]), and the problem of Lovász on cacti
[9]. This latter one is a special case of the graphic matroid parity problem. Our aim is to provide a simple
proof for the min-max formula on this problem, i. e. on the graphic matroid parity problem. In an earlier
paper [14] of the present author the special case of cacti was considered. We remark that we shall apply the
matroid intersection theorem of Edmonds [4]. We refer the reader to [13] for basic concepts on matroids.

For a given graph G, the cycle matroid G is defined on the edge set of G in such a way that the
independent sets are exactly the edge sets of the forests of G. Thus, for the rank function rG of G and for
an edge set F of G,

rG(F ) = |V (G)| − c(G[F ]), (1)

where c(H) denotes the number of connected components of a graph H and G[F ] = (V (G), F ). In other
words, rG(F ) is the maximum size of a forest contained in F. A matroid M is graphic if there exists a
graph whose cycle matroid is M.

The graphic matroid parity problem is the following. Given a graph G and a partition V of its edge set
into pairs, what is the maximum size of a forest in G which consists of pairs in V. The pair (G, V) is called
v-graph. A v-forest of (G,V) is a forest of G consisting of v-pairs in V. The v-size of a v-forest is the
number of v-pairs contained in it. The graphic matroid parity problem consists of finding the maximum
v-size β(G, V) of a v-forest in a v-graph (G,V).

Let (G,V) be a v-graph. Let P := {V1, V2, ..., Vl} be a partition of the vertex set V (G) and let Q :=
{H1,H2, ...,Hk} be a partition of V. We say that (P,Q) is a cover of (G,V). For a partition P of V, VP

will denote the vertex set obtained from V by contracting each set Vi in P into one vertex vi. Note that
|VP | = |P| = l. Let GP := (VP , E(G)). For Hi ⊆ V, (GP [Hi], Hi) will denote the v-graph on the vertex
set VP for which the edge set E(Hi) of GP [Hi] is the union of the edges of the v-pairs in Hi. For Hi ⊆ V,
let rP(Hi)= rGP

(E(Hi))(= l − c(GP [Hi])). The value val(P, Q) of a cover is defined as follows. Let
n = |V (G)|, l = |P| and k = |Q|.

val(P,Q) := n − l +
∑

Hi∈Q

⌊
rP(Hi)

2
⌋. (2)

Now, we are able to present the min-max result of Lovász [7] in our terminology.
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Theorem 1 Let (G,V) be a v-graph. Then β(G,V) = min{val(P,Q)}, where the minimum is taken over
all covers (P,Q) of (G,V).

We mention that the min-max formula for the special case of cacti is presented in [10] in Theorem 11.3.6.
Theorem 1 is the natural generalization of that formula. To see that the problem of cacti, i.e. finding a
maximum triangular cactus in a graph G, is a special case of the graphic matroid parity problem we have
to consider the v-graph (G′,V) which is defined by the original graph G as follows: Let us denote by T the
set of triangles of G. For every T ∈ T , let eT , fT be two edges of T. Let V := {(eT , fT ) : T ∈ T } and let
G′ := (V (G), E(G′)) where E(G′) := ∪T∈T {eT , fT } where the union is understood by multiplicity.

Our proof follows the line of Gallai’s (independently Anderson’s [1]) proof for Tutte’s theorem on the
existence of perfect matchings.

2 Definitions

A v-forest F of a v-graph (G,V) is called perfect if it is a spanning forest of G, that is |F | = rG(E(G)). A
forest F is said to be almost spanning if |F | = rG(E(G))− 1. A v-forest is almost perfect if it is almost
spanning. For an edge set F of a v-graph (G,V), the maximum v-size of a v-forest contained in F is denoted
by vV(F ). Note that

vV(F ) ≤ ⌊
rG(F )

2
⌋. (3)

A v-graph (G,V) will be called critical if by identifying any two vertices in the same connected component
of G, the v-graph obtained has a perfect v-forest. In particular, this means that in a critical v-graph there
exists an almost perfect v-forest. Critical v-graphs will play an important role in the proof, like factor critical
graphs play the key role in the proof of Tutte’s theorem.

For a cover (P,Q) of a v-graph (G,V), let us denote by VP ,SP and RP the sets of v-pairs T in V for which
rP(T ) = 2, rP(T ) = 1 and rP(T ) = 0. (Then V = VP ∪SP ∪RP .) The elements Hi ∈ Q with rP(Hi) ≥ 1 are
called components of the cover. A component Hi ∈ Q is said to be critical if the v-graph (GP [Hi],Hi) is
critical.

For a graph H = (U,F ) we shall denote by ∼H the equivalence relation for which u ∼H v for u, v ∈ U
if and only if there exists a path connecting u and v in H. The partition of U defined by the equivalence
classes of ∼H , that is by the vertex sets of the connected components of H, is denoted by part(H).

We say that the partition P of V (G) is the trivial partition if l = n. The cover (P,Q) is the trivial
cover if l = n and k = 1. Let P ′ = {V 1

1 , ..., V r1

1 , V 1
2 , ..., V r2

2 , ..., V 1
l , ..., V rl

l }, where ∪jV
j
i = Vi for all i, then

the partition P ′ is called a refinement of the partition P. If P ′ is a refinement of P so that |P ′| = |P| + 1,
then we say it is an elementary refinement. If Vi ∈ P then the partition obtained from P by replacing Vi

by its singletons will be denoted by P ÷ {Vi}. If P ′ is a refinement of P, then P corresponds to a partition
of V (GP′). This partition will be denoted by P/P ′.

We shall need later two auxiliary graphs B and D. These graphs will depend on a v-graph (G,V) and a
cover (P,Q) of this v-graph. We suppose that for each component Hi, rP(Hi) is odd. First we define the
graph B = (V (G), E(B)). e = uv will be an edge of B if and only if there exist u, v ∈Vj∈ P, a component
Hi∈ Q and a v-forest K in (GP÷{Vj}[Hi],Hi) of v-size (rP(Hi) + 1)/2 so that u ∼K v but for every pair
(x, y) 6= (u, v) of vertices from Vj , x 6∼K y. (Note that (VP , E(K)) contains a v-forest of v-size (rP(Hi)−1)/2
in (GP [Hi],Hi). We mention that (by Lemma 8, see later) (GP [Hi],Hi) will always contain a v-forest of
v-size (rP(Hi) − 1)/2.) In other words, the trace of the v-forest K in Vj ∈ P is the edge e. We call this
edge e an augmenting edge for Hi. We will call the edges of B augmenting edges. Note that an edge of
B may be augmenting for more than one component Hi ∈ Q. For a refinement P ′ of P, the set AP′⊆ E(B)
of augmenting edges connecting vertices in different sets of P ′ will be called the augmenting edges with
respect to the refinement P ′.

The second auxiliary graph D will be a bipartite graph with colour classes E(B) (the edge set of B) and
Q. Two vertices e ∈ E(B) and Hi ∈ Q are connected in D by an edge if and only if e is an augmenting edge
for Hi. As usual, the set of neighbours of a vertex set X of one of the colour classes of D will be denoted by
ΓD(X).
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3 Outline of the proof

In this section we present some ideas of the proof. As it was mentioned earlier we shall follow the proof of
Tutte’s theorem. Let us briefly summarize the steps of this proof. We suppose that the Tutte condition is
satisfied for a given graph G and we have to construct a perfect matching of G. Let X be a maximal set
satisfying the condition with equality. The maximality of X implies that all the components of G − X are
factor-critical, thus it is enough to find a perfect matching in an auxiliary bipartite graph D, where one
of the color classes corresponds to X while the other to the (critical) components. Hall’s theorem (or the
matroid intersection theorem) provides easily the existence of a perfect matching M in D. The desired perfect
matching of G can be obtained from M and from the almost perfect matchings of the critical components. We
mention that this is a lucky case because the union of these almost perfect matchings will be automatically
a matching in G.

In the case of v-forests we shall prove directly the min-max theorem. We shall choose a minimum cover
(P,Q) of (G,V) which is maximal in some certain sense. This will imply (Lemma 7) that the minimum cover
of (GP [Hi],Hi) is unique for each component Hi. This fact has two consequences (Lemma 8 and Lemma
11), namely (i) each component is critical (hence rP(Hi) is odd) and (ii) for any component Hi and for any
refinement P ′ of P, either there exists an augmenting edge for Hi with respect to P ′ or rP′(Hi) ≤ rP(Hi).

We shall construct a v-forest of size val(P,Q) in (G,V) as follows. (1) For n− l components Hi ∈ Q, we
shall find a v-forest Ki in (GP÷{Vj}[Hi],Hi) of v-size (rP(Hi) + 1)/2 for some Vj ∈ P so that the trace of
Ki in Vj is an edge and the corresponding augmenting edges form a spanning forest of the auxiliary graph
B. (We shall see (Corollary 13) that the size of a spanning forest of B is indeed n − l.) (2) For the other
components Hj we shall need an almost perfect v-forest in (GP [Hj ],Hj), and (3) the union of all of these
forests will be a forest in G, that is a v-forest in (G,V) of size val(P,Q). Using (i), for the latter components
Hj it is enough to find an arbitrary almost spanning forest in GP [Hj ] (and then using that Hj is critical,
this forest can be replaced by a convenient v-forest containing the same number of edges, that is of v-size
(rP(Hj) − 1)/2)). By the definition of augmenting edge, for the former components Hi it is enough to find
an arbitrary spanning forest in GP [Hi] so that (∗) there exist augmenting edges for these components whose
union will be a spanning forest of B. Thus we have to find a forest F in G so that (a) for each component
Hj , E(F ) ∩ E(GP [Hj ]) is a spanning or an almost spanning forest in GP [Hj ], (b) for n − l components Hi

we have a spanning forest, (c) for these components in (b), (∗) is satisfied.
The existence of a forest with (a) and (b) can be proved, using (ii), by a matroid partition theorem (for a

graphic matroid and a truncated partitional matroid). We shall see in Lemma 16 that if for all such forests
we consider the components where the corresponding forests are spanning forests then we get the set of bases
of a matroid on the set of indices of the components.

Two matroids will be defined on the edge set of the auxiliary graph D, one of them will be defined by
the above introduced matroid, and the other one will be defined by the cycle matroid of B. The matroid
intersection theorem will provide a forest of G with (a), (b) and (c). As we mentioned earlier, each part of
the forest, which corresponds to a component, can be replaced by a convenient v-forest, and thus the desired
v-forest will have been found.

4 Graphic matroid

In this section we present some simple properties of forests and of the graphic matroid rank function.

Claim 2 Let H = (U,F ) be a graph. Then
(a) for F ′′ ⊆ F ′ ⊆ F, r(F ′′) ≤ r(F ′),
(b) for F ′, F ′′ ⊆ F, r(F ′ ∪ F ′′) ≤ r(F ′) + r(F ′′). 2

Lemma 3 Let H = (U,F ) be a graph, let P be a partition of U and let F0 be an edge set such that
part(F0) = P. Then
(a) r(F ∪ F0) = rP(F ) + r(F0),
(b) rP(F ) ≤ r(F ),
(c) r(F ) ≤ |U | − |P| + rP(F ),
(d) if rP(F ) < r(F ) then there exists an elementary refinement P ′′ of P such that rP(F ) < rP′′(F ).



The graphic matroid parity problem 4

Proof. (a) By (1) and by part(F0) = P, r(F ∪ F0) = n − c(F ∪ F0) = n − cP(F ∪ F0) = (|P| − cP(F )) +
(n − |P|) = rP(F ) + r(F0).
(b) By Lemma 3(a) and Claim 2(b), rP(F ) = r(F ∪ F0) − r(F0) ≤ r(F ).
(c) By Claim 2(a) and Lemma 3(a), r(F ) ≤ r(F ∪ F0) = rP(F ) + r(F0) = rP(F ) + |U | − |P|.
(d) Let F ′ be a spanning forest of (VP , F ). Then rP(F ) = |F ′|. Since r(F ) > rP(F ) = |F ′| there exists an
edge f ∈ F −F ′ such that (V, F ′∪f) is a forest. (VP , F ′∪f) contains a unique cycle C and f ∈ E(C) because
F ′ is a forest. On the other hand (V, F ′ ∪ f) contains no cycle so there is a vertex vi ∈ VP(C) such that the
two edges of C incident to vi are incident to different vertices of Vi say a and b. But then for the elementary
refinement P ′′ := (P − Vi) ∪ a ∪ (Vi − a), (VP′ , F ′ ∪ f) is a forest and hence rP′′(F ) ≥ |F ′ ∪ f | > rP(F ). 2

Claim 4 Let F be a forest and let F1 and F2 be two vertex disjoint subtrees of F. If F1 and F2 belong to the
same connected component of F then let us denote by a and b the two end vertices of the shortest path in F
connecting F1 and F2, otherwise let a ∈ V (F1) and b ∈ V (F2) be two arbitrary vertices. Then
(a) if F ′

1 is a tree on V (F1) then (F − E(F1)) ∪ E(F ′
1) is a forest.

(b) If F ′ is a forest on V (F1) ∪ V (F2) so that a and b are in different connected components of F ′, then
(F − E(F1) − E(F2)) ∪ E(F ′) is a forest. 2

The proof of Claim 4 is a simple exercise, it is left to the reader.

Lemma 5 Let (V, F ) be a forest. Let F0 = {e1, ..., ek}, F1, ..., Fk disjoint edge sets of F and let F ′
1, ..., F

′
k

be disjoint edge sets on V. Let P := part(V, F0). Suppose that for all 1 ≤ i ≤ k the following conditions are
satisfied.
(i) |F ′

i | = |Fi| + 1,
(ii) part(VP , F ′

i ) = part(VP , Fi),
(iii) if ei is in Vj ∈ P, then (VP÷{Vj}, F

′
i ) is a forest whose trace in Vj is ei.

Then F ∗ := (F −
⋃k

0 Fi) ∪
⋃k

1 F ′
i is a forest of size |F |.

Proof. By the disjointness of the sets Fi (resp. F ′
i ), by (i) and by |F0| = k, |F ∗| = |(F −

⋃k

0 Fi)∪
⋃k

1 F ′
i | =

|F |−
∑k

0 |Fi|+
∑k

1 |F
′
i | = |F |−|F0|−

∑k

1 |Fi|+
∑k

1(|Fi|+1) = |F |−|F0|−
∑k

1 |Fi|+
∑k

1 |Fi|+k = |F |. By Claim
4(a) applied for each connected component of Fi for every i, we obtain that rP(F −F0) = rP(F ∗). Then, by
Lemma 3(a), |F ∗| = |F | = r(F ) = r((F − F0) ∪ F0) = rP(F − F0) + r(F0) = rP(F ∗) + r(F0) = r(F ∗ ∪ F0).
Thus it is enough to prove that r(F ∗∪F0) = r(F ∗), in other words ui ∼(V,F∗) wi for every uiwi ∈ F0. Suppose
on the contrary that there exists an edge uj1wj1 ∈ F0 (say uj1 , wj1 ∈ Vj1) such that uj1 6∼(V,F∗) wj1 . By (iii),
(VP÷{Vj1

}, F
′
j1

) contains a path Pj1 connecting uj1 and wj1 . Since E(Pj1) ⊆ F ′
j1

⊆ F ∗ but uj1 6∼V,F∗ wj1

it follows that there exists a vertex vj2 ∈ V (Pj1) (j2 6= j1) and an edge uj2wj2 ∈ F0 (with uj2 , wj2 ∈ Vj2)
such that uj2 6∼(V,F∗) wj2 . Note that Pj1 connects vj1 and vj2 in (VP , F ′

j1
) and hence, by (ii), there exists

a path Qj1 in (VP , Fj1) connecting vj1 and vj2 . The same way, there exists an edge uj3wj3 ∈ F0 (j3 6= j2)
(say uj3 , wj3 ∈ Vj3) such that uj3 6∼(V,F∗) wj3 and there exists a path Qj2 in (VP , Fj2) connecting vj2 and
vj3 . We can continue the same way. Since |F0| is finite there exist indices s < t such that vs = vt+1. Then
using that the paths Qi connect vji

and vji+1
for every s ≤ i ≤ t in (VP , Fji

) and that these paths are edge
disjoint it follows that C := Qjs

∪Qjs+1
∪ ...∪Qjt

is a cycle in (VP , F −F0). This is a contradiction because,
by Lemma 3(a), |F − F0| = |F | − |F0| = r(F ) − r(F0) = rP(F − F0) and hence (VP , F − F0) is a forest. 2

We mention that Lemma 5 will be applied only in the very last step of the proof.

5 The proof

Proof. (max ≤ min) The following lemma proves this direction.

Lemma 6 For a forest F in G and for a cover (P,Q) of (G,V), we have vV(F ) ≤ (n− l)+
∑

Hi∈Q⌊
rP(Hi)

2 ⌋.

Proof. Let F ′ be a subset of F of maximum size so that F ′ is a forest in GP . By Lemma 3(c), |F | = r(F ) ≤
n − l + rP(F ) = n − l + |F ′|. Since the number of V-pairs in F is equal to the number of V-pairs in F ′ plus
the number of V-pairs f1, f2 in F for which at most one of f1 and f2 belongs to F ′, we have

vV(F ) ≤ v(VP)(F
′) + |F − F ′| ≤ v(VP)(F

′) + n − l. (4)
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For each Hi ∈ Q, let H ′
i := (Hi)P and let F ′

i := F ′ ∩ E(Hi). Then F ′
i is a forest in GP [Hi] and so

rP(F ′
i ) ≤ rP(Hi). Whence, by (3), vH′

i
(F ′

i ) ≤ ⌊ rP(F ′
i )

2 ⌋ ≤ ⌊ rP(Hi)
2 ⌋. As Q is a partition of V, for every v-pair

T contained in F ′ there exists some Hi ∈ Q such that T ∈ H ′
i. Thus

v(VP)(F
′) =

∑

Hi∈Q

vH′
i
(F ′

i ) ≤
∑

Hi∈Q

⌊
rP(Hi)

2
⌋. (5)

(4) and (5) imply the desired inequality. 2

Remark 1. It follows from the proof of Lemma 6 that if (P,Q) is a cover of (G,V) and F is a v-forest of
G of size val(P,Q) then we have equality in (4). It follows that for every V-pair f1, f2 in F at least one of
f1 and f2 belongs to F ′, that is if T ∈ RP then T is not contained in F.

Proof. (max ≥ min) We prove the theorem by induction on n + |V|. For n = 3 the result is trivially true.
It is also true when |V| = 1. In what follows we suppose that n ≥ 4 and |V| ≥ 2.

Let (P,Q) be a minimum cover of (G,V) for which |P| = l is as small as possible and subject to this
|Q| = k is as large as possible. Note that by the maximality of k,

for each pair T ∈ SP ∪RP , T ∈ Q, (6)

because for each T ∈ SP ∪RP , ⌊ rP(T )
2 ⌋ = 0.

Lemma 7 For each Hi ∈ Q, the minimum cover of (GP [Hi],Hi) is unique and it is the trivial cover.

Proof. Let (P ′,Q′) be a minimum cover of (GP [Hi],Hi). Since the value of the trivial cover of (GP [Hi],Hi)

is ⌊ rP(Hi)
2 ⌋, l−l′+

∑

H′
j
∈Q′⌊

rP′ (H′
j)

2 ⌋ = val(P ′,Q′) ≤ ⌊ rP(Hi)
2 ⌋. Using this cover (P ′,Q′), a new cover (P∗,Q∗)

of (G,V) can be defined as follows. Let the partition P∗ of V (G) be obtained from P by taking the union of
all those Vr and Vs whose corresponding vertices in GP are in the same set of P ′. Then l∗ = |P∗| = |P ′| = l′.
Let Q∗ be obtained from Q by deleting Hi and by adding Q′. For Hj ∈ Q − {Hi}, rP′(Hj) ≤ rP(Hj) by
Lemma 3(b). We claim that the new cover is also a minimum cover.

val(P∗,Q∗) = n − l∗ +
∑

Hj∈Q−{Hi}

⌊
rP′(Hj)

2
⌋ +

∑

H′
j
∈Q′

⌊
rP′(H ′

j)

2
⌋

≤ n − l′ +
∑

Hj∈Q−{Hi}

⌊
rP(Hj)

2
⌋ + (val(P ′,Q′) − (l − l′))

≤ n − l +
∑

Hj∈Q−{Hi}

⌊
rP(Hj)

2
⌋ + ⌊

rP(Hi)

2
⌋ = val(P,Q).

It follows that equality holds everywhere, so val(P ′,Q′) = ⌊ rP(Hi)
2 ⌋, thus the trivial cover of (GP [Hi],Hi)

is a minimum cover. Furthermore, by the minimality of l, |P| ≤ |P∗| = |P ′| ≤ |P| that is P ′ is the trivial
partition of V (GP [Hi]) and by the maximality of k, |Q| ≥ |Q∗| = |Q| − 1 + |Q′| ≥ |Q| that is |Q′| = 1,
whence the minimum cover of (GP [Hi],Hi) is unique. 2

Lemma 8 Each component Hi ∈ Q is critical.

Proof. Suppose that there exists a component Hi ∈ Q for which (GP [Hi],Hi) is not critical, that is there
are two vertices a and b in the same connected component of GP [Hi] whose identification into a new vertex
vab leaves a v-graph (G′,Hi) with no perfect v-forest. Note that rG′(E(Hi)) = rP(Hi)− 1. By the induction

hypothesis, it follows that there is a cover (P ′,Q′) of (G′,Hi) so that valG′(P ′,Q′) < rG′ (E(Hi))
2 ≤ ⌊ rP(Hi)

2 ⌋.
Let P ′′ := (P ′ − X) ∪ ((X − vab) ∪ a ∪ b), where X is the member of P ′ that contains vab. Then (P ′′,Q′)

is a cover of (GP [Hi],Hi) and val(P ′′,Q′) = val(P ′,Q′) + 1. Thus val(P ′′,Q′) ≤ ⌊ rP(Hi)
2 ⌋. By Lemma 7,

(P ′′,Q′) is a minimum cover of (GP [Hi],Hi) but not the trivial one (a and b are in the same member of
P ′′), which contradicts Lemma 7. 2
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Corollary 9 If Hi ∈ Q and a, b ∈ V (GP [Hi]), then there exists an almost perfect v-forest K in (GP [Hi],Hi)
so that a and b belong to different connected components of K.

Proof. If a and b are in the same connected component of GP [Hi], then let c = a and d = b, otherwise let
c and d be two arbitrary vertices from a connected component of GP [Hi]. By Lemma 8, Hi is critical, so by
identifying c and d in GP [Hi], the v-graph obtained has a perfect v-forest K ′. Then K := (V (GP), E(K ′))
is an almost perfect v-forest in (GP [Hi],Hi) and a and b belong to different connected components of K. 2

Remark 2. (a) By Corollary 9, (GP [Hi],Hi) (and consequently (G,V)) contains a v-forest of size ⌊ rP(Hi)
2 ⌋.

(b) However, at this moment we can not see whether we can choose a v-forest Ki of size ⌊ rP(Hi)
2 ⌋ for every

Hi ∈ Q so that
⋃

Hi∈Q Ki is a v-forest in (G,V).

(c) Note that by Corollary 9, rP(Hi) is odd for each component Hi ∈ Q, that is ⌊ rP(Hi)
2 ⌋ = rP(Hi)−1

2 .

Claim 10 If l = n − 1, then k ≥ 2.

Proof. Suppose l = n − 1 and k = 1. Then val(P,Q) = n − l + ⌊ rP(V)
2 ⌋ = 1 + ⌊ rP(V)

2 ⌋. Let (u1v1, u2v2)
be a v-pair in V such that u1v1 is not a loop. Let us consider the cover (P ′,Q′) of (G,V) where each set
of P ′ contains exactly one vertex of G except one which contains u1 and v1 (|P ′| = n − 1) and Q′ contains
exactly two members, namely, H ′

1 := {u1v1, u2v2} and H ′
2 := V − H ′

1. (|Q′| ≥ 2 because |V| ≥ 2.) Then,

val(P ′,Q′) = n−|P ′|+⌊ rP′ (H′
1)

2 ⌋+⌊ rP′ (H′
2)

2 ⌋ = 1+⌊ rG(E(G))−1
2 ⌋. By Lemma 3(c), rG(E(G)) ≤ 1+rP(V), so

val(P ′,Q′) ≤ val(P,Q), and hence (P ′,Q′) is a minimum cover. This is a contradiction because |P ′| = n−1
and |Q′| ≥ 2. 2

Lemma 11 Let P ′ be a refinement of P and let Hi ∈ Q be a component for which Hi /∈ ΓD(AP′). Then
rP′(Hi) ≤ rP(Hi).

Proof. Suppose that rP′(Hi) > rP(Hi). Let H = GP′(Hi). Then, by applying Lemma 3(d) with H and
with P/P ′, there exists an elementary refinement P ′′ of P (say V 1

j ∪ V 2
j = Vj with V 1

j , V 2
j ∈ P ′′, Vj ∈ P) so

that P ′ is a refinement of P ′′ and rP′′(Hi) > rP(Hi). We shall denote the vertices of GP′′ [Hi] corresponding
to V 1

j and V 2
j by v1 and v2. Since P ′ is a refinement of P ′′, Hi /∈ ΓD(AP′) implies that Hi /∈ ΓD(AP′′) that is

there exists no augmenting edge for Hi with respect to P ′′ so (GP′′ [Hi],Hi) has no v-forest of size rP(Hi)+1
2 .

By Claim 10, we can use the induction hypothesis (of the theorem), that is there exists a cover (P3,Q3) of

(GP′′ [Hi],Hi) so that val(P3,Q3) ≤ rP(Hi)+1
2 − 1 = rP(Hi)−1

2 . Let P∗ := (P3 − A − B) ∪ C, where A and
B ∈ P3 contain v1 and v2 and C is the vertex set of GP [Hi] corresponding to A ∪ B. Then (P∗,Q3) is a

cover of (GP [Hi],Hi). If A = B, then val(P∗,Q3) = val(P3,Q3) − 1 < rP(Hi)−1
2 . This is a contradiction

because the minimum cover of (GP [Hi],Hi) has value rP(Hi)−1
2 by Lemma 7. Thus A 6= B, and in this case

val(P∗,Q3) ≤ val(P3,Q3) ≤ rP(Hi)−1
2 . By Lemma 7, (P∗,Q3) is a minimum cover of (GP [Hi],Hi) and in

fact it is the trivial cover. Since A 6= B it follows that (P3,Q3) is the trivial cover of (GP′′ [Hi],Hi) thus

⌊ rP′′ (Hi)
2 ⌋ = val(P3,Q3) ≤ rP(Hi)−1

2 , so rP′′(Hi) ≤ rP(Hi), contradiction.
2

Lemma 12 For a refinement P ′ of P (with l′ = |P ′| and l = |P|) and for Q1 = ΓD(AP′), l′ − l ≤ |Q1|.

Proof. Let H∗ =
(
⋃

Hi∈Q1
Hi

)

∪RP and let Q′ := (Q−Q1 −RP) ∪ H∗. We remark that, by Claim 2(b),
rP(RP) ≤

∑

T∈RP
rP(T ) =

∑

T∈RP
0 = 0. As (P ′,Q′) is a cover of (G,V), val(P,Q) ≤ val(P ′,Q′), that is

n − l +
∑

Hi∈Q1

rP(Hi) − 1

2
+

∑

Hi∈Q−Q1

⌊
rP(Hi)

2
⌋ ≤ n − l′ + ⌊

rP′(H∗)

2
⌋ +

∑

Hi∈Q−Q1

⌊
rP′(Hi)

2
⌋. (7)

By Lemma 11, for Hi ∈ Q−Q1 −RP ,
rP′(Hi) ≤ rP(Hi). (8)

Let H := GP′ [H∗]. By applying Lemma 3(c) with H and PP′ and by Claim 2(b),

rP′(H∗) ≤ l′ − l + rP(H∗) ≤ l′ − l +
∑

Hi∈Q1

rP(Hi) + rP(RP) = l′ − l +
∑

Hi∈Q1

rP(Hi). (9)
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The equations (7), (8) and (9) imply that
∑

Hi∈Q1

rP(Hi) − |Q1| =
∑

Hi∈Q1

(rP(Hi) − 1) ≤ 2(l − l′) + rP′(H∗) ≤ (l − l′) +
∑

Hi∈Q1

rP(Hi), (10)

whence l′ − l ≤ |Q1|. 2

Corollary 13 part(V,E(B)) = P.

Proof. By definition, there is no edge of B between two different sets of P. Let us consider an elementary
refinement P ′ of P. If there was no augmenting edge with respect to P ′, then by Lemma 11, val(P ′,Q) =

n − |P ′| +
∑

Hi∈Q⌊
rP′ (Hi)

2 ⌋ ≤ n − (l + 1) +
∑

Hi∈Q⌊
rP(Hi)

2 ⌋ = val(P,Q) − 1, contradicting the minimality
of the cover (P,Q). This implies that for each Vj ∈ P, the subgraph of B spanned on the vertex set Vj is
connected. 2

Let Fi be an arbitrary spanning forest of GP [Hi] for every component Hi ∈ Q. Then E(Fi)∩E(Fj) = ∅
if i 6= j because the components of Q are disjoint. Let W = (VP , E(W )) where E(W ) :=

⋃

Hi∈Q E(Fi). Let
P ′ be a refinement of P with |P ′| = l′. Let Q1 := ΓD(AP′) and Q2 := Q−Q1. We define two matroids on
E(W ). Let G be the cycle matroid of W with rank function rG . Let FP′ := F1 + F2 (direct sum), where
Fj will be the following (truncated) partitional matroid (with rank function rj) on Ej :=

⋃

Hi∈Qj
E(Fi)

j = 1, 2. Let F1 contain those sets F ⊆ E1 for which |F ∩E(Fi)| ≤ 1 for all i and |F | ≤ t0 := |Q1| − (l′ − l).
Note that t0 ≥ 0 by Lemma 12. Let F2 contain those sets F ⊆ E2 for which |F ∩ E(Fi)| ≤ 1 for all i. For
the rank function r′ of FP′ r′(X) = r1(X ∩ E1) + r2(X ∩ E2).

Lemma 14 For any refinement P ′ of P, E(W ) can be written as the union of an independent set in G and
an independent set in FP′ .

Proof. This is a matroid partition problem. By Nash-Williams’ theorem (see for example [13]) the lemma
is true if and only if for any Y ⊆ E(W ), |Y | ≤ rG(Y ) + r′(Y ). Suppose that this is not true, and let Y be
a maximum cardinality set violating the above inequality. Then, clearly, Y is closed in FP′ . Thus Y can be
written in the form Y =

⋃

Hi∈Q∗ E(Fi), for some Q∗ ⊆ Q. Let t := |Q∗ ∩ Q1|. Let Q′′ := (Q − Q∗) ∪ H ′′,
where H ′′ := ∪Hi∈Q∗Hi. We remark that

rP(H ′′) = rG(Y ). (11)

Indeed, for every Hi ∈ Q∗, Fi is a spanning forest of GP [Hi] hence part(VP , Y ) = part(VP , E(H ′′)).

CASE 1. t ≤ t0. Then r′(Y ) = |Q∗|. Since (P,Q′′) is a cover of (G,V), 0 ≤ val(P,Q′′) − val(P,Q) =

⌊ rP(H′′)
2 ⌋ −

∑

Hi∈Q∗

rP(Hi)−1
2 , whence, by (11),

|Y | =
∑

Hi∈Q∗

|E(Fi)| =
∑

Hi∈Q∗

rP(Hi) = 2
∑

Hi∈Q∗

rP(Hi) − 1

2
+ |Q∗| ≤ 2

rP(H ′′)

2
+ |Q∗| = rG(Y ) + r′(Y ),

contradicting the assumption for Y.

CASE 2. t > t0. Now, by the closedness of Y in FP′ , Y contains all the forest Fi for which Hi ∈ Q1. Thus
r′(Y ) = r1(Y ∩ E1) + r2(Y ∩ E2) = t0 + (|Q∗| − |Q1|) = |Q∗| − (l′ − l). Let us consider the following cover
(P ′,Q3) of (G,V), where Q3 := (Q′′ − H ′′ − (VP′ ∩RP)) ∪ H3 where H3 := (H ′′ ∪ (VP′ ∩RP)). Note that
rP(VP′ ∩ RP) = 0. By Lemma 3(c), Claim 2(b) and (11), rP′(H3) ≤ l′ − l + rP(H3) ≤ l′ − l + rP(H ′′) +
rP(VP′ ∩RP) = l′ − l + rG(Y ). By Lemma 11,

val(P ′,Q3) = n − l′ + ⌊
rP′(H3)

2
⌋ +

∑

Hi∈Q−Q∗

⌊
rP(Hi)

2
⌋ ≤ n − l′ +

l′ − l + rG(Y )

2
+

∑

Hi∈Q−Q∗

⌊
rP(Hi)

2
⌋.

Then 0 ≤ val(P ′,Q3) − val(P,Q) ≤ l − l′ + l′−l+rG(Y )
2 −

∑

Hi∈Q∗

rP(Hi)−1
2 implies that

|Y | =
∑

Hi∈Q∗

|E(Fi)| =
∑

Hi∈Q∗

rP(Hi) = 2
∑

Hi∈Q∗

rP(Hi) − 1

2
+ |Q∗| ≤ rG(Y ) + |Q∗| − (l′ − l) = rG(Y ) + r′(Y ),

contradicting the assumption for Y. The proof of Lemma 14 is complete. 2
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Corollary 15 (a) There exists a forest F in the graph W so that for n − l indices i, E(Fi) ⊆ E(F ) and
E(F ) ∩ E(Fi) is an almost spanning forest of V (GP [Hi]) for the other indices.
(b) Therefore there exists a forest F ′ ⊆ F in W so that E(F ′) ∩ E(Fi) is an almost spanning forest of
V (GP [Hi]) for every Hi ∈ Q.

Proof. (a) By Lemma 14, for the trivial partition P ′ of V (G), there exist F,L ⊆ E(W ) such that E(W ) =
F ∪L, F is a forest of W, |L∩E(Fi)| ≤ 1 for all i, and, by Lemma 12, for at least n− l components Hi ∈ Q1,
|L ∩ E(Fi)| = 0. Then F is the desired forest.

(b) is implied by (a). 2

Remark 3. By Corollary 15(b), there exists a forest F in W (and consequently in GP) so that E(F )∩E(Fi)
is an almost spanning forest of GP [Hi] for all components Hi. Let Hi be an arbitrary component of Q. By
Corollary 9, for the two vertices a and b defined in Claim 4(b), there exists an almost perfect v-forest K
in (GP [Hi],Hi) so that a and b belong to different components of K. Then, by Claim 4(b), (F − (E(F ) ∩
E(Fi))) ∪ E(K) is a forest of GP . We can do this for all components, so the v-graph (GP ,V) (and hence

(G,V)) contains a v-forest of v-size
∑

Hi∈Q⌊
rP(Hi)

2 ⌋.

Now we define a matroid M on the components of Q. Let Q′ ⊆ Q be an independent set in M, that is
Q′ ∈ I(M) if and only if there is fi ∈ E(Fi) for each component Hi ∈ Q−Q′ so that E(W )−{fi : Hi ∈ Q−Q′}
is a forest in W.

Lemma 16 M is a matroid.

Proof. We show that M satisfies the three properties of independent sets of matroids.
(1.) By Corollary 15(b), ∅ ∈ I(M).
(2.) If Q′′ ⊆ Q′ ∈ I(M), then Q′′ ∈ I(M) because any subgraph of a forest is a forest.
(3.) Let Q′,Q′′ ∈ I(M) with |Q′′| < |Q′|. By definition, there are f ′

i ∈ E(Fi) for Hi ∈ Q−Q′ and f ′′
i ∈ E(Fi)

for Hi ∈ Q − Q′′ so that T ′ := E(W ) − {f ′
i : Hi ∈ Q − Q′} and T ′′ := E(W ) − {f ′′

i : Hi ∈ Q − Q′′} are
forests in W. Choose these two forests T ′ and T ′′ so that |T ′ ∩ T ′′| is as large as possible. T ′ and T ′′ are two
independent sets in the matroid G and |Q′′| < |Q′| implies that |T ′′| < |T ′| thus there is an edge e ∈ T ′−T ′′

so that T ′′∪e is also a forest in W. Then e = f ′′
j for some j. If Hj /∈ Q′ that is f ′

j /∈ T ′, then T ∗ := T ′′+f ′′
j −f ′

j

is a forest and |T ′ ∩ T ∗| > |T ′ ∩ T ′′|, contradiction. Thus Hj ∈ Q′ −Q′′ and Q′′ ∪ {Hj} ∈ I(M) and we are
done. 2

We shall apply the matroid intersection theorem of Edmonds [4] for the following two matroids on the
edge set of the graph D introduced in Section 2. For a set Z ⊆ E(D), let us denote by Z1 and Z2 the sets of
end vertices of Z in the colour classes E(B) and Q. The rank of Z in the first matroid will be rB(Z1) and
rM(Z2) in the second matroid, where rB is the rank function of the cycle matroid of the graph B and rM
is the rank function of the above defined matroid M. Note that if a vertex x is in the colour class E(B) (in
Q) then the edges incident to x correspond to parallel elements of the first (second) matroid.

Remark 4. By Corollary 13, rB(E(B)) = n − l and by Corollary 15(a), rM(Q) ≥ n − l. Moreover, if P ′ is
a refinement of P, then by Lemma 12 and Lemma 14,

l′ − l ≤ rM(ΓD(AP′)). (12)

Lemma 17 There exists a common independent set of size n − l of the above defined two matroids.

Proof. By the matroid intersection theorem of Edmonds [4], we have to prove that

n − l ≤ rB(E(D) − Z) + rM(Z) for all Z ⊆ E(D). (13)

Suppose that there is a set Z violating (13). We may assume that E(D) − Z is closed in the first matroid.

This implies that there is a set J ⊆ E(B) so that E(D) − Z is the set of all edges of D incident to J and J
is closed in the cycle matroid of B. Then by the closedness of J , E(B)− J is the set of augmenting edges of
the refinement P ′ := part(VP , J) of P, that is, AP′ = E(B)−J . (Obviously, Z is the set of all edges incident
to E(B) − J in D.) Then rM(Z) = rM(ΓD(AP′)) and rB(E(D) − Z) = rB(J) = n − l′, where l′ = |P ′|. By
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(12), l′ − l ≤ rM(ΓD(AP′)) and thus n − l = (l′ − l) + (n − l′) ≤ rM(Z) + rB(E(D) − Z), contradicting the
fact that Z violates (13). 2

The construction of the desired v-forest. Let N ⊆ E(D) be a common independent set of size n − l
of the above two matroids. (By Lemma 17, such a set exists.) It follows that N is a matching in D so
that it covers a basis E′ in the cycle matroid of B and an independent set Q′ in M with |Q′| = n − l.
Thus there exists a forest F ′ of GP so that it is the union of the spanning forests Fi in GP [Hi] for Hi ∈ Q′

and the almost spanning forests Fi − fi in GP [Hi] (for appropriate fi) for Hi ∈ Q − Q′. By Lemma 3(a),

E′ ∪ E(F ′) is a forest on V (G) and it contains 2(n − l +
∑

Hi∈Q⌊
rP(Hi)

2 ⌋) edges. Indeed, |E′ ∪ E(F ′)| =
|E′|+|E(F ′)| = n−l+

∑

Hi∈Q′ rP(Hi)+
∑

Hi∈Q−RP−Q′(rP(Hi)−1) = n−l+|Q′|+
∑

Hi∈Q−RP
(rP(Hi)−1) =

2(n − l +
∑

Hi∈Q⌊
rP(Hi)

2 ⌋).
We shall change the forests by appropriate ones obtaining a v-forest of the desired size. As in Remark 3,

for each Hi ∈ Q−Q′ we may replace Fi − fi in F ′ by an almost perfect v-forest of (GP [Hi],Hi) obtaining a
forest F ′′ on VP with the same number of edges. As above, E′ ∪E(F ′′) is a forest on V (G). For all e ∈ E′, e
is an augmenting edge for He ∈ Q′, where He is the pair of e in the matching N . Thus there exists a v-forest

Ke in (GP÷{Vi}[He],He) of size rP(Hi)+1
2 so that the trace of Ke in Vi is the edge e, where Vi ∈ P contains

the edge e. (Note that each Ke corresponds to a graph F ′
e in GP [He] such that part(VP , Fe) = part(VP , F ′

e).)
Replace E′

⋃

Hi∈Q′ E(Fi) by
⋃

e∈E′ E(Ke). By Lemma 5 with F = E′ ∪ E(F ′′), F0 = E′, Fi = Fe, F
′
i = Ke

(note that all the conditions of Lemma 5 are satisfied), we obtain again a forest of G with the same number

of edges. The forest obtained consists of v-pairs, that is it is a v-forest of size n − l +
∑

Hi∈Q⌊
rP(Hi)

2 ⌋. 2
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