On a min-max theorem on bipartite graphs

Zoltán Szigeti*

September 28, 2000; revised May 3, 2002

Abstract

Frank, Sebő and Tardos [4] proved that for any connected bipartite graft (G, T), the minimum size of a T -join is equal to the maximum value of a partition of A, where A is one of the two colour classes of G. Their proof consists of constructing a partition of A of value $|F|$, by using a minimum T-join F. That proof depends heavily on the properties of distances in graphs with conservative weightings. We follow the dual approach, that is starting from a partition of A of maximum value k, we construct a T-join of size k. Our proof relies only on Tutte's theorem on perfect matchings.

It is known [5] that the results of Lovász on 2-packing of T-cuts, of Seymour on packing of T-cuts in bipartite graphs and in grafts that cannot be T-contracted onto $\left(K_{4}, V\left(K_{4}\right)\right)$, and of Sebő on packing of T-borders are implied by this theorem of Frank et al.

The main contribution of the present paper is that all of these results can be derived from Tutte's theorem.

1 Introduction

This paper concerns matchings and T-joins. Since T-joins are generalizations of matching, the minimum weight T-join problem contains the minimum weight perfect matching problem. On the other hand, Edmonds and Johnson [2] showed that the former problem can be reduced to the latter one. Thus, these problems are - in fact - equivalent.

In matching theory lots of min-max results are known. Concerning matchings, in fact, we shall consider Tutte's theorem [11] on the existence of perfect matchings in general graphs, and not the min-max version, the Tutte-Berge formula. Concerning T-joins, we mention the following min-max theorems: The results of Edmonds-Johnson [2], Lovász [7] on 2-packing of T-cuts, of Seymour [9], [10] on packing of T-cuts in bipartite graphs and in grafts that cannot be T-contracted onto $\left(K_{4}, V\left(K_{4}\right)\right)$, of Sebő [8] on packing of T-borders and a generalization of Seymour's theorem due to Frank, Sebő and Tardos [4]. (For the definitions and the theorems see [3] or [5].) There are some easy known implications between these results, some others can be found in [5], where we showed that the result of Frank et al. [4] implies all of these results, including the Tutte theorem.

Our aim in this paper is to demonstrate a new (surprising) implication, namely, Tutte's theorem implies the result of Frank et al. [4], and consequently, all of these min-max results can be derived from Tutte's theorem.

2 Definitions, notation

In this paper $H=(V, E)$ denotes a graph where V is the set of vertices and E is the set of edges. $G=(A, B ; E)$ denotes always a bipartite connected graph and $T \subseteq A \cup B$ a subset of

[^0]vertices of even cardinality. The pair (G, T) is called a bipartite graft. An edge set $F \subseteq E$ is a T-join if $T=\left\{v \in A \cup B: d_{F}(v)\right.$ is odd $\}$. The minimum size of a T-join is denoted by $\boldsymbol{\tau}(\boldsymbol{G}, \boldsymbol{T})$. We mention that a bipartite graft (G, T) contains always a T-join.

For a bipartite graft $(G=(A, B ; E), T)$ let us introduce an auxiliary graph $G_{A}:=\left(T, E_{A}\right)$ on the vertex set T, where for $u, v \in T, u v \in E_{A}$ if at least one of u and v belongs to A and there exists a path in G connecting u and v of length one or two.

Let K be a vertex set in G. Then $\delta(K)$ denotes the set of edges connecting K and $(A \cup B)-K$. $G[K]$ denotes the subgraph induced by $K . b_{K}^{T}$ is defined to be 0 or 1 depending on the parity of $|T \cap K| . K$ is called T-odd if $b_{K}^{T}=1$ and T-even if $b_{K}^{T}=0$. For a subgraph K of G, $\bar{K}=G[V(G)-V(K)]$.

We shall need the following operation applied for grafts. For a connected subgraph K of G, by T-contracting K we mean the graft $\left(G^{\prime}, T^{\prime}\right)$ obtained from (G, T) where $G^{\prime}=G / K$ (that is K is contracted into one vertex v_{K}) and $T^{\prime}=T-V(K)$ if $b_{K}^{T}=0$ and $T^{\prime}=T-V(K)+\left\{v_{K}\right\}$ if $b_{K}^{T}=1$.

In what follows a component of a graph means a connected component. For $X \subseteq V(G)$, $\mathcal{K}(G-X)$ denotes the set of components of $G-X$ and $\mathcal{K}_{T}(G-X)$ denotes the set of T-odd components of $G-X$. Let $q_{T}(G-X)=\left|\mathcal{K}_{T}(G-X)\right|$.

We denote by $\mathcal{P}_{A}:=\{u: u \in A\}$ the partition of A where the elements of \mathcal{P}_{A} are the vertices in A as singletons. The value of a (sub)partition $\mathcal{P}=\left\{A_{1}, \ldots, A_{k}\right\}$ of A is defined to be

$$
\begin{equation*}
\operatorname{val}(\mathcal{P})=\sum\left\{q_{T}\left(G-A_{i}\right): A_{i} \in \mathcal{P}\right\} \tag{1}
\end{equation*}
$$

in other words,

$$
\begin{equation*}
\operatorname{val}(\mathcal{P})=\sum\left\{b_{K}^{T}: K \in \bigcup_{A_{i} \in \mathcal{P}} \mathcal{K}\left(G-A_{i}\right)\right\} \tag{2}
\end{equation*}
$$

The theorem of Frank et al. [4] that generalizes all the min-max results mentioned in the Introduction is as follows.

Theorem 1 (Frank, Sebő, Tardos) If (G, T) is a bipartite graft with $G=(A, B ; E)$, then

$$
\begin{equation*}
\tau(G, T)=\max \{\operatorname{val}(\mathcal{P}): \mathcal{P} \text { is a partition of } A\} \tag{3}
\end{equation*}
$$

In order to be able to prove Theorem 1 by induction we will have to prove a slightly stronger result than Theorem 1. To present it we need some definitions. An edge set C of a connected graph G is called bicut if $G-C$ has exactly two connected components. Note that each edge of a tree is a bicut. Let $\mathcal{P}=\left\{A_{1}, \ldots, A_{k}\right\}$ be a partition of A and let $\mathcal{Q}=\left\{B_{1}, \ldots, B_{l}\right\}$ be a partition of B. Then $\mathcal{P} \cup \mathcal{Q}$ is called a bi-partition of $A \cup B$ in G. Let us denote by $\boldsymbol{G} /(\mathcal{P} \cup \mathcal{Q})$ the bipartite graph obtained from G by identifying the vertices in R for every member $R \in \mathcal{P} \cup \mathcal{Q}$ and by taking the underlying simple graph. A bi-partition $\mathcal{P} \cup \mathcal{Q}$ of $A \cup B$ is called admissible if
(i) $F:=G /(\mathcal{P} \cup \mathcal{Q})$ is a tree, and
(ii) for each edge e of F, the edge set of G that corresponds to e forms a bicut of G.

By Claim 4, for any bipartite graft there exists an admissible bi-partition.
Theorem 2 If (G, T) is a bipartite graft with $G=(A, B ; E)$, then

$$
\begin{equation*}
\tau(G, T)=\max \{\operatorname{val}(\mathcal{P}): \mathcal{P} \cup \mathcal{Q} \text { is an admissible bi-partition of } A \cup B\} \tag{4}
\end{equation*}
$$

The proof of Frank et al. [4] for Theorem 1 consists of constructing a partition of A of value $|F|$, by using a minimum T-join F. That proof depends heavily on the properties of distances in graphs with conservative weightings. We follow the dual approach, that is starting from a
bi-partition of $A \cup B$ of maximum value k, we construct a T-join of size k. Our proof applies induction. Taking a special optimal admissible bi-partition either we can use induction for some contracted graphs (and here we need admissibility of the bi-partition) or we can apply Tutte's theorem on perfect matchings, namely a graph H has a perfect matching if and only if $q_{V}(H-X) \leq|X|$ for every vertex set X of $V(H)$.

We must mention two papers on this topic. Kostochka [6] and Ageev and Kostochka [1] proved results similar to Theorem 2. Their proof technique is different from the present one.

3 Preliminary results

Claim 3 Let $(G=(A, B ; E), T)$ be a bipartite graft.
(a) Then the bi-partition $\mathcal{P} \cup \mathcal{Q}$ of $A \cup B$ satisfies (i) where $\mathcal{P}:=\{a: a \in A\}$ and $\mathcal{Q}:=\{B\}$.
(b) If $X \subseteq A$, then the bi-partition $\mathcal{P} \cup \mathcal{Q}$ of $A \cup B$ satisfies (i) where $\mathcal{P}:=\{a: a \in A-X\} \cup\{X\}$ and $\mathcal{Q}:=\{K \cap B: K \in \mathcal{K}(G-X)\}$.

The following claim (whose proof is left for the reader) shows that for any bipartite graft there exists an admissible bi-partition.

Claim 4 Let $(G=(A, B ; E), T)$ be a bipartite graft.
(a) If there is no cut vertex in A then $\mathcal{P} \cup \mathcal{Q}$ is an admissible bi-partition of $A \cup B$, where $\mathcal{P}:=\{a: a \in A\}$ and $\mathcal{Q}:=\{B\}$.
(b) If there is a cut vertex $v \in A$, that is G can be decomposed into two connected bipartite subgraphs $G_{1}=\left(A_{1}, B_{1} ; E_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2} ; E_{2}\right)$ with exactly one vertex in common, namely v, then let us denote by $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ the two grafts obtained from (G, T) by T-contracting $V\left(G_{2}\right)$ and $V\left(G_{1}\right)$. If for $i=1,2, \mathcal{P}_{i} \cup \mathcal{Q}_{i}$ is an admissible bi-partition of $A_{i} \cup B_{i}$ and $v \in A_{i}^{\prime}$ then $\mathcal{P} \cup \mathcal{Q}$ is an admissible bi-partition of $A \cup B$, where $\mathcal{P}:=$ $\left(\mathcal{P}_{1}-A_{1}^{\prime}\right) \cup\left(\mathcal{P}_{2}-A_{2}^{\prime}\right) \cup\left\{A_{1}^{\prime} \cup A_{2}^{\prime}\right\}$ and $\mathcal{Q}:=\mathcal{Q}_{1} \cup \mathcal{Q}_{2}$.

The definition of an admissible bi-partition implies at once the following claim.
Claim 5 Let $\mathcal{P} \cup \mathcal{Q}$ be an admissible bi-partition of $A \cup B$.
(a) $K \in \mathcal{K}_{T}\left(G-A_{i}\right)$ for some $A_{i} \in \mathcal{P}$ if and only if $\bar{K} \in \mathcal{K}_{T}\left(G-B_{j}\right)$ for some $B_{j} \in \mathcal{Q}$.
(b) $\operatorname{val}(\mathcal{P})=\operatorname{val}(\mathcal{Q})$.

Claim 6 Let \mathcal{P} be a partition of A and F a T-join in a bipartite graft $(G=(A, B ; E), T)$.
(a) Then $\operatorname{val}(\mathcal{P}) \leq|F|$.
(b) Moreover, if $\operatorname{val}(\mathcal{P})=|F|$, then for every component K of $G-A_{i}$ for any $A_{i} \in \mathcal{P}$, $|\delta(K) \cap F|=b_{K}^{T}$.
Proof. Let $\mathcal{R}:=\bigcup_{A_{i} \in \mathcal{P}} \mathcal{K}\left(G-A_{i}\right)$. By parity, for each $K \in \mathcal{R}$,

$$
b_{K}^{T} \leq|\delta(K) \cap F|
$$

Since for $K_{1}, K_{2} \in \mathcal{R}, \delta\left(K_{1}\right) \cap \delta\left(K_{2}\right)=\emptyset$, we have

$$
\operatorname{val}(\mathcal{P})=\sum_{K \in \mathcal{R}} b_{K}^{T} \leq \sum_{K \in \mathcal{R}}|\delta(K) \cap F| \leq|F| .
$$

Claim 7 For every partition \mathcal{P} of A in a bipartite graft $(G=(A, B ; E), T)$,

$$
\operatorname{val}(\mathcal{P}) \equiv|T \cap A| \quad(\bmod 2)
$$

Proof. Since $|T|$ is even, for each $A_{i} \in \mathcal{P}, q_{T}\left(G-A_{i}\right) \equiv\left|T \cap A_{i}\right| \quad(\bmod 2)$. Thus

$$
\operatorname{val}(\mathcal{P})=\sum_{A_{i} \in \mathcal{P}} q_{T}\left(G-A_{i}\right) \equiv \sum_{A_{i} \in \mathcal{P}}\left|T \cap A_{i}\right|=|T \cap A| .
$$

We shall deal with some bi-partitions along the proofs. The admissibility of these bipartitions can always be easily verified. The following easy fact may be useful.

Claim 8 Let X be a subset of vertices of a connected graph H. Let K be a component of $H-X$. If X is contained in one of the components of $H-K$, then $H-K$ is connected.

Claim 9 Let H be a connected graph with $|V(H)|$ even. If X is a minimal vertex set with $q_{V}(H-X)>|X|$, then for every component K of $H-X, H-K$ is connected.

Proof. By assumption, using the usual parity argument, $q_{V}(H-X) \geq|X|+2$. Let K be any component of $H-X$. Then at least one component N of $H-K$ contains more odd components of $H-X$ than vertices in X, that is $q_{V}(H-(N \cap X))>|N \cap X|$. Then, by the minimality of $X, N \cap X=X$, that is, by Claim $8, H-K$ is connected.

Claim 10 Let $(G=(A, B ; E), T)$ be a bipartite graft. If the auxiliary graph G_{A} has a perfect matching M then G contains a T-join of cardinality $|T \cap A|$.

Proof. For every edge $u v \in M$ there exists an (u, v)-path in G of length at most two. Since M is a matching these paths are edge disjoint. The union F of these paths is a T-join of G because M covers all the vertices of T. By construction, $|F|=|T \cap A|$.

4 The proof of Theorem 2

Let (G, T) be a counterexample with minimum number of vertices in G. By Claim $6($ a), for any admissible bi-partition $\mathcal{P} \cup \mathcal{Q}$ of $A \cup B, \operatorname{val}(\mathcal{P}) \leq \tau(G, T)$, so $\operatorname{val}(\mathcal{P})<\tau(G, T)$.

Lemma $11 G$ is 2-connected.
Proof. Suppose that G contains a cut vertex v, by symmetry we may suppose that $v \in A$. We use the notation of Claim 4. For $i=1,2,\left(G_{i}, T_{i}\right)$ is a bipartite graft and $\left|A_{i} \cup B_{i}\right|<|A \cup B|$ so there exists an admissible bi-partition $\mathcal{P}_{i} \cup \mathcal{Q}_{i}$ of $A_{i} \cup B_{i}$ with

$$
\begin{equation*}
\tau\left(G_{i}, T_{i}\right)=\operatorname{val}\left(\mathcal{P}_{i}\right) \tag{5}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\tau(G, T)=\tau\left(G_{1}, T_{1}\right)+\tau\left(G_{2}, T_{2}\right) \tag{6}
\end{equation*}
$$

Let $\mathcal{P} \cup \mathcal{Q}$ be the admissible bi-partition of $A \cup B$ defined in Claim 4(b). Note that

$$
\begin{equation*}
\operatorname{val}(\mathcal{P})=\operatorname{val}\left(\mathcal{P}_{1}\right)+\operatorname{val}\left(\mathcal{P}_{2}\right) . \tag{7}
\end{equation*}
$$

Then, by (6), (5) and (7), $\tau(G, T)=\operatorname{val}(\mathcal{P})$ showing that (G, T) is not a counterexample.
Let us denote by MAX the maximum value of an admissible bi-partition of $A \cup B$. Observe that MAX $\geq|T \cap A|$ and MAX $\geq|T \cap B|$. The first comes from the admissible bi-partition $\mathcal{P}=\{v: v \in A\}, \mathcal{Q}=\{B\}$, the other one from $\mathcal{P}=\{A\}, \mathcal{Q}=\{v: v \in B\}$. These bi-partitions are admissible by Claim 4(a).

CASE 1. First suppose that $\operatorname{MAX}=|T \cap A|($ or $\operatorname{MAX}=|T \cap B|)$.

Lemma 12 If the auxiliary graph G_{A} has no perfect matching then there exists an admissible bi-partition $\mathcal{P} \cup \mathcal{Q}$ of $A \cup B$ with $\operatorname{val}(\mathcal{P})>|T \cap A|$.

Proof. By Tutte's Theorem, there exists a set $X \subset T$ so that $q_{T}\left(G_{A}-X\right)>|X|$. Let us take a minimal such set.

We claim that $X \cap B=\emptyset$. Suppose that $a \in X \cap B$. Suppose that a is connected to two odd components K_{1} and K_{2} of $G_{A}-X$. Then, by the definition of G_{A}, there is an edge between K_{1} and K_{2}, that is they cannot be different components of $G_{A}-X$. Thus a is connected to at most one odd component of $G_{A}-X$. Hence $q_{T}\left(G_{A}-(X-a)\right) \geq q_{T}\left(G_{A}-X\right)-1 \geq|X|>|X-a|$, contradicting the minimality of X.

Let us denote by B_{1} the set of vertices in $B-T$ that has at least one neighbour in $A \cap T$ and let $B_{2}:=B-T-B_{1}$. Let $G_{1}:=G\left[T \cup B_{1}\right]$ and $G_{2}:=G\left[(A-T) \cup B_{2}\right]$. Note that by the definition of G_{A} there is a bijection between the components of $G_{A}-X$ and the components of $G_{1}-X$ different from isolated vertices in B_{1}. Moreover, the T parity of the corresponding components are the same. Let $\mathcal{R}=\mathcal{K}\left(G_{2}\right)$. Note that if $R \in \mathcal{R}$ then there is no edge between $R \cap B_{2}$ and $A \cap T$. We distinguish two cases.

Case I. First suppose that $X=\emptyset$, that is $q_{T}\left(G_{1}\right) \geq 1$, in other words $q_{T}(G-(A-T)) \geq 1$. Let $\mathcal{R}_{1} \subseteq \mathcal{R}$ be a minimal subset of \mathcal{R} so that $q_{T}\left(G-A^{\prime}\right) \geq 1$, where $A^{\prime}:=\bigcup\left\{R \cap A: R \in \mathcal{R}_{1}\right\}$. Let $\mathcal{P}=\left\{u: u \in A-A^{\prime}\right\} \cup\left\{A^{\prime}\right\}$ and let $\mathcal{Q}=\left\{R \cap B: R \in \mathcal{K}\left(G-A^{\prime}\right)\right\}$. By Claim 3(b), $\mathcal{P} \cup \mathcal{Q}$ satisfies (i). Since $A^{\prime} \subseteq A-T,\left|\left(V(G)-A^{\prime}\right) \cap T\right|$ is even so $q_{T}\left(G-A^{\prime}\right) \geq 2$ and, by the minimality of \mathcal{R}_{1}, each such component has at least one neighbour in every $R \in \mathcal{R}_{1}$. Since G is 2 -connected and for every $R \in \mathcal{R}_{1}, G[R]$ is connected, it follows that for every $D \in \mathcal{K}\left(G-A^{\prime}\right)$, $G-D$ is connected, that is (ii.) is also satisfied, so $\mathcal{P} \cup \mathcal{Q}$ is an admissible bi-partition and

$$
\operatorname{val}(\mathcal{P})=\sum_{A_{i} \in \mathcal{P}} q_{T}\left(G-A_{i}\right) \geq \sum_{t \in A-A^{\prime}} b_{t}^{T}+q_{T}\left(G-A^{\prime}\right) \geq|T \cap A|+2 .
$$

Case II. Secondly suppose that $X \neq \emptyset$. By the minimality of $X, X \subset V\left(G^{\prime}\right)$ where $G^{\prime} \in \mathcal{K}\left(G_{1}\right)$. Let $\mathcal{R}_{1} \subseteq \mathcal{R}$ be a minimal subset of \mathcal{R} so that all the components of $G^{\prime}-X$ rest in different components of $G-A^{\prime \prime}-X$, where $A^{\prime \prime}:=\bigcup\left\{R \cap A: R \in \mathcal{R}_{1}\right\}$. Let $\mathcal{P}:=\left\{X \cup A^{\prime \prime}\right\} \cup\{u: u \in$ $\left.A-\left(X \cup A^{\prime \prime}\right)\right\}$ and let $\mathcal{Q}=\left\{R \cap B: R \in \mathcal{K}\left(G-X-A^{\prime \prime}\right)\right\}$. By Claim 3(b), $\mathcal{P} \cup \mathcal{Q}$ satisfies (i). For each $R \in \mathcal{R}_{1}, G[R]$ is connected and, by the minimality of \mathcal{R}_{1}, R has neighbours in at least two different components of $G-X-A^{\prime \prime}$. Moreover, by Claim 9, for each $K \in \mathcal{K}\left(G^{\prime}-X\right)$, $G^{\prime}-K$ is connected, hence $\left(G-\bigcup\left\{R: R \in \mathcal{R}_{1}\right\}\right)-K^{\prime}$ is connected, where $K^{\prime} \in \mathcal{K}\left(G-X-A^{\prime \prime}\right)$ that contains K. It follows that $X \cup A^{\prime \prime}$ is contained in one of the components of $G-K^{\prime}$. Thus, by Claim 8 and by 2-connectivity, $\mathcal{P} \cup \mathcal{Q}$ is an admissible bi-partition of $A \cup B$ and

$$
\begin{aligned}
\operatorname{val}(\mathcal{P}) & =\sum_{A_{i} \in \mathcal{P}} q_{T}\left(G-A_{i}\right)=\sum_{t \in A-X-A^{\prime \prime}} b_{t}^{T}+q_{T}\left(G-\left(X \cup A^{\prime \prime}\right)\right) \\
& =|A \cap T|-|X|+q_{T}\left(G_{A}-X\right)>|T \cap A|
\end{aligned}
$$

By Lemma 12, $G_{A}\left(G_{B}\right.$, resp.) has a perfect matching and thus, by Claim 10, G contains a T-join of cardinality $|T \cap A|(|T \cap B|$, resp. $)$. By Claim 6, the proof of the theorem is complete.

CASE 2. Secondly suppose that MAX $>|T \cap A|$ and MAX $>|T \cap B|$. Then, by Lemma 11, every optimal admissible bi-partition contains a set A_{i} with $1<\left|A_{i}\right|<|A|$. Let us choose an optimal admissible bi-partition $\mathcal{P} \cup \mathcal{Q}$ of $A \cup B$ so that such a set A_{i} of \mathcal{P} is as large as possible. Let $K \in \mathcal{K}\left(G-A_{i}\right)$ so that $|V(K)| \geq 2$. (Since $\left|A_{i}\right|<|A|$ such a set exists.) Then, by Claim $5, \bar{K} \in \mathcal{K}\left(G-B_{j}\right)$ for some $B_{j} \in \mathcal{Q}$ and $|V(\bar{K})| \geq 2$. Let us denote by $\left(G_{1}, T_{1}\right)$ and $\left(G_{2}, T_{2}\right)$ the two bipartite grafts obtained from (G, T) by T-contracting the connected subgraphs K and \bar{K}, respectively. The colour classes of G_{r} will be denoted by A^{r} and B^{r}, while the contracted
vertex of G_{r} is denoted by v_{r} for $r=1,2$. Let $\mathcal{P}_{1}:=\left\{A_{k} \in \mathcal{P}: A_{k} \subseteq A^{1}\right\}$ and $\mathcal{Q}_{1}:=\left\{B_{l} \in \mathcal{Q}\right.$: $\left.B_{l} \subseteq B^{1}\right\} \cup\left\{v_{1}\right\}$. Let $\mathcal{P}_{2}:=\left\{A_{k} \in \mathcal{P}: A_{k} \subseteq A^{2}\right\} \cup\left\{v_{2}\right\}$ and $\mathcal{Q}_{2}:=\left\{B_{l} \in \mathcal{Q}: B_{l} \subseteq B^{2}\right\}$. The admissibility of the bi-partition $\mathcal{P} \cup \mathcal{Q}$ implies the following Claim.

Claim 13 (a) $\mathcal{P}_{r} \cup \mathcal{Q}_{r}$ is an admissible bi-partition of $A^{r} \cup B^{r}$ in $G_{r}, r=1,2$.
(b) $\operatorname{val}_{(G, T)}(\mathcal{P})=\operatorname{val}_{\left(G_{1}, T_{1}\right)}\left(\mathcal{P}_{1}\right)-b_{v_{1}}^{T_{1}}+\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)$.

Lemma 14 For $r=1,2, \mathcal{P}_{r} \cup \mathcal{Q}_{r}$ is an optimal admissible bi-partition of $A^{r} \cup B^{r}$ in $\left(G_{r}, T_{r}\right)$.
Proof. By Claim 13(a), only the optimality must be verified. By symmetry, it is enough to prove it for $r=2$. Suppose that $\mathcal{P}^{\prime} \cup \mathcal{Q}^{\prime}$ is an admissible bi-partition of $A^{2} \cup B^{2}$ in G_{2} with $\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}^{\prime}\right)>\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)$. Let us denote by X that member of \mathcal{P}^{\prime} that contains v_{2}. Since $\mathcal{P}_{1} \cup \mathcal{Q}_{1}$ and $\mathcal{P}^{\prime} \cup \mathcal{Q}^{\prime}$ are admissible bi-partitions and \bar{K} is connected, $\mathcal{P}^{\prime \prime}:=\left(\mathcal{P}_{1}-A_{i}\right) \cup\left(\mathcal{P}^{\prime}-\right.$ $X) \cup\left\{\left(X-v_{2}\right) \cup A_{i}\right\}, \mathcal{Q}^{\prime \prime}=\left(\mathcal{Q}_{1}-\left\{v_{1}\right\}\right) \cup \mathcal{Q}^{\prime}$ is an admissible bi-partition of $A \cup B$ in G. By Claim 13(b),

$$
\begin{aligned}
\operatorname{val}_{(G, T)}\left(\mathcal{P}^{\prime \prime}\right) & =\operatorname{val}_{\left(G_{1}, T_{1}\right)}\left(\mathcal{P}_{1}\right)-b_{v_{1}}^{T_{1}}+\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}^{\prime}\right) \\
& >\operatorname{val}_{\left(G_{1}, T_{1}\right)}\left(\mathcal{P}_{1}\right)-b_{v_{1}}^{T_{1}}+\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)=\operatorname{val}_{(G, T)}(\mathcal{P}),
\end{aligned}
$$

a contradiction.
Lemma 15 If K is T-odd, then for every edge $v_{2} u$ of $G_{2}, \mathcal{P}_{2} \cup \mathcal{Q}_{2}$ is an optimal admissible bi-partition of $A^{2} \cup B^{2}$ in $\left(G_{2}, T_{2}^{\prime}\right)$ of value val ${\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)-1$, where $T_{2}^{\prime}:=T_{2} \oplus\left\{v_{2}, u\right\}$.
Proof. By Claim 13(a), only the optimality must be verified. $\operatorname{val}_{\left(G_{2}, T_{2}^{\prime}\right)}\left(\mathcal{P}_{2}\right)=\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)-$ 1 because for a component L of $G_{2}-R$ with $R \in \mathcal{P}_{2}-\left\{v_{2}\right\},\left|L \cap T_{2}\right| \equiv\left|L \cap T_{2}^{\prime}\right|(\bmod 2)$ and the unique component K of $G_{2}-v_{2}$ becomes T_{2}^{\prime}-even. Suppose that $\mathcal{P}^{\prime} \cup \mathcal{Q}^{\prime}$ is an admissible bi-partition of $A^{2} \cup B^{2}$ in $\left(G_{2}, T_{2}^{\prime}\right)$ with $\operatorname{val}_{\left(G_{2}, T_{2}^{\prime}\right)}\left(\mathcal{P}^{\prime}\right)>\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)-1$. By Claim 7, $\operatorname{val}_{\left(G_{2}, T_{2}^{\prime}\right)}\left(\mathcal{P}^{\prime}\right) \geq \operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)+1$. Note that since K is T-odd, $b_{v_{1}}^{T_{1}}=1$. Let us denote by X that member of \mathcal{P}^{\prime} that contains v_{2}. Since K and \bar{K} are connected, $\mathcal{P}^{\prime \prime}:=$ $\left(\mathcal{P}_{1}-A_{i}\right) \cup\left(\mathcal{P}^{\prime}-X\right) \cup\left\{\left(X-v_{2}\right) \cup A_{i}\right\}, \mathcal{Q}^{\prime \prime}=\left(\mathcal{Q}_{1}-\left\{v_{1}\right\}\right) \cup \mathcal{Q}^{\prime}$ is an admissible bi-partition of $A \cup B$ in G.

If $X=v_{2}$ then, by Claim 13(b),

$$
\begin{aligned}
\operatorname{val}_{(G, T)}\left(\mathcal{P}^{\prime \prime}\right) & =\operatorname{val}_{\left(G_{1}, T_{1}\right)}\left(\mathcal{P}_{1}\right)+\operatorname{val}_{\left(G_{2}, T_{2}^{\prime}\right)}\left(\mathcal{P}^{\prime}\right) \\
& \geq \operatorname{val}_{\left(G_{1}, T_{1}\right)}\left(\mathcal{P}_{1}\right)+\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)+1>\operatorname{val}_{(G, T)}(\mathcal{P}),
\end{aligned}
$$

a contradiction.
If $X \neq v_{2}$, then, by Claim 13(b),

$$
\begin{aligned}
\operatorname{val}_{(G, T)}\left(\mathcal{P}^{\prime \prime}\right) & \geq\left(\operatorname{val}_{\left(G_{1}, T_{1}\right)}\left(\mathcal{P}_{1}\right)-1\right)+\left(\operatorname{val}_{\left(G_{2}, T_{T}^{\prime}\right)}\left(\mathcal{P}^{\prime}\right)-1\right) \\
& \geq \operatorname{val}_{\left(G_{1}, T_{1}\right)}\left(\mathcal{P}_{1}\right)-1+\operatorname{val}_{\left(G_{2}, T_{2}\right)}\left(\mathcal{P}_{2}\right)=\operatorname{val}_{(G, T)}(\mathcal{P}),
\end{aligned}
$$

that is $\mathcal{P}^{\prime \prime} \cup \mathcal{Q}^{\prime \prime}$ is an optimal admissible bi-partition of $A \cup B$ in G, but $\left|\left(X-v_{2}\right) \cup A_{i}\right|>\left|A_{i}\right|$, contradicting the maximality of A_{i}.

By induction $\left(\left|V\left(G_{1}\right)\right|<|V(G)|\right.$ because $\left.|V(K)|>2\right)$ and by Lemma 14, there exists a T_{1}-join F_{1} in G_{1} with $\left|F_{1}\right|=\operatorname{val}\left(\mathcal{P}_{1}\right)$.

First suppose that K is a T-even component of $G-A_{i}$. By induction $\left(\left|V\left(G_{2}\right)\right|<|V(G)|\right.$ because $|V(\bar{K})| \geq 2)$ and by Lemma 14 , there exists a T_{2}-join F_{2} in G_{2} with $\left|F_{2}\right|=\operatorname{val}\left(\mathcal{P}_{2}\right)$. Then, by Claim 6, $\left|F_{1} \cap \delta(K)\right|=0=\left|F_{2} \cap \delta(K)\right|$, hence $F:=F_{1} \cup F_{2}$ is a T-join and, by Claim $13(\mathrm{~b}),|F|=\left|F_{1}\right|+\left|F_{2}\right|=\operatorname{val}\left(\mathcal{P}_{1}\right)+\operatorname{val}\left(\mathcal{P}_{2}\right)=\operatorname{val}(\mathcal{P})$. By Claim 6, we are done.

Now suppose that K is a T-odd component of $G-A_{i}$. Then, by Claim 14, $\left|F_{1} \cap \delta(K)\right|=1$. This edge corresponds to an edge $v_{2} u$ in G_{2}. By induction $\left(\left|V\left(G_{2}\right)\right|<|V(G)|\right.$ because $|V(\bar{K})| \geq$ 2) and by Lemma 15 with edge $v_{2} u$, there exists a T_{2}^{\prime}-join F_{2} in G_{2} with $\left|F_{2}\right|=\operatorname{val}\left(\mathcal{P}_{2}\right)-1$. Then $F:=F_{1} \cup F_{2}$ is a T-join and, by Claim $13(\mathrm{~b}),|F|=\left|F_{1}\right|+\left|F_{2}\right|=\operatorname{val}\left(\mathcal{P}_{1}\right)+\operatorname{val}\left(\mathcal{P}_{2}\right)-1=\operatorname{val}(\mathcal{P})$. By Claim 6, we are done.

References

[1] A. Ageev, A. Kostochka, Vertex set partitions preserving conservativeness, J. of Combin. Theory, Series B, 80 No. 2. (2000) 202-217.
[2] J. Edmonds, E. Johnson, Matching, Euler Tours and the Chinese Postman, Mathematical Programming 5 (1973) 88-124.
[3] A. Frank, A survey on T-joins, T-cuts, and conservative weightings, Combinatorics, Paul Erdős is Eighty (Volume 2), Bolyai Soc. Math. Stud. 2 (1993) 213-252.
[4] A. Frank, A. Sebő, É. Tardos, Covering directed and odd cuts, Mathematical Programming Study 22 (1984) 99-112.
[5] A. Frank, Z. Szigeti, On packing T-cuts, J. of Combin. Theory, Series B, 61 No. 2. (1994) 263-271.
[6] A. Kostochka, A refinement of Frank-Sebő-Tardos theorem and its applications, Sibirskij Journal on Operation Research 1 No. 3. (1994) 3-19. (in russian)
[7] L. Lovász, 2-matchings and 2-covers of hypergraphs, Acta Sci. Math. Hungar. 26 (1975) 433-444.
[8] A. Sebő, The Schrijver-system of odd-join polyhedra, Combinatorica 8 (1988) 103-116.
[9] P. D. Seymour, On odd cuts and planar multicommodity flows, Proc. London Math. Soc. Ser. III 42 (1981) 178-192.
[10] P. D. Seymour, The matroids with the max-flow min-cut property, J. of Combin. Theory, Series B, 23 (1977) 189-222.
[11] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947) 107-111.

[^0]: *Equipe Combinatoire, Université Paris 6, 75252 Paris, Cedex 05, France.

