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Abstract

Frank, Sebd and Tardos [4] proved that for any connected bipartite graft (G, T), the
minimum size of a T-join is equal to the maximum value of a partition of A, where A is
one of the two colour classes of G. Their proof consists of constructing a partition of A
of value |F|, by using a minimum T-join F. That proof depends heavily on the properties
of distances in graphs with conservative weightings. We follow the dual approach, that is
starting from a partition of A of maximum value k, we construct a T-join of size k. Our
proof relies only on Tutte’s theorem on perfect matchings.

It is known [5] that the results of Lovdsz on 2-packing of T-cuts, of Seymour on packing
of T-cuts in bipartite graphs and in grafts that cannot be T-contracted onto (K4, V(K4)),
and of Seb6 on packing of T-borders are implied by this theorem of Frank et al.

The main contribution of the present paper is that all of these results can be derived
from Tutte’s theorem.

1 Introduction

This paper concerns matchings and T-joins. Since T-joins are generalizations of matching, the
minimum weight T-join problem contains the minimum weight perfect matching problem. On
the other hand, Edmonds and Johnson [2] showed that the former problem can be reduced to
the latter one. Thus, these problems are - in fact - equivalent.

In matching theory lots of min-max results are known. Concerning matchings, in fact, we
shall consider Tutte’s theorem [11] on the existence of perfect matchings in general graphs,
and not the min-max version, the Tutte-Berge formula. Concerning T-joins, we mention the
following min-max theorems: The results of Edmonds-Johnson [2], Lovédsz [7] on 2-packing of
T-cuts, of Seymour [9], [10] on packing of T-cuts in bipartite graphs and in grafts that cannot
be T-contracted onto (K4, V(K4)), of Sebd [8] on packing of T-borders and a generalization of
Seymour’s theorem due to Frank, Seb6 and Tardos [4]. (For the definitions and the theorems
see [3] or [5].) There are some easy known implications between these results, some others can
be found in [5], where we showed that the result of Frank et al. [4] implies all of these results,
including the Tutte theorem.

Our aim in this paper is to demonstrate a new (surprising) implication, namely, Tutte’s
theorem implies the result of Frank et al. [4], and consequently, all of these min-max results
can be derived from Tutte’s theorem.

2 Definitions, notation

In this paper H = (V, E) denotes a graph where V is the set of vertices and F is the set of
edges. G = (A, B; E) denotes always a bipartite connected graph and 7' C AU B a subset of
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vertices of even cardinality. The pair (G,T) is called a bipartite graft. An edge set F' C F
is a T-join if T'= {v € AU B : dp(v) is odd}. The minimum size of a T-join is denoted by
7(G,T). We mention that a bipartite graft (G, T) contains always a T-join.

For a bipartite graft (G = (A, B; E),T) let us introduce an auxiliary graph G4 := (T, E4)
on the vertex set T', where for u,v € T, uv € E4 if at least one of u and v belongs to A and
there exists a path in G connecting u and v of length one or two.

Let K be a vertex set in G. Then §(K') denotes the set of edges connecting K and (AUB)—K.
G[K] denotes the subgraph induced by K. b% is defined to be 0 or 1 depending on the parity
of [T N K|. K is called T-odd if b4, = 1 and T-even if b% = 0. For a subgraph K of G,
K =G[V(GQ) - V(K)].

We shall need the following operation applied for grafts. For a connected subgraph K of G,
by T-contracting K we mean the graft (G’,T") obtained from (G,T) where G’ = G/K (that
is K is contracted into one vertex vi) and T/ =T —V(K) if bl =0 and T/ = T - V(K) + {vk }
if bf; = 1.

In what follows a component of a graph means a connected component. For X C V(G),
K(G — X) denotes the set of components of G — X and K (G — X) denotes the set of T-odd
components of G — X. Let ¢r(G — X) = |Kr(G — X)|.

We denote by P4 := {u : u € A} the partition of A where the elements of P4 are the
vertices in A as singletons. The value of a (sub)partition P = {A;,..., Ai} of A is defined to
be

val(P) = {ar(G — A;): A; € P}, (1)
in other words,

val(P) =Y {bg: K e |J K(G -4} (2)

A;eP
The theorem of Frank et al. [4] that generalizes all the min-max results mentioned in the
Introduction is as follows.
Theorem 1 (Frank, Sebd, Tardos) If (G,T) is a bipartite graft with G = (A, B; E), then
7(G,T) = max{val(P) : P is a partition of A}. (3)

In order to be able to prove Theorem 1 by induction we will have to prove a slightly stronger
result than Theorem 1. To present it we need some definitions. An edge set C of a connected
graph G is called bicut if G — C has exactly two connected components. Note that each edge
of a tree is a bicut. Let P = {A,..., A} be a partition of A and let Q@ = {By,...,B;}
be a partition of B. Then P U Q is called a bi-partition of AU B in G. Let us denote by
G/(P U Q) the bipartite graph obtained from G by identifying the vertices in R for every
member R € P U Q and by taking the underlying simple graph. A bi-partition PU Q of AU B
is called admissible if

(i) F:=G/(PUQ) is a tree, and
(ii) for each edge e of F, the edge set of G that corresponds to e forms a bicut of G.
By Claim 4, for any bipartite graft there exists an admissible bi-partition.
Theorem 2 If (G,T) is a bipartite graft with G = (A, B; E), then
7(G,T) = max{val(P) : PU Q is an admissible bi-partition of AU B}. 4)

The proof of Frank et al. [4] for Theorem 1 consists of constructing a partition of A of value
|F'|, by using a minimum T-join F. That proof depends heavily on the properties of distances
in graphs with conservative weightings. We follow the dual approach, that is starting from a



bi-partition of AU B of maximum value k, we construct a T-join of size k. Our proof applies
induction. Taking a special optimal admissible bi-partition either we can use induction for
some contracted graphs (and here we need admissibility of the bi-partition) or we can apply
Tutte’s theorem on perfect matchings, namely a graph H has a perfect matching if and only if
qv(H — X) < |X]| for every vertex set X of V(H).

We must mention two papers on this topic. Kostochka [6] and Ageev and Kostochka [1]
proved results similar to Theorem 2. Their proof technique is different from the present one.

3 Preliminary results

Claim 3 Let (G = (A,B;E),T) be a bipartite graft.
(a) Then the bi-partition P U Q of AU B satisfies (i) where P :={a:a € A} and Q := {B}.

(b) If X C A, then the bi-partition PUQ of AUB satisfies (i) where P :={a:a € A—X}U{X}

and Q:={KNB:K e K(G-X)}. 5

The following claim (whose proof is left for the reader) shows that for any bipartite graft
there exists an admissible bi-partition.

Claim 4 Let (G = (A,B;E),T) be a bipartite graft.

(a) If there is no cut vertex in A then P U Q is an admissible bi-partition of AU B, where
P:={a:a€ A} and Q := {B}.

(b) If there is a cut vertex v € A, that is G can be decomposed into two connected bipartite
subgraphs G1 = (A1, B1; E1) and Go = (Aa, Be; Ea) with exactly one vertex in common,
namely v, then let us denote by (G1,T1) and (Ga,Ts) the two grafts obtained from (G,T)
by T-contracting V(Gs) and V(Gy). If for i = 1,2, P; U Q; is an admissible bi-partition
of A; UB; and v € A} then P U Q is an admissible bi-partition of AU B, where P :=
(Pr— AU (P — AL) U{A] U ALY and Q := Q1 U Qs.

O
The definition of an admissible bi-partition implies at once the following claim.
Claim 5 Let P U Q be an admissible bi-partition of AU B.
(a) K € Kr(G — A;) for some A; € P if and only if K € K1 (G — B;) for some B; € Q.
(b) val(P) = val(Q). .

Claim 6 Let P be a partition of A and F a T-join in a bipartite graft (G = (A, B; E),T).
(a) Then val(P) < |F|.

(b) Moreover, if val(P) = |F|, then for every component K of G — A; for any A; € P,
|6(K)N F| = bk.

Proof. Let R :=J,,cp K(G — A;). By parity, for each K € R,
bE < |6(K)NF|.
Since for K, Ky € R,6(K1) N§(K3) = 0, we have

val(P) = Y b < Y [6(K)NF| <|F|.
KeR KeR O



Claim 7 For every partition P of A in a bipartite graft (G = (A, B; E),T),
val(P) = |T N A| (mod 2).
Proof. Since |T'| is even, for each A; € P,qr(G — A4;) = |T N A;| (mod 2). Thus

val(P)= Y qr(G-A)= Y [TNA|=ITNA|
A;eP A;eP O

We shall deal with some bi-partitions along the proofs. The admissibility of these bi-
partitions can always be easily verified. The following easy fact may be useful.

Claim 8 Let X be a subset of vertices of a connected graph H. Let K be a component of H—X.
If X is contained in one of the components of H — K, then H — K is connected. ]

Claim 9 Let H be a connected graph with |V(H)| even. If X is a minimal vertex set with
qgv(H — X) > | X|, then for every component K of H— X, H — K is connected.

Proof. By assumption, using the usual parity argument, gy (H — X) > | X| + 2. Let K be any
component of H — X. Then at least one component NV of H — K contains more odd components
of H — X than vertices in X, that is ¢y (H — (NN X)) > |[N N X|. Then, by the minimality of
X, NN X = X, that is, by Claim 8, H — K is connected. O

Claim 10 Let (G = (A,B; E),T) be a bipartite graft. If the auziliary graph G a has a perfect
matching M then G contains a T-join of cardinality |T N A|.

Proof. For every edge uv € M there exists an (u,v)-path in G of length at most two. Since
M is a matching these paths are edge disjoint. The union F' of these paths is a T-join of G
because M covers all the vertices of T. By construction, |F| = |T N A|. O

4 The proof of Theorem 2

Let (G,T) be a counterexample with minimum number of vertices in G. By Claim 6(a), for any
admissible bi-partition P U Q of AU B, val(P) < 7(G,T), so val(P) < 7(G,T).

Lemma 11 G is 2-connected.

Proof. Suppose that G contains a cut vertex v, by symmetry we may suppose that v € A. We
use the notation of Claim 4. For i = 1,2, (G;,T;) is a bipartite graft and |4; U B;| < |AU B|
so there exists an admissible bi-partition P; U Q; of A; U B; with

7(Gi, T;) = val(P;). (5)
Clearly,
T(G,T):T(Gl,T1)+T(G2,T2). (6)
Let P U Q be the admissible bi-partition of AU B defined in Claim 4(b). Note that
val(P) = val(Py) + val(Pz). (7)

Then, by (6), (5) and (7), 7(G,T) = val(P) showing that (G, T) is not a counterexample. O

Let us denote by MAX the maximum value of an admissible bi-partition of AU B. Observe
that MAX> |T'N A| and MAX> |T'N B|. The first comes from the admissible bi-partition
P ={v:ve A}, Q= {B}, the other one from P = {A}, Q = {v : v € B}. These bi-partitions
are admissible by Claim 4(a).

CASE 1. First suppose that MAX= |T'N A| (or MAX= |T'N B|).



Lemma 12 If the auxiliary graph G o has no perfect matching then there exists an admissible
bi-partition P U Q of AU B with val(P) > |T N Al.

Proof. By Tutte’s Theorem, there exists a set X C T so that gr(Ga — X) > | X|. Let us take
a minimal such set.

We claim that X N B = (). Suppose that a € X N B. Suppose that a is connected to two odd
components K1 and Ko of G4 — X. Then, by the definition of G 4, there is an edge between K;
and Ks, that is they cannot be different components of G 4 — X. Thus a is connected to at most
one odd component of G4 — X. Hence gr(Ga — (X —a)) > qr(Ga — X) —1 > |X| > | X —al,
contradicting the minimality of X.

Let us denote by Bj the set of vertices in B — T that has at least one neighbour in ANT
and let By := B—T — By. Let G; := G[T U By] and G5 := G[(A — T) U Bs]. Note that by the
definition of G 4 there is a bijection between the components of G4 — X and the components
of G — X different from isolated vertices in B;. Moreover, the T' parity of the corresponding
components are the same. Let R = K(G3). Note that if R € R then there is no edge between
RN By and ANT. We distinguish two cases.

Case 1. First suppose that X = (), that is ¢7(G1) > 1, in other words ¢r(G — (A—T)) > 1. Let
R1 € R be a minimal subset of R so that ¢r(G — A") > 1, where A’ :=|J{RNA: R € Rq}.
Let P={u:ue A-A}U{A}and let @ = {RNB: R € K(G— A")}. By Claim 3(b),
P U Q satisfies (i). Since A’ CA-T, |(V(G) — A')NT| is even so qr(G — A’) > 2 and, by the
minimality of R1, each such component has at least one neighbour in every R € R;. Since G is
2-connected and for every R € R, G[R] is connected, it follows that for every D € K(G — A’),
G — D is connected, that is (ii.) is also satisfied, so P U Q is an admissible bi-partition and

val(P)= > qr(G—A) > Y b +qr(G—A)>[TNA+2.
A, eP teA—A'

Case II. Secondly suppose that X # (). By the minimality of X, X C V(G’) where G’ € K(G1).
Let R1 € R be a minimal subset of R so that all the components of G’ — X rest in different
components of G — A” — X, where A” .= |J{RNA: ReR1}. Let P:={XUA"}U{u:u€
A—(XUAM}and let Q ={RNB: R e K(G-X —A")}. By Claim 3(b), P U Q satisfies
(i). For each R € Ry, G[R] is connected and, by the minimality of Rq, R has neighbours in at
least two different components of G — X — A”. Moreover, by Claim 9, for each K € K(G' — X),
G’ — K is connected, hence (G—|J{R: R € R1})— K’ is connected, where K’ € K(G—X —A")
that contains K. It follows that X U A" is contained in one of the components of G — K’. Thus,
by Claim 8 and by 2-connectivity, P U Q is an admissible bi-partition of AU B and

va(P) = Y ar(G—A)= > b +q(G—-(XUA")
A;eP teA—-X—A"
[ANT| —|X|+qr(Ga — X) > [T NA|.

O

By Lemma 12, G4 (Gp, resp.) has a perfect matching and thus, by Claim 10, G contains a
T-join of cardinality |T'N Al (|T'N B|, resp.). By Claim 6, the proof of the theorem is complete.

CASE 2. Secondly suppose that MAX> |T'N A| and MAX> |T' N B|. Then, by Lemma 11,
every optimal admissible bi-partition contains a set A; with 1 < |4;] < |A]. Let us choose an
optimal admissible bi-partition P U Q of AU B so that such a set A; of P is as large as possible.
Let K € K(G — A;) so that |[V(K)| > 2. (Since |A;| < |A| such a set exists.) Then, by Claim
5, K € K(G — B;) for some B; € Q and |[V(K)| > 2. Let us denote by (G1,73) and (G, T3)
the two bipartite grafts obtained from (G, T') by T-contracting the connected subgraphs K and
K, respectively. The colour classes of G, will be denoted by A" and B", while the contracted



vertex of G, is denoted by v, for r =1,2. Let Py := {4y € P: A, C A'} and Q; := {B; € Q:
B; C Bl} U {7)1}. Let Py := {Ak eP: A C A2} @] {Uz} and Qs := {Bl €Q:B C B2} The
admissibility of the bi-partition P U Q implies the following Claim.

Claim 13 (a) P.U Q, is an admissible bi-partition of A" UB" in G,,r = 1,2.

(b) Ual(Gj) (P) = Ual(Gl,Tl)(Pl) — bzll + ’L}al(G%Tz)(Pz). O
Lemma 14 Forr = 1,2, P, UQ, is an optimal admissible bi-partition of A" UB" in (G,,T}).
Proof. By Claim 13(a), only the optimality must be verified. By symmetry, it is enough to
prove it for = 2. Suppose that P’ U Q' is an admissible bi-partition of A% U B? in Gy with
val(q,1,)(P") > val(g, r,)(P2). Let us denote by X that member of P’ that contains vy. Since
P1UQ; and P’ U Q' are admissible bi-partitions and K is connected, P” := (P — A;) U (P’ —
X)U{(X —v)UA;}, Q" = (91 — {v1}) U Q is an admissible bi-partition of AU B in G. By
Claim 13(b),

val(QT) ('P”) = Ual(Gth) ('Pl) - bg} + ’UCLZ(G%TQ) (Pl)
> val(Gth)(’Pl) — bfll + Ual(G2,T2)(7)2) = ’Ual(Gj)(’P),
a contradiction. O

Lemma 15 If K is T-odd, then for every edge vou of Ga, Po U Qs is an optimal admissible
bi-partition of A> U B? in (G2, T3) of value val(g, 1,)(P2) — 1, where Ty := Ty & {va, u}.
Proof. By Claim 13(a), only the optimality must be verified. val(a, 17)(P2) = val(a, 1,)(P2) —
1 because for a component L of Go — R with R € Py — {ve}, |L NTa| = |L N T4 (mod 2)
and the unique component K of G2 — vy becomes Th-even. Suppose that P’ U Q' is an
admissible bi-partition of A% U B? in (Gq,Ty) with val(g, 1y (P') > vala, 1) (P2) — 1. By
Claim 7, val(g,;)(P') > val(g,,)(P2) + 1. Note that since K is T-odd, by = 1. Let us
denote by X that member of P’ that contains vy. Since K and K are connected, P” :=
(P1—A)UP = X)U{(X —va)UA;}, Q" = (91 —{v1}) U Q is an admissible bi-partition of
AUB in G.
If X = vy then, by Claim 13(b),

Ual(G,T) (’P”) = Ual(Gl,Tl)(Pl) + Ual(G27T2§)(P/)
Ual(Gl,Tl)(Pl) + ’Ual(G%TQ)('Pg) +1> UGZ(G’T) ('P),

%

a contradiction.
If X # vy, then, by Claim 13(b),

Ual(G,T) (P//) Z (Ual(Gth)(Pl) — 1) =+ (Ual(G27T2,)(7D’) — 1)
'Ual(Gl,Tl)(Pl) -1+ Ual(G2’T2)(P2) = val(G’T) (P),

that is P” U Q" is an optimal admissible bi-partition of AU B in G, but [(X —v2) U A;| > |A;],
contradicting the maximality of A;. m]

By induction (|[V(G1)| < |[V(G)] because |[V(K)| > 2) and by Lemma 14, there exists a
Tl—jOiH F1 in Gl with |F1‘ = ’UCLl(P1).

First suppose that K is a T-even component of G — A;. By induction (|V(G2)| < |[V(G)]
because |V (K)| > 2) and by Lemma 14, there exists a Ty-join Fy in G with |Fy| = val(Ps).
Then, by Claim 6, |F1 NJ(K)| =0 = |FoaN(K)|, hence F' := Fy U F; is a T-join and, by Claim
13(b), |F| = |F1| + |F2| = val(P1) + val(Pz) = val(P). By Claim 6, we are done.

Now suppose that K is a T-odd component of G — A4;. Then, by Claim 14, |F; N§(K)| = 1.
This edge corresponds to an edge vou in Go. By induction (|[V(Gs)| < |[V(G)| because |V (K)| >
2) and by Lemma 15 with edge vau, there exists a Ts-join Fy in Go with |Fz| = val(P2)—1. Then
F := F1UF; is a T-join and, by Claim 13(b), |F| = |F1|+|Fz| = val(P1)+val(P2)—1 = val(P).
By Claim 6, we are done. m]

%
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