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Abstract

Frank, Sebő and Tardos [4] proved that for any connected bipartite graft (G, T ), the
minimum size of a T-join is equal to the maximum value of a partition of A, where A is
one of the two colour classes of G. Their proof consists of constructing a partition of A
of value |F |, by using a minimum T-join F. That proof depends heavily on the properties
of distances in graphs with conservative weightings. We follow the dual approach, that is
starting from a partition of A of maximum value k, we construct a T-join of size k. Our
proof relies only on Tutte’s theorem on perfect matchings.

It is known [5] that the results of Lovász on 2-packing of T-cuts, of Seymour on packing
of T-cuts in bipartite graphs and in grafts that cannot be T-contracted onto (K4, V (K4)),
and of Sebő on packing of T-borders are implied by this theorem of Frank et al.

The main contribution of the present paper is that all of these results can be derived
from Tutte’s theorem.

1 Introduction

This paper concerns matchings and T-joins. Since T-joins are generalizations of matching, the
minimum weight T-join problem contains the minimum weight perfect matching problem. On
the other hand, Edmonds and Johnson [2] showed that the former problem can be reduced to
the latter one. Thus, these problems are - in fact - equivalent.

In matching theory lots of min-max results are known. Concerning matchings, in fact, we
shall consider Tutte’s theorem [11] on the existence of perfect matchings in general graphs,
and not the min-max version, the Tutte-Berge formula. Concerning T-joins, we mention the
following min-max theorems: The results of Edmonds-Johnson [2], Lovász [7] on 2-packing of
T-cuts, of Seymour [9], [10] on packing of T-cuts in bipartite graphs and in grafts that cannot
be T-contracted onto (K4, V (K4)), of Sebő [8] on packing of T-borders and a generalization of
Seymour’s theorem due to Frank, Sebő and Tardos [4]. (For the definitions and the theorems
see [3] or [5].) There are some easy known implications between these results, some others can
be found in [5], where we showed that the result of Frank et al. [4] implies all of these results,
including the Tutte theorem.

Our aim in this paper is to demonstrate a new (surprising) implication, namely, Tutte’s
theorem implies the result of Frank et al. [4], and consequently, all of these min-max results
can be derived from Tutte’s theorem.

2 Definitions, notation

In this paper H = (V, E) denotes a graph where V is the set of vertices and E is the set of
edges. G = (A,B;E) denotes always a bipartite connected graph and T ⊆ A ∪ B a subset of
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vertices of even cardinality. The pair (G,T ) is called a bipartite graft. An edge set F ⊆ E
is a T-join if T = {v ∈ A ∪ B : dF (v) is odd}. The minimum size of a T-join is denoted by
τ (G, T ). We mention that a bipartite graft (G,T ) contains always a T-join.

For a bipartite graft (G = (A,B; E), T ) let us introduce an auxiliary graph GA := (T,EA)
on the vertex set T , where for u, v ∈ T, uv ∈ EA if at least one of u and v belongs to A and
there exists a path in G connecting u and v of length one or two.

Let K be a vertex set in G. Then δ(K) denotes the set of edges connecting K and (A∪B)−K.
G[K] denotes the subgraph induced by K. bT

K is defined to be 0 or 1 depending on the parity
of |T ∩ K|. K is called T-odd if bT

K = 1 and T-even if bT
K = 0. For a subgraph K of G,

K = G[V (G)− V (K)].
We shall need the following operation applied for grafts. For a connected subgraph K of G,

by T-contracting K we mean the graft (G′, T ′) obtained from (G,T ) where G′ = G/K (that
is K is contracted into one vertex vK) and T ′ = T −V (K) if bT

K = 0 and T ′ = T −V (K)+{vK}
if bT

K = 1.
In what follows a component of a graph means a connected component. For X ⊆ V (G),

K(G −X) denotes the set of components of G −X and KT (G −X) denotes the set of T -odd
components of G−X. Let qT (G−X) = |KT (G−X)|.

We denote by PA := {u : u ∈ A} the partition of A where the elements of PA are the
vertices in A as singletons. The value of a (sub)partition P = {A1, . . . , Ak} of A is defined to
be

val(P) =
∑

{qT (G−Ai) : Ai ∈ P}, (1)

in other words,
val(P) =

∑
{bT

K : K ∈
⋃

Ai∈P
K(G−Ai)}. (2)

The theorem of Frank et al. [4] that generalizes all the min-max results mentioned in the
Introduction is as follows.

Theorem 1 (Frank, Sebő, Tardos) If (G, T ) is a bipartite graft with G = (A,B; E), then

τ(G, T ) = max{val(P) : P is a partition of A}. (3)

In order to be able to prove Theorem 1 by induction we will have to prove a slightly stronger
result than Theorem 1. To present it we need some definitions. An edge set C of a connected
graph G is called bicut if G− C has exactly two connected components. Note that each edge
of a tree is a bicut. Let P = {A1, . . . , Ak} be a partition of A and let Q = {B1, . . . , Bl}
be a partition of B. Then P ∪ Q is called a bi-partition of A ∪ B in G. Let us denote by
G/(P ∪ Q) the bipartite graph obtained from G by identifying the vertices in R for every
member R ∈ P ∪Q and by taking the underlying simple graph. A bi-partition P ∪Q of A∪B
is called admissible if

(i) F := G/(P ∪Q) is a tree, and

(ii) for each edge e of F , the edge set of G that corresponds to e forms a bicut of G.

By Claim 4, for any bipartite graft there exists an admissible bi-partition.

Theorem 2 If (G, T ) is a bipartite graft with G = (A,B; E), then

τ(G,T ) = max{val(P) : P ∪Q is an admissible bi-partition of A ∪B}. (4)

The proof of Frank et al. [4] for Theorem 1 consists of constructing a partition of A of value
|F |, by using a minimum T-join F. That proof depends heavily on the properties of distances
in graphs with conservative weightings. We follow the dual approach, that is starting from a
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bi-partition of A ∪ B of maximum value k, we construct a T-join of size k. Our proof applies
induction. Taking a special optimal admissible bi-partition either we can use induction for
some contracted graphs (and here we need admissibility of the bi-partition) or we can apply
Tutte’s theorem on perfect matchings, namely a graph H has a perfect matching if and only if
qV (H −X) ≤ |X| for every vertex set X of V (H).

We must mention two papers on this topic. Kostochka [6] and Ageev and Kostochka [1]
proved results similar to Theorem 2. Their proof technique is different from the present one.

3 Preliminary results

Claim 3 Let (G = (A,B; E), T ) be a bipartite graft.

(a) Then the bi-partition P ∪Q of A ∪B satisfies (i) where P := {a : a ∈ A} and Q := {B}.
(b) If X ⊆ A, then the bi-partition P∪Q of A∪B satisfies (i) where P := {a : a ∈ A−X}∪{X}

and Q := {K ∩B : K ∈ K(G−X)}.
2

The following claim (whose proof is left for the reader) shows that for any bipartite graft
there exists an admissible bi-partition.

Claim 4 Let (G = (A,B; E), T ) be a bipartite graft.

(a) If there is no cut vertex in A then P ∪ Q is an admissible bi-partition of A ∪ B, where
P := {a : a ∈ A} and Q := {B}.

(b) If there is a cut vertex v ∈ A, that is G can be decomposed into two connected bipartite
subgraphs G1 = (A1, B1;E1) and G2 = (A2, B2; E2) with exactly one vertex in common,
namely v, then let us denote by (G1, T1) and (G2, T2) the two grafts obtained from (G, T )
by T-contracting V (G2) and V (G1). If for i = 1, 2, Pi ∪ Qi is an admissible bi-partition
of Ai ∪ Bi and v ∈ A′i then P ∪ Q is an admissible bi-partition of A ∪ B, where P :=
(P1 −A′1) ∪ (P2 −A′2) ∪ {A′1 ∪A′2} and Q := Q1 ∪Q2.

2

The definition of an admissible bi-partition implies at once the following claim.

Claim 5 Let P ∪Q be an admissible bi-partition of A ∪B.

(a) K ∈ KT (G−Ai) for some Ai ∈ P if and only if K ∈ KT (G−Bj) for some Bj ∈ Q.

(b) val(P) = val(Q).
2

Claim 6 Let P be a partition of A and F a T-join in a bipartite graft (G = (A,B; E), T ).

(a) Then val(P) ≤ |F |.
(b) Moreover, if val(P) = |F |, then for every component K of G − Ai for any Ai ∈ P,

|δ(K) ∩ F | = bT
K .

Proof. Let R :=
⋃

Ai∈P K(G−Ai). By parity, for each K ∈ R,

bT
K ≤ |δ(K) ∩ F |.

Since for K1,K2 ∈ R, δ(K1) ∩ δ(K2) = ∅, we have

val(P) =
∑

K∈R
bT
K ≤

∑

K∈R
|δ(K) ∩ F | ≤ |F |.

2
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Claim 7 For every partition P of A in a bipartite graft (G = (A,B; E), T ),

val(P) ≡ |T ∩A| (mod 2).

Proof. Since |T | is even, for each Ai ∈ P, qT (G−Ai) ≡ |T ∩Ai| (mod 2). Thus

val(P) =
∑

Ai∈P
qT (G−Ai) ≡

∑

Ai∈P
|T ∩Ai| = |T ∩A|.

2

We shall deal with some bi-partitions along the proofs. The admissibility of these bi-
partitions can always be easily verified. The following easy fact may be useful.

Claim 8 Let X be a subset of vertices of a connected graph H. Let K be a component of H−X.
If X is contained in one of the components of H −K, then H −K is connected. 2

Claim 9 Let H be a connected graph with |V (H)| even. If X is a minimal vertex set with
qV (H −X) > |X|, then for every component K of H −X, H −K is connected.

Proof. By assumption, using the usual parity argument, qV (H −X) ≥ |X|+ 2. Let K be any
component of H−X. Then at least one component N of H−K contains more odd components
of H −X than vertices in X, that is qV (H − (N ∩X)) > |N ∩X|. Then, by the minimality of
X, N ∩X = X, that is, by Claim 8, H −K is connected. 2

Claim 10 Let (G = (A, B;E), T ) be a bipartite graft. If the auxiliary graph GA has a perfect
matching M then G contains a T-join of cardinality |T ∩A|.
Proof. For every edge uv ∈ M there exists an (u, v)-path in G of length at most two. Since
M is a matching these paths are edge disjoint. The union F of these paths is a T-join of G
because M covers all the vertices of T. By construction, |F | = |T ∩A|. 2

4 The proof of Theorem 2

Let (G,T ) be a counterexample with minimum number of vertices in G. By Claim 6(a), for any
admissible bi-partition P ∪Q of A ∪B, val(P) ≤ τ(G,T ), so val(P) < τ(G, T ).

Lemma 11 G is 2-connected.

Proof. Suppose that G contains a cut vertex v, by symmetry we may suppose that v ∈ A. We
use the notation of Claim 4. For i = 1, 2, (Gi, Ti) is a bipartite graft and |Ai ∪ Bi| < |A ∪ B|
so there exists an admissible bi-partition Pi ∪Qi of Ai ∪Bi with

τ(Gi, Ti) = val(Pi). (5)

Clearly,
τ(G,T ) = τ(G1, T1) + τ(G2, T2). (6)

Let P ∪Q be the admissible bi-partition of A ∪B defined in Claim 4(b). Note that

val(P) = val(P1) + val(P2). (7)

Then, by (6), (5) and (7), τ(G,T ) = val(P) showing that (G,T ) is not a counterexample. 2

Let us denote by MAX the maximum value of an admissible bi-partition of A∪B. Observe
that MAX≥ |T ∩ A| and MAX≥ |T ∩ B|. The first comes from the admissible bi-partition
P = {v : v ∈ A},Q = {B}, the other one from P = {A},Q = {v : v ∈ B}. These bi-partitions
are admissible by Claim 4(a).

CASE 1. First suppose that MAX= |T ∩A| (or MAX= |T ∩B|).
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Lemma 12 If the auxiliary graph GA has no perfect matching then there exists an admissible
bi-partition P ∪Q of A ∪B with val(P) > |T ∩A|.

Proof. By Tutte’s Theorem, there exists a set X ⊂ T so that qT (GA −X) > |X|. Let us take
a minimal such set.

We claim that X ∩B = ∅. Suppose that a ∈ X ∩B. Suppose that a is connected to two odd
components K1 and K2 of GA−X. Then, by the definition of GA, there is an edge between K1

and K2, that is they cannot be different components of GA−X. Thus a is connected to at most
one odd component of GA −X. Hence qT (GA − (X − a)) ≥ qT (GA −X)− 1 ≥ |X| > |X − a|,
contradicting the minimality of X.

Let us denote by B1 the set of vertices in B − T that has at least one neighbour in A ∩ T
and let B2 := B − T −B1. Let G1 := G[T ∪B1] and G2 := G[(A− T ) ∪B2]. Note that by the
definition of GA there is a bijection between the components of GA −X and the components
of G1 −X different from isolated vertices in B1. Moreover, the T parity of the corresponding
components are the same. Let R = K(G2). Note that if R ∈ R then there is no edge between
R ∩B2 and A ∩ T. We distinguish two cases.

Case I. First suppose that X = ∅, that is qT (G1) ≥ 1, in other words qT (G− (A−T )) ≥ 1. Let
R1 ⊆ R be a minimal subset of R so that qT (G − A′) ≥ 1, where A′ :=

⋃{R ∩ A : R ∈ R1}.
Let P = {u : u ∈ A − A′} ∪ {A′} and let Q = {R ∩ B : R ∈ K(G − A′)}. By Claim 3(b),
P ∪Q satisfies (i). Since A′ ⊆ A− T, |(V (G)−A′) ∩ T | is even so qT (G−A′) ≥ 2 and, by the
minimality of R1, each such component has at least one neighbour in every R ∈ R1. Since G is
2-connected and for every R ∈ R1, G[R] is connected, it follows that for every D ∈ K(G−A′),
G−D is connected, that is (ii.) is also satisfied, so P ∪Q is an admissible bi-partition and

val(P) =
∑

Ai∈P
qT (G−Ai) ≥

∑

t∈A−A′
bT
t + qT (G−A′) ≥ |T ∩A|+ 2.

Case II. Secondly suppose that X 6= ∅. By the minimality of X, X ⊂ V (G′) where G′ ∈ K(G1).
Let R1 ⊆ R be a minimal subset of R so that all the components of G′ −X rest in different
components of G − A′′ −X, where A′′ :=

⋃{R ∩ A : R ∈ R1}. Let P := {X ∪ A′′} ∪ {u : u ∈
A − (X ∪ A′′)} and let Q = {R ∩ B : R ∈ K(G − X − A′′)}. By Claim 3(b), P ∪ Q satisfies
(i). For each R ∈ R1, G[R] is connected and, by the minimality of R1, R has neighbours in at
least two different components of G−X −A′′. Moreover, by Claim 9, for each K ∈ K(G′−X),
G′−K is connected, hence (G−⋃{R : R ∈ R1})−K ′ is connected, where K ′ ∈ K(G−X−A′′)
that contains K. It follows that X ∪A′′ is contained in one of the components of G−K ′. Thus,
by Claim 8 and by 2-connectivity, P ∪Q is an admissible bi-partition of A ∪B and

val(P) =
∑

Ai∈P
qT (G−Ai) =

∑

t∈A−X−A′′
bT
t + qT (G− (X ∪A′′))

= |A ∩ T | − |X|+ qT (GA −X) > |T ∩A|.
2

By Lemma 12, GA (GB , resp.) has a perfect matching and thus, by Claim 10, G contains a
T-join of cardinality |T ∩A| (|T ∩B|, resp.). By Claim 6, the proof of the theorem is complete.

CASE 2. Secondly suppose that MAX> |T ∩ A| and MAX> |T ∩ B|. Then, by Lemma 11,
every optimal admissible bi-partition contains a set Ai with 1 < |Ai| < |A|. Let us choose an
optimal admissible bi-partition P ∪Q of A∪B so that such a set Ai of P is as large as possible.
Let K ∈ K(G − Ai) so that |V (K)| ≥ 2. (Since |Ai| < |A| such a set exists.) Then, by Claim
5, K ∈ K(G − Bj) for some Bj ∈ Q and |V (K)| ≥ 2. Let us denote by (G1, T1) and (G2, T2)
the two bipartite grafts obtained from (G, T ) by T-contracting the connected subgraphs K and
K, respectively. The colour classes of Gr will be denoted by Ar and Br, while the contracted
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vertex of Gr is denoted by vr for r = 1, 2. Let P1 := {Ak ∈ P : Ak ⊆ A1} and Q1 := {Bl ∈ Q :
Bl ⊆ B1} ∪ {v1}. Let P2 := {Ak ∈ P : Ak ⊆ A2} ∪ {v2} and Q2 := {Bl ∈ Q : Bl ⊆ B2}. The
admissibility of the bi-partition P ∪Q implies the following Claim.

Claim 13 (a) Pr ∪Qr is an admissible bi-partition of Ar ∪Br in Gr, r = 1, 2.

(b) val(G,T )(P) = val(G1,T1)(P1)− bT1
v1

+ val(G2,T2)(P2). 2

Lemma 14 For r = 1, 2, Pr ∪Qr is an optimal admissible bi-partition of Ar ∪Br in (Gr, Tr).

Proof. By Claim 13(a), only the optimality must be verified. By symmetry, it is enough to
prove it for r = 2. Suppose that P ′ ∪ Q′ is an admissible bi-partition of A2 ∪ B2 in G2 with
val(G2,T2)(P ′) > val(G2,T2)(P2). Let us denote by X that member of P ′ that contains v2. Since
P1 ∪Q1 and P ′ ∪Q′ are admissible bi-partitions and K is connected, P ′′ := (P1 −Ai) ∪ (P ′ −
X) ∪ {(X − v2) ∪ Ai}, Q′′ = (Q1 − {v1}) ∪ Q′ is an admissible bi-partition of A ∪ B in G. By
Claim 13(b),

val(G,T )(P ′′) = val(G1,T1)(P1)− bT1
v1

+ val(G2,T2)(P ′)
> val(G1,T1)(P1)− bT1

v1
+ val(G2,T2)(P2) = val(G,T )(P),

a contradiction. 2

Lemma 15 If K is T-odd, then for every edge v2u of G2, P2 ∪ Q2 is an optimal admissible
bi-partition of A2 ∪B2 in (G2, T

′
2) of value val(G2,T2)(P2)− 1, where T ′2 := T2 ⊕ {v2, u}.

Proof. By Claim 13(a), only the optimality must be verified. val(G2,T ′2)(P2) = val(G2,T2)(P2)−
1 because for a component L of G2 − R with R ∈ P2 − {v2}, |L ∩ T2| ≡ |L ∩ T ′2| (mod 2)
and the unique component K of G2 − v2 becomes T ′2-even. Suppose that P ′ ∪ Q′ is an
admissible bi-partition of A2 ∪ B2 in (G2, T

′
2) with val(G2,T ′2)(P ′) > val(G2,T2)(P2) − 1. By

Claim 7, val(G2,T ′2)(P ′) ≥ val(G2,T2)(P2) + 1. Note that since K is T-odd, bT1
v1

= 1. Let us
denote by X that member of P ′ that contains v2. Since K and K are connected, P ′′ :=
(P1 −Ai)∪ (P ′ −X)∪ {(X − v2)∪Ai}, Q′′ = (Q1 −{v1})∪Q′ is an admissible bi-partition of
A ∪B in G.

If X = v2 then, by Claim 13(b),

val(G,T )(P ′′) = val(G1,T1)(P1) + val(G2,T ′2)(P ′)
≥ val(G1,T1)(P1) + val(G2,T2)(P2) + 1 > val(G,T )(P),

a contradiction.
If X 6= v2, then, by Claim 13(b),

val(G,T )(P ′′) ≥ (val(G1,T1)(P1)− 1) + (val(G2,T ′2)(P ′)− 1)
≥ val(G1,T1)(P1)− 1 + val(G2,T2)(P2) = val(G,T )(P),

that is P ′′ ∪Q′′ is an optimal admissible bi-partition of A∪B in G, but |(X − v2)∪Ai| > |Ai|,
contradicting the maximality of Ai. 2

By induction (|V (G1)| < |V (G)| because |V (K)| > 2) and by Lemma 14, there exists a
T1-join F1 in G1 with |F1| = val(P1).

First suppose that K is a T-even component of G − Ai. By induction (|V (G2)| < |V (G)|
because |V (K)| ≥ 2) and by Lemma 14, there exists a T2-join F2 in G2 with |F2| = val(P2).
Then, by Claim 6, |F1 ∩ δ(K)| = 0 = |F2 ∩ δ(K)|, hence F := F1 ∪F2 is a T-join and, by Claim
13(b), |F | = |F1|+ |F2| = val(P1) + val(P2) = val(P). By Claim 6, we are done.

Now suppose that K is a T-odd component of G−Ai. Then, by Claim 14, |F1 ∩ δ(K)| = 1.
This edge corresponds to an edge v2u in G2. By induction (|V (G2)| < |V (G)| because |V (K)| ≥
2) and by Lemma 15 with edge v2u, there exists a T ′2-join F2 in G2 with |F2| = val(P2)−1. Then
F := F1∪F2 is a T-join and, by Claim 13(b), |F | = |F1|+|F2| = val(P1)+val(P2)−1 = val(P).
By Claim 6, we are done. 2
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