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Abstract

Given a graphG = (V, E) and a setT ⊆ V , an orientation ofG is calledT -odd if pre-
cisely the vertices ofT get odd in-degree. We give a good characterization for the existence
of a T -odd orientation for which there existk edge-disjoint spanning arborescences rooted
at a prespecified set ofk roots. Our result implies Nash-Williams’ theorem on covering the
edges of a graph byk forests and a (generalization of a) theorem due to Nebeský on upper
embeddable graphs.

1 Introduction

Let G = (V,E) be a graph. We denote the number of components ofG by c(G) and we use
β(G) to denote|E(G)| − |V (G)| + c(G). Let G be a connected graph. An embedding ofG
into an orientable surface is called a2-cell embedding if every region is homeomorphic to an
open disk. The maximum integerg for which there exists a2-cell embedding ofG into an
orientable surface of genusg is themaximum genusof G, denoted byγM(G). It is known [?]
thatγM(G) ≤ ⌊β(G)/2⌋. Graphs withγM(G) = ⌊β(G)/2⌋ are calledupper embeddable.

The following theorem of Xuong gave the first characterization of maximum genus and was
used later by Furst et al. [?] to construct a polynomial-time algorithm to computeγM(G). For
a spanning treeF of G let xG(F ) denote the number of those componentsC of G − E(F ) for
which |E(C)| is odd. LetF(G) denote the set of spanning trees ofG.

Theorem 1.1 [?] If G is a connected graph then

γM(G) = (β(G) − min{xG(F ) : F ∈ F(G)})/2. (1)
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Notice thatβ(G)−xG(F ) is even for every spanning treeF . A spanning treeF of G is called
aneven treeof G if each connected component ofG − E(F ) has an even number of edges. A
special case of Theorem?? (see also Jungerman [?]) is the following.

Corollary 1.2 LetG be a connected graph with evenβ(G). ThenG is upper embeddable if and
only if it has an even tree.

Some years later Nebeský found the first NP∩co-NP characterization ofγM(G) by proving
the following equality.

Theorem 1.3 [?] A connected graphG = (V,E) satisfies

min{xG(F ) : F ∈ F(G)} = max{c(G − A) + b(G − A) − |A| − 1 : A ⊆ E}, (2)

whereb(G − A) denotes the number of those componentsD of G − A for whichβ(D) is odd.

Specializing this result to upper embeddable graphsG of evenβ(G) gives:

Theorem 1.4 [?] A connected graphG = (V,E) has an even tree if and only if

|A| ≥ c(G − A) + b(G − A) − 1 (3)

holds for everyA ⊆ E.

For more results on maximum genus see the survey paper [?]. The starting point of our
investigations is the purely graph theoretic Theorem?? which involves parity as well as connec-
tivity conditions. We shall prove (generalizations of) this result from a new viewpoint (namely,
in terms of orientations ofG) and hence give a new framework which links this result to other,
probably more familiar results in graph theory.

Theorem?? can be reformulated in terms of orientations ofG. An orientationof an undi-
rected graphG is a directed graph obtained fromG by assigning an orientation to each edge of
G. A subsetF of edges of a directed graph is aspanning arborescence rooted atvertexr if F
forms a spanning tree in the underlying undirected graph andeach vertex has in-degree one in
F , except the rootr.

Let G = (V,E) be a connected undirected graph and letT ⊆ V . An orientation ofG is
calledT -odd if precisely the vertices ofT get odd in-degree. It is easy to see thatG has aT -odd
orientation if and only if|E|+ |T | is even. (This can be seen by induction as follows. Takev ∈ V
for which G − v is connected. Ifv ∈ T andd(v) is odd orv /∈ T andd(v) is even then orient
the edges incident tov towardsv and apply induction onG − v with respect toT − v to obtain
the orientation of the rest. If this is not the case then orient all edges but one, sayvx, towards
v, and apply induction onG − v with respect to(T − v) ⊕ {x}. Here⊕ denotes the symmetric
difference.) ¿From this fact we obtain the following observation (which was found earlier by
Chevalier et al. [?], too).
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Proposition 1.5 Let G = (V,E) be a connected graph for whichβ(G) is even and letr ∈ V .
ThenG has an even tree if and only if there exists a(V − r)-odd orientation ofG which contains
a spanning arborescence rooted atr.

Corollary 1.6 Let G = (V,E) be a connected graph for whichβ(G) is even and letr ∈ V .
ThenG has a(V − r)-odd orientation which contains a spanning arborescence rooted atr if
and only if (??) holds for everyA ⊆ E.

Motivated by Theorem?? and Corollary??, we investigate more general problems concern-
ing orientations of undirected graphs simultaneously satisfying connectivity and parity require-
ments. Namely, given an undirected graphG = (V,E), T ⊆ V andk ≥ 0, our main result gives a
necessary and sufficient condition for the existence of aT -odd orientation ofG which containsk
edge-disjoint spanning arborescences rooted at a given setof k roots. This good characterization
generalizes Theorem?? and at the same time slightly simplifies condition(??). Furthermore, it
implies Nash-Williams’ theorem on covering the edges of a graph byk forests as well. We also
point out some connections to a related problem onk-edge-connectedT -odd orientations which
was investigated in [?]. These corollaries are discussed in Section 3.

The proof of our main result employs the proof method which was developed independently
by Gallai and Anderson and which was first used to show an elegant proof for Tutte’s theorem
on perfect matchings of graphs, see [?]. In our case the weaker result the proof hinges on (which
is Hall’s theorem in the previously mentioned proof for Tutte’s result) is an orientation theorem
of the first author (Theorem?? below).

Let R = {r1, ..., rk} be amultisetof vertices ofG (that is, the elements ofR are not necessar-
ily pairwise distinct). ByT ⊕R we mean((T ⊕ r1)⊕ . . .)⊕ rk. For someX ⊆ V the subgraph
induced byX is denoted byG[X]. The number of edges inG[X] is denoted byi(X). For a
partitionP = {V1, ..., Vt} of V with t elementsthe set of edges connecting different elements
of P is denoted byE(P). We sete(P) = |E(P)|. The in-degreeof a setX ⊆ V in a directed
graphD = (V,E) is denoted byρ(X). The following well-known result is due to Edmonds.

Theorem 1.7 [?] Let R be a multiset of vertices of sizek in a directed graphD = (V,E). Then
D containsk edge-disjoint spanning arborescences rooted atR if and only if

ρ(X) ≥ k − |X ∩ R| for everyX ⊆ V. (4)

The following result is due to Frank.

Theorem 1.8 [?, Theorem 2.1] LetH = (V,E) be a graph, and letg : V → Z+ be a function.
Then there exists an orientation ofH whose in-degree functionρ satisfiesρ(v) = g(v) for every
v ∈ V if and only if the following two conditions hold.

g(V ) = |E| (5)

g(X) ≥ i(X) for every∅ 6= X ⊆ V. (6)
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We shall rely on the following orientation theorem, which iseasy to prove from Theorem??
and Theorem??.

Theorem 1.9 Let H = (V,E) be a graph, letR = {r1, . . . , rk} be a multiset ofk vertices of
H and letg : V → Z+ be a function. Then there exists an orientation ofH whose in-degree
function ρ satisfiesρ(v) = g(v) for everyv ∈ V and for which there existk edge-disjoint
spanning arborescences with roots{r1, . . . , rk} if and only if (??) and the following condition
hold.

g(X) ≥ i(X) + k − |X ∩ R| for every∅ 6= X ⊆ V. (7)

Proof: It is easy to see that both (??) and (??) are necessary. To see the other direction let us
take an orientation ofH whose in-degree functionρ satisfiesρ(v) = g(v) for everyv ∈ V . By
(??) and since (??) implies (??), such an orientation exists by Theorem??. We claim that this
directed graph satisfies (??) with respect to the multisetR of roots. Indeed, by observing that
ρ(X) =

∑

x∈X ρ(x) − i(X) =
∑

x∈X g(x) − i(X) = g(X) − i(X) for everyX ⊆ V , by (??)
we obtainρ(X) ≥ i(X) + k − |X ∩R| − i(X) = k − |X ∩R|, as required. Hence we are done
by Theorem??. •

Note thatR is a multiset in Theorem??, hence by|X ∩ R| in (??) we mean|{ri ∈ R : ri ∈
X, i = 1, ..., k}|. This convention will be used later on, whenever we take the intersection (or
union) with a multiset.

GivenG = (V,E), T ⊆ V , k ∈ Z+ and a partitionP = {V1, ..., Vt} of V , an elementVj

(1 ≤ j ≤ t) is calledodd if |Vj ∩ T | − i(Vj) − k is odd, otherwiseVj is even. The number of
odd elements ofP is denoted bysG(P , T, k) (where some parameters may be omitted if they are
clear from the context). Our main result is the following.

Theorem 1.10 LetG = (V,E) be a graph,T ⊆ V and letk ≥ 0 be an integer. For a multiset of
k verticesR = {r1, . . . , rk} of V there exists aT ⊕R-odd orientation ofG for which there exist
k edge-disjoint spanning arborescences with roots{r1, . . . , rk} if and only if

e(P) ≥ k(t − 1) + s(P , T ) (8)

holds for every partitionP = {V1, . . . Vt} of V .

Note that takingP = {V } in (??) yields the condition|T | − |E| − k is even. Also notice
that the multisetR of roots plays no role in the characterization. This fact is easy to see directly
by observing that ifG has a properT ⊕ R-odd orientation for someR thenG has a proper
T ⊕ R′-odd orientation for any other multisetR′ of k roots. Indeed, by repeatedly taking two
rootsr ∈ R−R′ andr′ ∈ R′ −R and a spanning arborescenceF of rootr in the properT ⊕R-
odd orientation and then reversing the edges of the directedr−r′ path inF , one obtains a proper
T ⊕ R′-odd orientation. In the proof, however, the most general formulation will be convenient.
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2 The Proof of Theorem ??

Proof: (of Theorem??) To see the necessity of condition (??), consider an orientation ofG with
the required properties and some partitionP = {V1, ..., Vt} of V . The following fact is easy to
observe.

Proposition 2.1 For everyT ⊕ R-odd orientation ofG and for everyVj (1 ≤ j ≤ t) we have
|Vj ∩ T | − i(Vj) − k ≡ ρ(Vj) − (k − |Vj ∩ R|) (mod 2).

Proof: Since the orientation isT ⊕R-odd, we obtainρ(Vj) + i(Vj) =
∑

v∈Vj
ρ(v) ≡ |Vj ∩ (T ⊕

R)| ≡ |Vj ∩ T | − |Vj ∩ R| and the claim follows. •

Since there existk edge-disjoint arborescences rooted at vertices ofR, it follows from the
easy part of Theorem?? that ρ(Vj) − (k − |Vj ∩ R|) ≥ 0 for eachVj. If this number is odd
(or, equivalently by Proposition??, if Vj is odd) then it is at least one. This yieldse(P) =
∑

Vj∈P
ρ(Vj) =

∑

Vj∈P
(ρ(Vj) − (k − |Vj ∩ R|)) + kt − |V ∩ R| ≥ s(P , T ) + kt − k =

k(t − 1) + s(P , T ), hence the necessity follows.

In what follows we prove that (??) is sufficient. An orientation is calledgoodif the directed
graph obtained containsk edge disjoint spanning arborescences rooted atR. Let us suppose that
the statement of the theorem does not hold and let us take a counter-example (that is, a graph
G = (V,E) with T , R andk, for which (??) holds but no goodT ⊕R-odd orientation exists) for
which |V | + |E| is as small as possible.

Proposition 2.2 e(P) ≡ k(t − 1) + s(P , T ) (mod 2) for every partitionP.

Proof: By choosingP0 = {V } in (??) we obtain that|T | − |E| − k is even. This implies
s(P , T ) ≡

∑t

1
(|Vj∩T |−i(Vj)−k) = |T |−(|E|−e(P))−kt = |T |−|E|−k+e(P)−k(t−1) ≡

e(P) − k(t − 1). •

We call a partitionP of V consisting oft elementstight if e(P) = k(t − 1) + s(P , T ) and
t ≥ 2.

Lemma 2.3 There exists a tight partition ofV .

Proof: Let ab be an arbitrary edge ofG. Focus on the graphG′ = G − ab and the modified
setT ′ = T ⊕ b. If there was a goodT ′ ⊕ R-odd orientation ofG′ then adding the arcab would
provide a goodT ⊕ R-odd orientation ofG, which is impossible. Thus, by the minimality ofG,
there exists a partitionP of V consisting oft elements violating (??) in G′, that is, by Proposition
??, eG′(P) + 2 ≤ k(t − 1) + sG′(P , T ′). Clearly,t ≥ 2 holds.

For the same partition inG we haveeG(P) ≤ eG′(P)+1 and alsosG(P , T ) ≥ sG′(P , T ′)−1,
since adding the edgeab and replacingT ⊕ b by T may change the parity of at most one element
of the partition. Thusk(t − 1) + sG(P , T ) ≥ k(t − 1) + sG′(P , T ′) − 1 ≥ eG′(P) + 2 − 1 ≥
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eG(P) ≥ k(t − 1) + sG(P , T ), henceP is tight inG and the lemma follows. •

Let us fix a tight partitionP = {V1, ..., Vt} in G for which t is maximal. Denote the number
of odd components ofP by s.

Lemma 2.4 Every elementVj of P (1 ≤ j ≤ t) has the following property:
(a) if Vj is even, then (??) holds inG[Vj], with respect toT ∩ Vj,
(b) if Vj is odd, then for each vertexv ∈ Vj, (??) holds inG[Vj], with respect to(T ∩ Vj) ⊕ v.

Proof: We handle the two cases simultaneously. Suppose that there exists a partitionP ′ of t′

elements inG[Vj] violating (??) (with respect toT ∩Vj in case (a) or with respect to(T ∩Vj)⊕v,
for somev ∈ Vj, in case (b)). By Proposition?? this impliesk(t′− 1)+ s′ ≥ e(P ′)+2, wheres′

denotes the number of odd elements ofP ′. Consider the partitionP ′′ = (P−Vj)∪P ′, consisting
of t′′ elements from whichs′′ are odd. Clearly,e(P ′′) = e(P) + e(P ′) and t′′ = t + t′ − 1.
Furthermore,s′′ ≥ s+s′−2, since the parity of at most two elements may be changed (these are
Vj – only in case (b) – and the element inP ′ which contains the vertexv – only in case (b) again).
Since (??) holds forP ′′ by the assumption of the theorem, we havek(t′′ − 1) + s′′ ≤ e(P ′′) =
e(P)+e(P ′) ≤ k(t−1)+s+k(t′−1)+s′−2 = k((t+t′−1)−1)+s+s′−2 ≤ k(t′′−1)+s′′.
ThusP ′′ is a tight partition witht′′ > t, which contradicts the choice ofP. •

Let us denote the graph obtained fromG by contracting each elementVj of P into a sin-
gle vertexvj (1 ≤ j ≤ t) by H. Let R′ = {r′1, ..., r

′

k} denote the multiset of vertices ofH
corresponding to the vertices ofR in G (that is, every root in someVj yields a new rootvj).
Furthermore, letA denote those vertices ofH which correspond to odd elements ofP and let
B = V (H) − A. Note that sinceP is tight, we have

|E(H)| = e(P) = k(t − 1) + s(P). (9)

Now define the following functiong on the vertex set ofH.

g(vj) =

{

k + 1 − |Vj ∩ R| if vj ∈ A
k − |Vj ∩ R| otherwise.

Lemma 2.5 There exists an orientation ofH whose in-degree function isg and which contains
k edge-disjoint spanning arborescences with roots{r′1, ..., r

′

k}.

Proof: To prove the lemma we have to verify that the two conditions (??) and (??) of Theorem
?? are satisfied. First we can see thatg(V (H)) = g(A) + g(B) = s(k + 1) + (t − s)k − k =
k(t − 1) + s = |E(H)| by the definition ofg and by (??). Thus (??) is satisfied.

To verify (??), let us choose an arbitrary non-empty subsetX of V (H). Let us define the
partitionP∗ of V (G) byP∗ := {Vj : vj ∈ V (H)−X}∪

⋃

vj∈X Vj. ThenP∗ hast∗ = t−|X|+1

elements and the number of its odd elementss∗ is at leasts − |X ∩ A|. Applying (??) for P∗, it
follows thatk(t∗−1)+s∗ ≤ e(P∗). Hencek((t−|X|+1)−1)+s−|X∩A| ≤ k(t∗−1)+s∗ ≤
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e(P∗) = e(P)−i(X) = k(t−1)+s−i(X). From this it follows thati(X)+k ≤ k|X|+|X∩A|.
Thereforei(X)+k−|X∩R′| ≤ k|X|+|X∩A|−|X∩R′| = |X∩A|(k+1)+|X∩B|k−|X∩R′| =
g(X ∩ A) + g(X ∩ B) = g(X), proving that (??) is also satisfied. •

Let us fix an orientation ofH whose in-degree functionρH = g and which contains a setF of
k edge-disjoint spanning arborescences{F1, ..., Fk} with roots{r′1, ..., r

′

k}. Such an orientation
exists by Lemma??. Observe, that this orientation ofH corresponds to a partial orientation of
G (namely, an orientation of the edges ofE(P)).

For any vertexvj of H there areg(vj) arcs enteringvj. If Vj is even then each arc entering
vj belongs to some arborescence inF . If Vj is odd then each arc enteringvj except exactly one
belongs to some arborescence ofF , by the definition ofg.

For an arbitraryVj ∈ P let us denote byRH
j the multiset of those vertices inVj which are

the heads of the arcs of this partial orientation enteringVj and belonging to some arborescence
in F . By the definition ofg, we have|RH

j | = k − |Vj ∩ R|. Let Rj = (Vj ∩ R) ∪ RH
j . Note that

|Rj| = |Vj ∩ R| + |RH
j | = k. Furthermore, ifVj is odd then let us denote byaj the vertex inVj

which is the head of the unique arc enteringVj and not belonging to any arborescence inF . Let
Tj = T ∩ Vj if Vj is even and letTj = (T ∩ Vj) ⊕ aj if Vj is odd.

By the minimality ofG and since|Vj| < |V (G)| for each1 ≤ j ≤ t, Lemma?? implies
that for eachj there exists aTj ⊕ Rj-odd orientation ofG[Vj] which containsk edge-disjoint
spanning arborescences with roots inRj. Combining these orientations of the subgraphs induced
by the elements ofP and the orientation ofE(P) obtained earlier, we get an orientation ofG.
This orientation is clearly a goodT ⊕ R-odd orientation ofG, contradicting our assumption on
G. This contradiction proves the theorem. •

3 Corollaries

As we reformulated Theorem?? in terms of odd orientations and spanning arborescences in
Corollary??, we can similarly reformulate Theorem?? in terms of even components and span-
ning trees.

Theorem 3.1 A graphG = (V,E) hask edge-disjoint spanning treesF1, ..., Fk so that each
connected component ofG − ∪k

1E(Fi) has an even number of edges if and only if

e(P) ≥ k(t − 1) + s (10)

holds for each partitionP = {V1, . . . Vt} of V , wheres is the number of those elements ofP for
whichi(Vj) + k(|Vj| − 1) is odd.

Proof: As we observed,G has an oriention for which the in-degree of every vertex is even if
and only if each connected component ofG contains an even number of edges. Thus the desired
spanning trees exist inG if and only if G has aT ⊕ R-odd orientation which containsk edge-
disjoint r-arborescences, whereT = V , if k is odd,T = ∅, if k is even, andR = {r1, ..., rk},
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ri = r (i = 1, ..., k) for an arbitraryr ∈ V . Based on this fact, Theorem?? proves the theorem
(by observing that (??) specializes to (??) due to the special choice ofT ). •

The special casek = 1 of Theorem?? corresponds to Theorem??. Since (??) implies (??) if
k = 1, Theorem?? applies and we obtain a slightly simplified version of Nebeský’s result. Note
also that our main result provides a proof of different nature for Theorem?? by using Theorem
??.

The next corollary we prove is Nash-Williams’ classical theorem on forest covers.

Corollary 3.2 [?] The edges of a graphG = (V,E) can be covered byk forests if and only if

i(X) ≤ k(|X| − 1) (11)

holds for every∅ 6= X ⊆ V .

Proof: We consider the sufficiency of the condition. LetG = (V,E) be a graph for which
(??) holds. The first claim is that we can add new edges toG until the number of edges equals
k(|V | − 1) without destroying (??). To see this, observe that the addition of a new edgee = xy
(which may be parallel to some other edges already present inG) cannot be added if and only if
x, y ∈ Z for someZ ⊆ V with i(Z) = k(|Z| − 1). Such a set, satisfying (??) with equality, will
be calledfull. It is well-known that the functioni : 2V → Z+ is supermodular, that is, it satisfies
i(X) + i(Y ) ≤ i(X ∩ Y ) + i(X ∪ Y ) for everyX,Y ⊆ V . Therefore for two intersecting full
setsZ andW we havek(|Z| − 1) + k(|W | − 1) = i(Z) + i(W ) ≤ i(Z ∩ W ) + i(Z ∪ W ) ≤
k(|Z ∩W | − 1) + k(|Z ∪W | − 1) = k(|Z| − 1) + k(|W | − 1). Thus equality holds everywhere,
and the setsZ ∩ W andZ ∪ W are also full. Now letF be a maximal full set (we may assume
F 6= V ) ande = xy for some pairx ∈ F, y ∈ V − F . If we destroyed (??) by addinge, we
would have a full setx, y ∈ F ′ in G intersectingF , henceF ∪ F ′ would also be full by our
previous observation. This contradicts the maximality ofF .

Thus in the rest of the proof we may assume that|E| = k(|V | − 1). We claim that there exist
k edge-disjoint spanning trees inG. The existence of these trees immediately implies thatG can
be covered byk forests because|E| = k(|V | − 1).

By Theorem??, it is enough to prove that (??) holds in G. Let P = {V1, ..., Vt} be a
partition of V and letV1, ..., Vs denote the odd elements ofP (with respect tok). Observe
that for an odd elementVj the parity of i(Vj) and k(|Vj| − 1) must be different (this holds
for evenk and for oddk as well), hence these numbers cannot be equal. Thus we can count
as follows: e(P) = |E| −

∑

i(Vi) = k(|V | − 1) −
∑

(i(Vi) : Vi is even) −
∑

(i(Vj) :
Vj is odd) ≥ k(|V | − 1) −

∑

(k(|Vi| − 1) : Vi is even) −
∑

(k(|Vj| − 1) − 1 : Vj is odd) =
k(|V | − 1) − k|V | + kt + s = k(t − 1) + s, as required. •

Finally we point out some connections to a related problem which was solved recently by
Frank and Kiŕaly [?]. In an undirected graphG = (V,E) a setT ⊆ V is G-evenif |T | + |E|
is even. As we remarked,G has aT -odd orientation if and only ifT is G-even. Given a graph
G and aG-even subsetT ⊆ V (G) one may ask for a necessary and sufficient condition for the
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existence of aT -odd orientation ofG which isk-edge-connected. (A directed graphG = (V,E)
is k-edge-connected ifρ(X) ≥ k holds for every∅ 6= X ⊂ V , whereρ(X) denotes the number
of edges enteringX.) This question is still open, even fork = 1. On the other hand, Frank and
Kir ály characterized those graphsG which havek-edge-connectedT -odd orientations forevery
G-evenT .

One of their main results is as follows:

Theorem 3.3 [?] Let G be an undirected graph andk be a positive integer. ThenG has a
k-edge-connectedT -odd orientation for everyG-even subsetT ⊆ V if and only if

e(P) ≥ (k + 1)t − 1 (12)

holds for every partitionP = {V1, . . . Vt}, t ≥ 2, of V .

Our results imply a similar condition for those graphsG which have aT ⊕R-odd orientation
with k edge-disjoint spanning arborescences rooted atR for everyT andeverysetR of k roots.

Theorem 3.4 LetG = (V,E) be an undirected graph andk be a positive integer. ThenG has a
T ⊕ R-odd orientation for which there existk edge-disjoint spanning arborescences with roots
{r1, . . . , rk} for every subsetT ⊆ V with |T | + |E| − k even (and for an arbitrarily chosen
multisetR = {r1, . . . , rk} ⊆ V of k roots) if and only if

e(P) ≥ (k + 1)(t − 1) (13)

holds for every partitionP = {V1, . . . Vt}, t ≥ 2, of V .

Proof: First supposeG satisfies(??) and take someT ⊆ V with |T | + |E| − k even. Clearly,
s(P , T ) ≤ t for any partitionP consisting oft classes. Thuse(P) ≥ (k +1)(t−1) = k(t−1)+
t−1 shows thatG satisfies(??) for every partitionP with t ≥ 2 unlesse(P) = (k+1)(t−1) and
s(P , T ) = t. However, by Proposition?? every partitionP ′ satisfiese(P ′) ≡ k(t−1)+s(P ′, T )
(mod 2) and hence(k +1)(t− 1) ≡ k(t− 1)+ s(P , T ) (mod 2) follows. Thus the latter case
cannot occur. This shows(??) holds for everyT and everyP. Therefore Theorem?? implies
thatG has the desiredT ⊕ R-odd orientation forT and for every setR of k roots.

Conversely, suppose that for some partitionP = {V1, . . . Vt}, t ≥ 2, we havee(P) < (k +
1)(t−1). Now by definingT ⊆ V appropriately, we can make at leastt−1 classesVi “odd” and
hences(P , T ) ≥ t− 1. (Since|T |+ |E|− k has to be even, the parity ofs(P , T ) is determined.)
Thus for thisT andP we havee(P) < (k + 1)(t− 1) = k(t− 1) + t− 1 ≤ k(t− 1) + s(P , T ),
showing thatG violates(??). Thus, by the easy part of Theorem??, the required orientation
does not exist for everyT in G. •

Notice that by a theorem of Tutte and Nash-Williams on edge-disjoint spanning trees, condi-
tion (??) is equivalent to the fact thatG hask + 1 edge-disjoint spanning trees. Using this, one
can obtain a different proof for Theorem??.
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4 Remarks

The problem of finding a spanning tree of Theorem?? with the required properties (or more
generally, the problem of computingmin{xG(F ) : F ∈ F(G)}) can be formulated as a matroid
parity problem in a certain co-graphic matroid, hence it canbe solved in polynomial time. This
was observed by Furst et al. [?] who gave aO(en2 log6 n) time algorithm based on results from
[?]. With the help of this reduction one can obtain Theorem?? from Lovász’s characterization
of the maximum size matroid-matching in a linear matroid [?].

A similar reduction, where the matroid is the dual of the sum of k graphic matroids, seems
to work in the more general case of Theorem??, too. However, from algorithmic point of view,
such a reduction is not satisfactory, since it is not known how to represent the matroid in question.
This difficulty can be handled by a useful observation of S. Iwata [?] which reduces the matroid
parity problem on the sum of thek matroids to an instance of the matroid matching problem on
the direct sum of thek matroids. It would be interesting to develop a more efficientalgorithm
for this problem as well as for the problem of Theorem??.
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