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Abstract

Given a graptG = (V, E) and a sef” C V, an orientation of7 is calledT-oddif pre-
cisely the vertices df’ get odd in-degree. We give a good characterization for the existence
of aT-odd orientation for which there exigtedge-disjoint spanning arborescences rooted
at a prespecified set @froots. Our result implies Nash-Williams’ theorem on covering the
edges of a graph bk forests and a (generalization of a) theorem due to Nebeskupper
embeddable graphs.

1 Introduction

Let G = (V, E) be a graph. We denote the number of components b¥ ¢(G) and we use
B(G) to denote| E(G)| — |[V(G)| + ¢(G). Let G be a connected graph. An embeddingCof
into an orientable surface is callec2acell embedding if every region is homeomorphic to an
open disk. The maximum integerfor which there exists &-cell embedding ofG into an
orientable surface of genuysis themaximum genusf G, denoted byy,,(G). It is known [?]
thaty,,(G) < [B(G)/2]. Graphs withy,,(G) = | 5(G)/2] are calledupper embeddable

The following theorem of Xuong gave the first character@atf maximum genus and was
used later by Furst et al?] to construct a polynomial-time algorithm to computg (G). For
a spanning treé’ of G let z¢(F") denote the number of those componefitef G — E(F) for
which |E(C)| is odd. LetF(G) denote the set of spanning treegf

Theorem 1.1 [?] If G is a connected graph then

m(G) = (B(G) — min{ze(F) : F € F(G)})/2. (1)
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Notice that3(G) —z¢(F) is even for every spanning tréé A spanning treé” of G is called
aneven treeof GG if each connected component@f— E(F') has an even number of edges. A
special case of Theoref? (see also Jungermaf]] is the following.

Corollary 1.2 LetG be a connected graph with eveG). ThenG is upper embeddable if and
only if it has an even tree.

Some years later Nebgskound the first NP\co-NP characterization ofy,(G) by proving
the following equality.

Theorem 1.3 [?] A connected grapli = (V, E) satisfies
min{zg(F) : F € F(G)} = max{c(G — A) +b(G — A) —|A|—1: AC E}, 2
whereb(G — A) denotes the number of those componéntsf G — A for which (D) is odd.
Specializing this result to upper embeddable grapld evens(G) gives:
Theorem 1.4 [?] A connected grapliz = (V, E') has an even tree if and only if
|A| > c¢(G—A)+b(G—-A)—1 (3)
holds for everyd C F.

For more results on maximum genus see the survey p&perThe starting point of our
investigations is the purely graph theoretic Theof&wvhich involves parity as well as connec-
tivity conditions. We shall prove (generalizations of)stiheésult from a new viewpoint (namely,
in terms of orientations ofr) and hence give a new framework which links this result teegth
probably more familiar results in graph theory.

Theorem?? can be reformulated in terms of orientationsCaf An orientationof an undi-
rected graplt; is a directed graph obtained frof by assigning an orientation to each edge of
G. A subsetF’ of edges of a directed graph isspanning arborescence rooted\artexr if F
forms a spanning tree in the underlying undirected grapheanth vertex has in-degree one in
F, except the root.

Let G = (V, E) be a connected undirected graph andlleC V. An orientation ofG is
calledT-oddif precisely the vertices df' get odd in-degree. It is easy to see thabas al'-odd
orientation if and only if £| +|7'| is even. (This can be seen by induction as follows. Takel”
for which G — v is connected. Ib € T"andd(v) is odd orv ¢ T andd(v) is even then orient
the edges incident to towardsv and apply induction o4 — v with respect tdl" — v to obtain
the orientation of the rest. If this is not the case then ¢radinedges but one, sayr, towards
v, and apply induction o/ — v with respect tq'7" — v) & {z}. Here® denotes the symmetric
difference.) ¢From this fact we obtain the following obsg¢ion (which was found earlier by
Chevalier et al. 7], too).



Proposition 1.5 Let G = (V, E)) be a connected graph for whigh(G) is even and let € V.
ThenG has an even tree if and only if there existS§a— r)-odd orientation of> which contains
a spanning arborescence rootedrat

Corollary 1.6 LetG = (V, E) be a connected graph for whigh(G) is even and let € V.
ThenG has a(V — r)-odd orientation which contains a spanning arborescencee@tr if
and only if ??) holds for everyd C FE.

Motivated by Theoren?? and Corollary??, we investigate more general problems concern-
ing orientations of undirected graphs simultaneouslysBatig connectivity and parity require-
ments. Namely, given an undirected graph- (V, £'), T' C V andk > 0, our main result gives a
necessary and sufficient condition for the existence’Bfald orientation of> which containg:
edge-disjoint spanning arborescences rooted at a giveri Bebots. This good characterization
generalizes Theoref? and at the same time slightly simplifies conditi®?). Furthermore, it
implies Nash-Williams’ theorem on covering the edges ofapbrbyk forests as well. We also
point out some connections to a related problenkt-@tge-connected-odd orientations which
was investigated in?]. These corollaries are discussed in Section 3.

The proof of our main result employs the proof method whicls developed independently
by Gallai and Anderson and which was first used to show an etggaof for Tutte’s theorem
on perfect matchings of graphs, s€& [n our case the weaker result the proof hinges on (which
is Hall's theorem in the previously mentioned proof for Bgtresult) is an orientation theorem
of the first author (Theorer?? below).

Let R = {ry,..., 7} be amultisetof vertices ofG (that is, the elements d@? are not necessar-
ily pairwise distinct). Byl & Rwe mean((T' &) @ ...) & ri. For someX C V the subgraph
induced byX is denoted byG[X]. The number of edges i¥[X] is denoted byi(X). For a
partition? = {V4,...,V;} of V with ¢ elementdhe set of edges connecting different elements
of P is denoted by (P). We sete(P) = |E(P)|. Thein-degreeof a setX C V in a directed
graphD = (V, E) is denoted by (X ). The following well-known result is due to Edmonds.

Theorem 1.7 [?] Let R be a multiset of vertices of sizen a directed graphD = (V, E). Then
D containsk edge-disjoint spanning arborescences roote@® aftand only if

p(X) >k —|XNR| foreveryX CV. (4)
The following result is due to Frank.

Theorem 1.8 [?, Theorem 2.1] Let = (V, E') be a graph, and ley : V' — Z be a function.
Then there exists an orientation &f whose in-degree functionsatisfieso(v) = g(v) for every
v € V if and only if the following two conditions hold.

g(V) = |E| ()

g(X) >i(X) foreveryh) # X C V. (6)



We shall rely on the following orientation theorem, whicleasy to prove from Theoref?
and Theoren??.

Theorem 1.9 Let H = (V, E) be a graph, letR = {r,...,r;} be a multiset o vertices of
H and letg : V — Z, be a function. Then there exists an orientationfbfwhose in-degree
function p satisfiesp(v) = g(v) for everyv € V and for which there exist edge-disjoint
spanning arborescences with rodts,, . .., } if and only if (??) and the following condition
hold.

g(X)>i(X)+k—|XNR| forevery) # X C V. (7)

Proof: It is easy to see that bot®??) and (??) are necessary. To see the other direction let us
take an orientation off whose in-degree function satisfieso(v) = g(v) for everyv € V. By

(??) and since ??) implies (??), such an orientation exists by Theor&h We claim that this
directed graph satisfie®?) with respect to the multise® of roots. Indeed, by observing that
PIX) = S e plo) = i(X) = X,ex glx) = i(X) = g(X) —i(X) for every X C V/, by (??)

we obtainp(X) > i(X) +k — | X N R| —i(X) = k — | X N R|, as required. Hence we are done
by Theorent??. °

Note thatR is a multiset in Theorerf??, hence by X N R|in (??) we mean{r; € R: r; €
X,i = 1,...,k}|. This convention will be used later on, whenever we take titer$ection (or
union) with a multiset.

GivenG = (V,E),T C V, k € Z, and a partitiori? = {V, ..., V;} of V, an elemen¥/
(1 < j < t)iscalledoddif |V; N T| —i(V;) — k is odd, otherwisé/; is even The number of
odd elements oP is denoted by (P, T, k) (where some parameters may be omitted if they are
clear from the context). Our main result is the following.

Theorem 1.10 LetG = (V, E) be agraph,I’ C V and letk > 0 be an integer. For a multiset of
k verticesk = {ry,...,r;} of VV there exists & @ R-odd orientation of for which there exist
k edge-disjoint spanning arborescences with rots . . ., v} if and only if

e(P) > k(t—1)+s(P,T) (8)
holds for every partitior? = {V;,...V;} of V.

Note that takingP? = {V'} in (??) yields the conditiorfT’| — |E| — k is even. Also notice
that the multisei? of roots plays no role in the characterization. This factasyeto see directly
by observing that ifG has a propefl’ & R-odd orientation for somé then G has a proper
T & R’-odd orientation for any other multisét’ of k£ roots. Indeed, by repeatedly taking two
rootsr € R — R andr’ € R’ — R and a spanning arborescernc®f rootr in the propefl’ & R-
odd orientation and then reversing the edges of the directed path inF', one obtains a proper
T @& R’-odd orientation. In the proof, however, the most genenahtdation will be convenient.



2 TheProof of Theorem ??

Proof: (of Theorenm??) To see the necessity of conditio?P?], consider an orientation @f with
the required properties and some partiti®n= {V;, ..., V;} of V. The following fact is easy to
observe.

Proposition 2.1 For everyT' © R-odd orientation ofGG and for everyV; (1 < j < t) we have
VT —i(V;) — k= p(V;) — (k—[V; N R|)  (mod 2).

Proof: Since the orientation i§' & 1-odd, we obtairp(V;) +i(V;) = > ,cy, p(v) = [V; N (T'®
R)| = |V, nT| - |V; N R| and the claim follows. °

Since there exist edge-disjoint arborescences rooted at verticeR,at follows from the
easy part of Theorer@? that p(V;) — (k — |V; N R|) > 0 for eachV;. If this number is odd
(or, equivalently by Propositiof?, if V; is odd) then it is at least one. This yield§P) =
Svepp(Vi) = Yuep(p(Vi) = (k= [V; A R)) + kt — [V A R| > s(P.T) + kt — k =
k(t — 1) + s(P,T), hence the necessity follows.

In what follows we prove thatX?) is sufficient. An orientation is callegoodif the directed
graph obtained contairisedge disjoint spanning arborescences rootdd ket us suppose that
the statement of the theorem does not hold and let us takerdereexample (that is, a graph
G = (V, E) with T', R andk, for which (??) holds but no good” & R-odd orientation exists) for
which |V | + |E| is as small as possible.

Proposition 2.2 e(P) = k(t — 1) + s(P,T) (mod 2) for every partitionP.

Proof: By choosingP, = {V} in (??) we obtain thaiT'| — |E| — k is even. This implies
s(P,T) = 31 (IVinT|=i(V;) —k) = |T|~(|E|—e(P)) —kt = |T| - | E| ~k+e(P)—k(t-1) =
e(P)—k(t—1). °

We call a partition? of V' consisting oft elementgight if e(P) = k(t — 1) + s(P,T') and
t>2.

Lemma 2.3 There exists a tight partition df .

Proof: Let ab be an arbitrary edge d@f. Focus on the graptt’ = G — ab and the modified
set?’ =T @ b. If there was a good” & R-odd orientation of5’ then adding the areb would
provide a good’ & R-odd orientation of5, which is impossible. Thus, by the minimality 6f,
there exists a partitio® of I consisting of elements violating??) in G, that is, by Proposition
??, e (P)+2<k(t—1)+ se(P,T). Clearly,t > 2 holds.

For the same partition i@ we havee(P) < e (P)+1and alsea(P,T) > se (P, 1T")—1,
since adding the edge and replacing” ¢ b by T" may change the parity of at most one element
of the partition. Thuge(t — 1) + s¢(P,T) > k(t — 1) + sa/(P,T') — 1 > eq(P) +2—1 >



eq(P) > k(t — 1) + s¢(P,T), henceP is tight in G and the lemma follows. .

Let us fix a tight partitior® = {1, ..., V;} in G for which ¢ is maximal. Denote the number
of odd components dP by s.

Lemma 2.4 Every element; of P (1 < j < t) has the following property:
(a) if V; is even, then??) holds inG[V}], with respect td’ NV,
(b) if V; is odd, then for each vertexe V;, (??) holds inG[V;], with respect tq7' N V;) @ v.

Proof: We handle the two cases simultaneously. Suppose that tkiste a partition’ of ¢’
elements irG[V}] violating (??) (with respect td’NV; in case (a) or with respect {@'NV;) @ v,
for somev € V;, in case (b)). By PropositioP? this impliesk(t' — 1) + s’ > e(P’) + 2, wheres’
denotes the number of odd element$6f Consider the partitio®” = (P —V;)UP’, consisting
of t” elements from whicly” are odd. Clearlye(P”) = e(P) + e(P’') andt” =t +t — 1.
Furthermores” > s+ s’ — 2, since the parity of at most two elements may be changedgres
V; —only in case (b) —and the elementwhich contains the vertex— only in case (b) again).
Since (?) holds forP” by the assumption of the theorem, we h&ay& — 1) 4+ s” < e(P”) =
e(P)+e(P) <k(t—1)+s+k(t'—1)+s—-2=k((t+t'—1)—1)+s+5 =2 < k(t"—1)+5".
ThusP” is a tight partition witht” > ¢, which contradicts the choice @f. °

Let us denote the graph obtained frakby contracting each elemeft of P into a sin-
gle vertexv; (1 < j < t) by H. Let R = {r},...,r.} denote the multiset of vertices éf
corresponding to the vertices &f in G (that is, every root in somg; yields a new root;).
Furthermore, letd denote those vertices @¢f which correspond to odd elements®Bfand let
B =V(H) — A. Note that sincé is tight, we have

|E(H)| = e(P) = k(t — 1) + s(P). (9)
Now define the following functiory on the vertex set of/.

(o)) = k+1—|V;nR| ifv,cA
K= k= |V;nR| otherwise.

Lemma 2.5 There exists an orientation &f whose in-degree function isand which contains
k edge-disjoint spanning arborescences with rdofs ..., . }.

Proof: To prove the lemma we have to verify that the two conditic?® and (??) of Theorem
?? are satisfied. First we can see th@V (H)) = g(A) +g(B) = s(k+ 1)+ (t —s)k — k =
k(t — 1)+ s = |E(H)| by the definition ofy and by 7). Thus @?) is satisfied.

To verify (??), let us choose an arbitrary non-empty subseof V(H). Let us define the
partiionP* of V/(G) by P* := {V; : v; € V(H) = X}UU, cx V;- ThenP~ hast™ = ¢ —|X|+1
elements and the number of its odd elements at leasts — |.X N A|. Applying (??) for P*, it
follows thatk(t* — 1)+ s* < e(P*). Hencek((t — | X|+1)—1)+s— | X NA| < k(t*—1)+s* <
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e(P*) =e(P)—i(X) = k(t—1)+s—i(X). From this it follows thai (X ) + & < k| X|+| X NA|.
Therefore(X)+k—| XNR'| < k| X|+|XNA|—|XNR'| = | XNA|(k+1)+|XNBlk—| XNR'| =
g(XNA)+g(X NB)=g(X), proving that ?) is also satisfied. °

Let us fix an orientation off whose in-degree functigny = g and which contains a sét of
k edge-disjoint spanning arborescen¢és. ..., Fj} with roots{r|, ..., 7. }. Such an orientation
exists by Lemm&?. Observe, that this orientation éf corresponds to a partial orientation of
G (namely, an orientation of the edgesiofP)).

For any vertex; of H there aregy(v;) arcs entering);. If V; is even then each arc entering
v; belongs to some arborescencefinif V; is odd then each arc enteringexcept exactly one
belongs to some arborescencerfby the definition ofy.

For an arbitranyy; € P let us denote byR/’ the multiset of those vertices ¥, which are
the heads of the arcs of this partial orientation entefingnd belonging to some arborescence
in 7. By the definition ofy, we havelR)'| = k — |V; N R|. Let R; = (V; N R) U R}. Note that
|R;| = |V; N R| + |R}| = k. Furthermore, ifV; is odd then let us denote hy the vertex il
which is the head of the unique arc enterijgand not belonging to any arborescencerinLet
T; =TNnV;if Vyisevenand let; = (T'NV;) @ a; if V; is odd.

By the minimality of G and sincgV;| < |V(G)| for eachl < j < t, Lemma?? implies
that for eachj there exists &; @ R;-odd orientation oiG[V;] which containst edge-disjoint
spanning arborescences with rootgidn Combining these orientations of the subgraphs induced
by the elements oP and the orientation of/(P) obtained earlier, we get an orientation®f
This orientation is clearly a godfl & R-odd orientation of~, contradicting our assumption on
G. This contradiction proves the theorem. °

3 Corollaries

As we reformulated Theorer?? in terms of odd orientations and spanning arborescences in
Corollary??, we can similarly reformulate Theore®? in terms of even components and span-
ning trees.

Theorem 3.1 A graphG = (V, E) hask edge-disjoint spanning trees,, ..., F;, so that each
connected component 6f— U* E(F;) has an even number of edges if and only if

e(P)>k(t—1)+s (10)

holds for each partitio® = {V;,...V;} of VV, wheres is the number of those elementsiofor
whichi(V;) + k(|V;| — 1) is odd.

Proof: As we observed(z has an oriention for which the in-degree of every vertex sne¥
and only if each connected componentbtontains an even number of edges. Thus the desired
spanning trees exist i@ if and only if G has al’ & R-odd orientation which contairns edge-
disjoint r-arborescences, whefe= V/, if k is odd, T = 0, if k is even, andR = {ry, ..., 7},
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r; =r (i = 1,...,k) for an arbitraryr € V. Based on this fact, Theore®? proves the theorem
(by observing that??) specializes to%?) due to the special choice ). .

The special cask = 1 of Theorent?? corresponds to Theore®?. Since ¢7?) implies (??) if
k = 1, Theorem?? applies and we obtain a slightly simplified version of Nelj§gskesult. Note
also that our main result provides a proof of different natiar Theoren?? by using Theorem
??.

The next corollary we prove is Nash-Williams’ classicaldrem on forest covers.

Corollary 3.2 [?] The edges of a grapty = (V, E') can be covered by forests if and only if
i(X) < k(IX] - 1) (11)
holds for every) # X C V.

Proof: We consider the sufficiency of the condition. L&t = (V, E) be a graph for which
(??) holds. The first claim is that we can add new edge& tantil the number of edges equals
k(|V| — 1) without destroying ??). To see this, observe that the addition of a new edgery
(which may be parallel to some other edges already presért aannot be added if and only if
x,y € Z forsomeZ C V with i(Z) = k(|Z] — 1). Such a set, satisfyin@®) with equality, will
be calledfull. It is well-known that the function : 2 — Z, is supermodular, that is, it satisfies
i(X)+i(Y) <i(XNnY)+i(XUY)foreveryX,Y C V. Therefore for two intersecting full
setsZ andW we havek(|Z| — 1)+ k(|W| —1) =i(Z) +i(W) <i(ZNW)+i(ZUW) <
E(|ZNW|=1)+k(|ZUW|—-1)=k(|Z] — 1)+ k(|W]| —1). Thus equality holds everywhere,
and the set N W andZ U W are also full. Now letF" be a maximal full set (we may assume
F # V)ande = zy for some pairz € F,y € V — F. If we destroyed ??) by addinge, we
would have a full setr,y € F’ in G intersectingF’, henceF U F’ would also be full by our
previous observation. This contradicts the maximality-of

Thus in the rest of the proof we may assume that= £(|V| — 1). We claim that there exist
k edge-disjoint spanning trees@ The existence of these trees immediately implies ¢haan
be covered by: forests becausdé| = k(|V| — 1).

By Theorem??, it is enough to prove that??) holds inG. LetP = {Vi,...,V;} be a
partition of V' and letV, ..., V, denote the odd elements &f (with respect tok). Observe
that for an odd elemeni; the parity ofi(V;) and k(|V;| — 1) must be different (this holds
for evenk and for oddk as well), hence these numbers cannot be equal. Thus we cah cou
as follows: e(P) = |E| — > i(Vi) = k(]V| = 1) = > (i(V;) : Viiseven — > (i(V;) :
Viisodd > k(|V| — 1) — S (k([Vi| — 1) : Vi iseven — S_(k(|V;| — 1) — 1 : V; isodd) =
E(|V| —1) — k|V]+ kt + s = k(t — 1) + s, as required. o

Finally we point out some connections to a related problerthvivas solved recently by
Frank and Kialy [?]. In an undirected grapty = (V, E) a setT’ C V is G-evenif |T| + | E]
is even. As we remarked; has al'-odd orientation if and only if” is G-even. Given a graph
G and aG-even subsel’ C V(G) one may ask for a necessary and sufficient condition for the

8



existence of &-odd orientation of7 which isk-edge-connected. (A directed graph= (V, E)
is k-edge-connected (X ) > k holds for every) # X C V, wherep(X) denotes the number
of edges entering.) This question is still open, even far= 1. On the other hand, Frank and
Kiraly characterized those grapfisvhich havek-edge-connecte@-odd orientations foevery
G-evenT'.

One of their main results is as follows:

Theorem 3.3 [?] Let G be an undirected graph ankl be a positive integer. The@' has a
k-edge-connected-odd orientation for everyz-even subset’ C V' if and only if

e(P)>(k+1)t—1 (12)
holds for every partitior? = {V;,...V;},t > 2, of V.

Our results imply a similar condition for those graghsvhich have & ¢ R-odd orientation
with £ edge-disjoint spanning arborescences rootdd far everyT andeverysetR of k roots.

Theorem 3.4 LetG = (V, E) be an undirected graph anidbe a positive integer. Thef has a

T & R-odd orientation for which there exigtedge-disjoint spanning arborescences with roots
{r1,...,ry} for every subsei’” C V with |T'| + |E| — k even (and for an arbitrarily chosen
multisetR = {ry,...,r.} C V of k roots) if and only if

e(P)>(k+1)(t—1) (13)
holds for every partitior? = {V4,...V;},t > 2, of V.

Proof: First supposé- satisfies(??) and take somé& C V with |T'| + |E| — k even. Clearly,
s(P,T) < tfor any partition” consisting of classes. Thus(P) > (k+1)(t—1) = k(t—1)+
t—1 shows that satisfieg??) for every partitiori? with ¢ > 2 unless(P) = (k+1)(t—1) and
s(P,T) = t. However, by Propositio? every partitiorP’ satisfies:(P’) = k(t—1)+s(P’, T
(mod 2) and hencgk +1)(t —1) = k(t—1)+s(P,T) (mod 2) follows. Thus the latter case
cannot occur. This show&?) holds for everyl’ and everyP. Therefore Theore®? implies
thatG has the desired & R-odd orientation fofl” and for every seR of k roots.

Conversely, suppose that for some partitn= {V,...V;}, t > 2, we havee(P) < (k +
1)(t—1). Now by definingl” C V appropriately, we can make at least 1 classed/; “odd” and
hences(P,T) >t — 1. (Since|T'| + |E| — k has to be even, the parity of P, T') is determined.)
Thus for thisT" andP we havee(P) < (k+ 1)(t—1)=k(t — 1)+t -1 < k(t—1)+s(P,T),
showing thatG violates(??). Thus, by the easy part of Theore?, the required orientation
does not exist for every' in G. °

Notice that by a theorem of Tutte and Nash-Williams on edggiiht spanning trees, condi-
tion (?7?) is equivalent to the fact that hask + 1 edge-disjoint spanning trees. Using this, one
can obtain a different proof for TheorePfa.



4 Remarks

The problem of finding a spanning tree of Theor@mwith the required properties (or more
generally, the problem of computingin{z(F) : F' € F(G)}) can be formulated as a matroid
parity problem in a certain co-graphic matroid, hence it lbarsolved in polynomial time. This
was observed by Furst et ak]who gave a0 (en? log® n) time algorithm based on results from
[?]. With the help of this reduction one can obtain Theorghfrom Lovasz’s characterization
of the maximum size matroid-matching in a linear matr&d [

A similar reduction, where the matroid is the dual of the suUmt graphic matroids, seems
to work in the more general case of Theoré®too. However, from algorithmic point of view,
such a reduction is not satisfactory, since it is not knowm teorepresent the matroid in question.
This difficulty can be handled by a useful observation of Sattwf?] which reduces the matroid
parity problem on the sum of thematroids to an instance of the matroid matching problem on
the direct sum of thé matroids. It would be interesting to develop a more efficedgbrithm
for this problem as well as for the problem of Theoremn
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