
Directed hypergraph connectivity augmentation
by hyperarc reorientations

Moritz Mühlenthaler, Benjamin Peyrille, Zoltán Szigeti

May 2, 2023

Abstract

The orientation theorem of Nash-Williams states that an undirected graph admits a
k-arc-connected orientation if and only if it is 2k-edge-connected. Recently, Ito et al. [8]
showed that any orientation of an undirected 2k-edge-connected graph can be transformed
into a k-arc-connected orientation by reorienting one arc at a time without decreasing the
arc-connectivity at any step, thus providing an algorithmic proof of Nash-Williams’ theorem.
We generalize their result to hypergraphs and therefore provide an algorithmic proof of the
characterization of hypergraphs with a k-hyperarc-connected orientation originally given by
Frank et al. [6]. We prove that any orientation of an undirected (k, k)-partition-connected
hypergraph can be transformed into a k-hyperarc-connected orientation by reorienting one
hyperarc at a time without decreasing the hyperarc-connectivity in any step. Furthermore,
we provide a simple combinatorial algorithm for computing such a transformation in poly-
nomial time.

1 Introduction

An undirected (resp., directed) graph is k-edge-connected (resp., k-arc-connected) if every or-
dered pair of vertices is connected by at least k edge-disjoint (resp., arc-disjoint) paths. For any
undirected graph we may obtain an orientation of that graph by orienting each of its edges in one
of the two possible ways. In a classic theorem, Nash-Williams [11] showed that an undirected
graph admits a k-arc-connected orientation if and only if it is 2k-edge-connected. Frank [4]
introduced reorientations of undirected graphs and proved that any two k-arc-connected orien-
tations of a given undirected graph can be transformed into one another by reorienting directed
cycles and directed paths. Recently, Ito et al. [8] showed that any orientation of an undirected
2k-edge-connected graph can be transformed into a k-arc connected orientation by changing the
orientation of a single arc in each step. Furthermore, the arc-connectivity of each orientation is
at least as high as that of the previous orientations. Their result gives an algorithmic proof of the
non-trivial direction of Nash-Williams’ theorem. In fact, Ito et al. showed such a transformation
of length kn3 can be computed in polynomial time, where n is the number of vertices of the
input graph.

We propose a generalization of the result of Ito et al. to hypergraphs. An undirected hy-
pergraph is (k, k)-partition connected if for any partition P = {V1, . . . , Vt} of the vertex set,
the number of hyperedges intersecting at least two members of P is at least kt (see Section
2 for other definitions). Frank et al. [6] generalized Nash-Williams’ theorem by showing that
an undirected hypergraph admits a k-hyperarc-connected orientation if and only if it is (k, k)-
partition connected. We prove that any orientation of an undirected (k, k)-partition-connected
hypergraph can be transformed into a k-hyperarc-connected orientation by reorienting one hy-
perarc at a time without decreasing the hyperarc-connectivity at any step. Furthermore, such

1

a transformation of length at most kn3 can be computed in time polynomial in the size of the
input hypergraph. This provides an algorithmic proof for the characterization of hypergraphs
that admit a k-hyperarc-connected orientations by Frank et al. [6]. To our knowledge, our result
is the first efficient algorithm for computing a k-hyperarc-connected orientation of a hypergraph
if one exists.

Our approach is similar to that of Ito et al. [8]: Starting from any orientation of the (k, k)-
partition-connected input hypergraph, we repeatedly reorient hyperarcs along carefully chosen
hyperpaths until a k-hyperarc-connected orientation is obtained. Our approach generalizes the
work of Ito et al. [8], provides a simpler proof of their result for graphs and explicitly gives an
algorithm.

2 Definitions

Let H := (V, E) be a hypergraph, where E is a multiset of subsets of V . The elements of E are
called hyperedges. The degree dH(X) of a set X of vertices of H is the number of hyperedges Z
such that Z intersects both X and V − X. The hypergraph H is k-hyperedge-connected if for
any non-empty proper subset X of vertices, we have dH(X) ≥ k. The hyperedge-connectivity of
H, denoted by λ(H), is the maximum integer k such that H is k-hyperedge-connected.

We can orient a hyperedge X ∈ E towards v ∈ X to obtain a hyperarc (X − v, v), where
X − v is the set of tail vertices of the hyperarc and v is the head vertex of the hyperarc. By
orienting each edge of H we obtain an orientation H⃗ = (V,A) of H which is a directed hypergraph.
Our definition of a directed hypergraph coincides with the B-hypergraph of Gallo et al. in [7].
Let X ⊊ V with X ̸= ∅. The in-degree d−

H⃗
(X) of X is the number of hyperarcs (Y, v) of H⃗

such that the head vertex v is in X and at least one tail vertex of Y is not contained in X,
that is, Y − X ̸= ∅. The out-degree d+

H⃗
(X) of X is the number of hyperarcs (Y, v) of H⃗ such

that v /∈ X and X ∩ Y ̸= ∅. We use d−
H⃗
(v) for d−

H⃗
({v}) and d+

H⃗
(v) for d+

H⃗
({v}). Note that

d−
H⃗
(X) = d+

H⃗
(V − X). We say that H⃗ is k-hyperarc-connected if for any non-empty proper

subset X of vertices, we have d+
H⃗
(X) ≥ k. The hyperarc-connectivity of H⃗, denoted by λ(H⃗), is

the maximum integer k such that H⃗ is k-hyperarc-connected. When it is clear from the context
what hypergraph and what orientation we are considering, we will omit the mention of H and
H⃗ from the degree functions.

Figure 1: Directed hypergraph with 5 hyperarcs

For s, t ∈ V , a subset X of V that contains s but not t is called an (s, t)-separator. Let P
be a partition of V . We denote by eH(P) the number of hyperedges of H that intersect at least
two members of P. The hypergraph H is (k, k)-partition-connected if for any partition P of V,
we have eH(P) ≥ k|P|. Applying (k, k)-partition-connectivity to any partition of size 2 shows
that (k, k)-partition-connectivity implies 2k-hyperedge-connectivity. The converse is not true:

2

s

a1

a3

a2

t

(A1, a1)

(A2, a2)

(A3, a3)

(A4, t)

Figure 2: (s, t)-Hyperpath in red

consider the hypergraph with vertex set {a, b, c} and two identical hyperedges {a, b, c}. This
graph is 2-hyperedge-connected, but not (1, 1)-partition-connected.

Let P = (A1, a1), (A2, a2), . . . , (Aℓ, aℓ) be a finite sequence of hyperarcs of H⃗. Then P is an
(s, t)-hyperpath if s ∈ A1, t = aℓ, ai ∈ Ai+1 for i ∈ 1, . . . , ℓ−1, and the vertices ai are all distinct.
An example of an (s, t)-hyperpath is shown in Figure 2. If s = t then the (s, t)-hyperpath is
called a directed hypercycle. The trimming of an (s, t)-hyperpath P is a directed (s, t)-path P ′

whose vertices are in the order s, a1, a2, . . . , aℓ−1, t. We reorient a hyperarc (X, v) of H⃗ towards
u ∈ X, u ̸= v, by replacing (X, v) by the hyperarc (X − u+ v, u).

We say that a function f is submodular if for any two vertex sets X,Y, we have f(X)+f(Y) ≥
f(X ∩Y)+f(X ∪Y). Remark that each presented degree function is submodular (see [5]). Two
vertex sets X,Y are said to be crossing if X ∩ Y ̸= ∅, X ∪ Y ̸= V and X − Y ̸= ∅ ≠ Y −X.

3 Previous work

The following fundamental result on orientations of undirected graphs is due to Nash-Williams [11].
The original proof of Nash-Williams is not algorithmic, but meanwhile many different proofs are
known, including algorithmic ones [10].

Theorem 1. [11] An undirected graph G has a k-edge-connected orientation if and only if G
is 2k-edge-connected.

Since then, orientations of undirected graphs have been studied widely [1, 12, 3].

In his seminal work [4], Frank considered reorientations of k-arc-connected directed graphs.

Theorem 2. [4, Theorem 1] If G⃗ and G⃗′ are two k-arc-connected orientations of an undirected
graph G then there is a sequence G⃗ = G⃗0, G⃗1, . . . , G⃗ℓ = G⃗′ of k-arc-connected orientations of G
such that each G⃗i arises from G⃗i−1 by reversing one directed cycle or directed path.

In [8], Ito et al. noticed that given two k-arc-connected orientations G⃗ and G⃗′ of an undirected
graph G, it is not always possible to get G⃗′ from G⃗ by reorienting arcs one by one such that each
intermediate orientation to be k-arc-connected. For an example, see the two 1-arc-connected
orientations of a cycle of length 3. However, for a (2k + 2)-edge-connected undirected graph,
they proved that such a reorientation is possible, using Theorem 2 and the following result as a
subroutine. They mentioned that this result also provides a new algorithmic proof of Theorem 1.

3

Theorem 3. [8, Theorem 1.1] Let G = (V,E) be a 2k-edge-connected graph and G⃗ an ori-
entation of G. Then there exists a sequence G⃗ = G⃗0, G⃗1, G⃗2, . . . , G⃗ℓ of orientations of G such
that for 1 ≤ i ≤ ℓ, the orientation G⃗i is obtained from G⃗i−1 by reorienting a single arc of G⃗i−1,
λ(G⃗i−1) ≤ λ(G⃗i), and λ(G⃗ℓ) = k. Furthermore, such a sequence with ℓ ≤ (k− λ(G⃗))|V |3 can be
computed in time polynomial in the size of G.

Using Theorems 2 and 3, the following result is given by Ito et al. [8].

Theorem 4. [8, Theorem 1.2] If G⃗ and G⃗′ are two k-arc-connected orientations of a (2k+2)-
edge-connected graph G then there exists a sequence G⃗ = G⃗0, G⃗1, . . . , G⃗ℓ = G⃗′ of k-arc-connected
orientations of G such that each G⃗i arises from G⃗i−1 by reorienting a single arc.

In this paper, we study reorientations of hypergraphs. The following characterization of hy-
pergraphs that admit a k-hyperarc-connected orientation is due to Frank, Király, and Király [6].

Theorem 5. [6, Corollary 3.5] A hypergraph H admits a k-hyperarc-connected orientation if
and only if H is (k, k)-partition-connected.

Remark that not only Theorem 5 is the hypergraphic analogue of Nash-Williams’ theorem
but also a generalization of it.

4 New results

Our aim is to generalize Theorem 3 to hypergraphs, providing a combinatorial algorithmic
proof for Theorem 5 as well as an explicit algorithm for connectivity-augmentation of directed
hypergraphs by reorienting hyperarcs. The main result of the present paper is the following
theorem.

Theorem 6. Let H = (V, E) be a (k, k)-partition-connected undirected hypergraph and H⃗ an
orientation of H. Then there exists a sequence H⃗ = H⃗0, H⃗1, . . . , H⃗ℓ of orientations of H such
that for 1 ≤ i ≤ ℓ, the orientation H⃗i is obtained from H⃗i−1 by reorienting a single hyperarc of
H⃗i−1, λ(H⃗i−1) ≤ λ(H⃗i), and λ(H⃗ℓ) = k. Furthermore, such a sequence with ℓ ≤ (k− λ(H⃗))|V |3
can be computed in time polynomial in the size of H.

Theorem 6 provides the proof of sufficiency in Theorem 5. Notice that the necessity in
Theorem 5 is straight-forward. Indeed, let H⃗ be a k-hyperarc-connected orientation of H. Then,
for any partition P of V , we have eH(P) =

∑
X∈P d−

H⃗
(X) ≥ k|P| and hence H is (k, k)-partition-

connected.

Theorem 6 is obtained by applying k − λ(H⃗) times Theorem 7.

Theorem 7. Let H = (V, E) be a (k + 1, k + 1)-partition-connected hypergraph and H⃗ a k-
hyperarc-connected orientation of H. Then there exists a sequence H⃗ = H⃗0, H⃗1, H⃗2, . . . , H⃗ℓ of
orientations of H such that for 1 ≤ i ≤ ℓ, the orientation H⃗i is obtained from H⃗i−1 by reorienting
a single hyperarc of H⃗i−1, λ(H⃗i−1) ≤ λ(H⃗i), and λ(H⃗ℓ) = k + 1. Furthermore, such a sequence
with ℓ ≤ |V |3 can be computed in time polynomial in the size of H.

The proof of Theorem 7 can be found in Sections 5 to 9 and 11.

We can also generalize Theorem 2 to hypergraphs as follows.

Theorem 8. If H⃗ and H⃗′ are two k-hyperarc-connected orientations of an undirected hypergraph
H then there is a sequence H⃗ = H⃗0, H⃗1, . . . , H⃗ℓ = H⃗′ of k-hyperarc-connected orientations of H
such that each H⃗i arises from H⃗i−1 by reversing one directed hypercycle or hyperpath.

4

The proof of Theorem 8 is similar to that of Frank in [3] for Theorem 2. We briefly explain
what must be changed in that proof to apply it for hypergraphs. Frank first considers the case
when d−

G⃗
(v) = d−

G⃗′(v) for all vertices of G. He calls red the arcs of G⃗ that are oriented differently

in G⃗ and in G⃗′. Notice that in the directed graph Dr induced by the red arcs, the in-degree is
equal to the out-degree for every vertex. Frank then decomposes Dr into directed cycles and
reorients each. For hypergraphs, we call red the hyperedges of H that are oriented differently
in H⃗ and in H⃗′. We define a directed graph Dr on the vertices of H. For each red hyperedge
X, we add the arc uv to Dr where u and v are the head vertices of the corresponding hyperarc
(X − v, v) of H⃗ and hyperarc (X − u, u) of H⃗′. We then proceed to decompose Dr into directed
cycles and reorient the corresponding directed hypercycles. The rest of the proof is identical.

Finally, we generalize Theorem 4 to hypergraphs.

Theorem 9. If H⃗ and H⃗′ are two k-hyperarc-connected orientations of a (k+1, k+1)-partition-
connected hypergraph H then there exists a sequence H⃗ = H⃗0, H⃗1, . . . , H⃗ℓ = H⃗′ of k-hyperarc-
connected orientations of H such that each H⃗i arises from H⃗i−1 by reorienting a single hyperarc.

Similarly to how Theorem 4 is obtained in [8] from Theorems 2 and 3, Theorem 9 is obtained
by using Theorems 6 and 8.

5 Tight and dangerous sets

For the remainder of this article we fix a (k+1, k+1)-partition-connected hypergraph H = (V, E).
In order to avoid the verification of X∪Y = V for whether two sets X,Y ⊆ V are crossing, we fix
an arbitrary vertex r ∈ V in the following definitions. To prove Theorem 7, we follow the paper
of Ito et al. [8] and introduce the following sets with respect to an arbitrary k-hyperarc-connected
orientation H⃗ of H, which will be clear from the context.

T− = {X ⊆ V − r : d−(X) = k} ∪ {V }
T+ = {X ⊆ V − r : d+(X) = k} ∪ {V }

M− = inclusion-wise minimal members of T−
M+ = inclusion-wise minimal members of T+
M = inclusion-wise minimal members of M− ∪M+

D− = {X ⊆ V − r : d−(X) = k + 1}
D+ = {X ⊆ V − r : d+(X) = k + 1}
R = {R ⊆ V − r : R is inclusion wise minimal such that

either R ∈ T− and R contains a member of T+
or R ∈ T+ and R contains a member of T−}

We present briefly some properties of these sets that follow from submodularity of the degree
functions.

Claim 1. Let X,Y be two crossing sets in V .
(a) If X,Y ∈ T− then X ∪ Y and X ∩ Y ∈ T−.
(b) If X,Y ∈ T+ then X ∪ Y and X ∩ Y ∈ T+.
(c) If X ∈ T− and Y ∈ T+ then X − Y ∈ T− and Y −X ∈ T+.
(d) If X ∈ M− and Y ∈ T+ ∪ D+ then Y ∈ D+ and Y −X ∈ T+.
(e) If X ∈ T− ∪ D− and Y ∈ M+ then X ∈ D− and X − Y ∈ T−.

5

Proof. (a) By X,Y ∈ T−, submodularity of d−, X ∩ Y ̸= ∅, X ∪ Y ̸= V, and λ(H⃗) = k, we have

k + k = d−(X) + d−(Y) ≥ d−(X ∪ Y) + d−(X ∩ Y) ≥ k + k.

Hence equality holds everywhere, so we have X ∪ Y,X ∩ Y ∈ T−.
(b) can be proved in the same way as (a) by replacing d− by d+.
(c) By X ∈ T−, Y ∈ T+, d−(V − Y) = d+(Y), submodularity of d−, X − Y ̸= ∅ ≠ Y −X,

and λ(H⃗) = k, we have

k + k = d−(X) + d−(V − Y)

≥ d−(X ∩ (V − Y)) + d−(X ∪ (V − Y))

= d−(X − Y) + d+(Y −X)

≥ k + k.

Hence equality holds everywhere, so we have X − Y ∈ T− and Y −X ∈ T+.
(d) By X ∈ M−, Y ∈ T+ ∪ D+, the submodularity of d−, λ(H⃗) = k, X − Y ̸= ∅ ≠ Y −X,

and minimality of X, we obtain

k + (k + 1) ≥ d−(X) + d+(Y)

= d−(X) + d−(V − Y)

≥ d−(X − Y) + d−(V − (Y −X))

= d−(X − Y) + d+(Y −X)

≥ (k + 1) + k.

It follows that d+(Y) = k + 1 and that d+(Y −X) = k.
(e) can be proved similarly as (d). ■

By Claim 1, each of the families M−,M+ and M is a subpartition of V .

6 Main algorithm

We follow the framework presented by [8] and adapt it for hypergraphs.

For S ∈ M−, a vertex s ∈ S is a safe source in S if
(a) for every s ∈ X ∈ T+, we have S ⊊ X,
(b) for every s ∈ X ∈ D+ such that S −X ̸= ∅, there exists Y ∈ T+ such that s ̸∈ Y ⊊ X.

For T ∈ M+, a vertex t ∈ T is a safe sink in T if
(a) for every t ∈ X ∈ T−, we have T ⊊ X,
(b) for every t ∈ X ∈ D− such that T −X ̸= ∅, there exists Y ∈ T− such that t ̸∈ Y ⊊ X.

Let P be a directed (s, t)-hyperpath in H⃗ and R a set in R. We say that P is admissible in R if

(a) s is a safe source in a set S ∈ M−, t is a safe sink in a set T ∈ M+, S and T are contained
in R,

(b) reorienting all hyperarcs in P one by one, from start to end if R ∈ R ∩ T+ and from end
to start if R ∈ R ∩ T−, never decreases the hyperarc-connectivity of the current directed
hypergraph,

(c) after all hyperarcs of P have been reoriented, the new orientation’s M′ set has either less
elements than M, or the same number of elements as M but covers more vertices than
M.

6

Algorithm 1 aims to compute a (k + 1)-hyperarc-connected orientation of H from a given
k-hyperarc-connected orientation H⃗ of H. The algorithm starts by selecting an arbitrary vertex
r of H, which will allow us to compute the sets R,M−,M+ with respect to H⃗ and r. If
M− = M+ = {V } then for all X ⊆ V − r, we have d−

H⃗
(X) ≥ k + 1 and d+

H⃗
(X) ≥ k + 1,

this implies that we have a (k+1)-hyperarc-connected orientation and we are done. Otherwise,
we pick an arbitrary set R in R and find an admissible (s, t)-hyperpath P in R. Depending
on whether R is in T+ or T−, we reorient one by one each hyperarc of P either from start to
end or from end to start such that we do not decrease the hyperarc-connectivity of H⃗ in each
reorientation step. We repeat the process with the new orientation until |M| = {V }. Since M
is a subpartition of V and by the definition of an admissible hyperpath, the case |M′| = |M| can
only occur at most |V | times until |M′| < |M|, which itself can only happen at most |V | times.
Thus, since no two hyperarcs in a hyperpath have the same head vertex, we reorient at most
|V |3 hyperarcs and hence the algorithm terminates. It then suffices to show the existence of an
admissible path and that reorienting its hyperarcs one by one does not decrease the hyperarc-
connectivity to prove Theorem 7.

Algorithm 1: Hypergraph connectivity augmentation algorithm

Input: A k-hyperarc-connected orientation H⃗ of a (k + 1, k + 1)-partition-connected
hypergraph H.

Output: A (k + 1)-hyperarc-connected orientation H⃗′ of H.
1 Take an arbitrary vertex r of H;
2 Let H⃗′ := H⃗;
3 Compute the sets R, M−, M+ of H⃗′;
4 if M− = M+ = {V } then
5 Return H⃗′;
6 Take a set R ∈ R;
7 Find an admissible (s, t)-hyperpath P = (A1, a1), (A2, a2), . . . , (Aℓ, aℓ) in R, using

Algorithm 2 if R ∈ T− and Algorithm 3 if R ∈ T+;
8 if R ∈ T− then
9 for i = ℓ, ℓ− 1, . . . , 2 do

10 Reorient (Ai, ai) towards ai−1;
11 Reorient (A1, a1) towards s;
12 else
13 Reorient (A1, a1) towards s;
14 for i = 2, 3, . . . , ℓ do
15 Reorient (Ai, ai) towards ai−1;
16 go to line 3

7 Existence of safe sources and safe sinks

We first show that any S ∈ M− contains a safe source and any T ∈ M+ contains a safe sink.
Notice that the proofs are not the same and, because of asymmetry of directed hypergraphs,
the proof for the existence of safe sources cannot be used for the existence of safe sinks and vice
versa. We start with the existence of a safe source whose proof is inspired by a proof of Lovász
[9].

Lemma 10. For S ∈ M−, there exists a safe source s in S.

Proof. Let S ∈ M−. If S = V then s = r is a safe source, so assume that S ̸= V . Let

7

X = {X1, X2, · · · , Xℓ} be a family of vertex sets such that Xi ⊆ S,Xi ∈ T+ ∪D+ and X covers
as many vertices of S as possible and under this condition minimizes ℓ.

Claim 10.1. The family X does not cover all vertices of S.

Proof. Suppose for a contradiction that
⋃

X∈X X = S. Since S ∈ T−, S ̸= V , and H is
(k+1, k+1)-partition-connected, we have d+(S) ≥ 2(k+1)−d−(S) = k+2. Thus, S ̸∈ T+∪D+

and ℓ ≥ 2. We also have

2 ≤ d+(S)− d−(S) = d−(S̄)− d+(S̄). (1)

For every 1 ≤ i ≤ ℓ, let Yi = Xi −
⋃

i ̸=j Xj . By the minimality of ℓ, we have Yi ̸= ∅. Let
X0 = Y0 = S̄ ̸= ∅. We show that

ℓ∑
i=0

d−(Yi) ≤
ℓ∑

i=0

d+(Xi). (2)

Indeed, since {Y1, . . . , Yℓ} is a subpartition of V , every hyperarc contributes at most 1 to the
left-hand side. Moreover, if a hyperarc (Z, v) contributes 1 to the left-hand side then v ∈ Yi
for some i ∈ {0, 1, . . . , ℓ} and there is some tail u ∈ Z such that u ∈ Ȳi =

⋃
j ̸=iXj . Therefore,

u ∈ Xj for some j ̸= i, so (Z, v) contributes at least 1 to the right-hand side and (2) follows.
Furthermore, for 1 ≤ i ≤ ℓ, by ℓ ≥ 2, Xi ∈ T+ ∪ D+, λ(H⃗) = k, and ∅ ̸= Yi ⊊ S ∈ M−, we

have
d+(Xi) ≤ k + 1 ≤ d−(Yi). (3)

By equations (1)–(3), we obtain

2 ≤ d−(S̄)− d+(S̄) = d−(Y0)− d+(X0) ≤
ℓ∑

i=1

(d+(Xi)− d−(Yi)) ≤ 0,

a contradiction that proves Claim 10.1. □

By Claim 10.1, there exists a vertex s ∈ S −
⋃ℓ

i=1Xi. We aim to show s is a safe source in
S. Suppose that s ∈ X ∈ T+ ∪D+. By the definition of s and X, we have X − S ̸= ∅. Suppose
now that S −X ̸= ∅. By Claim 1(d), we have d+(X) = k + 1 and d+(X − S) = k. Then, for
every s ∈ X ∈ T+, we have S ⊊ X, and for every s ∈ X ∈ D+ such that S −X ̸= ∅, we have
X − S ∈ T+. Therefore, s is a safe source in S. ■

We next show the existence of a safe sink whose proof is similar to the one found in [8].

Lemma 11. For T ∈ M+, there exists a safe sink t in T .

Proof. Let T ∈ M+. If T = V then t = r is a safe sink, so we consider T ̸= V . Let Y =
{Y1, . . . , Yα} be the inclusionwise maximal vertex sets that are in T− and contained in T . Using
Claim 1, if two members of Y did cross then their union would be in T−, thus the family Y is a
subpartition.

Let Z = {Z1, . . . , Zβ} be the inclusionwise maximal vertex sets that are in D− and contained
in T −

⋃
Y ∈Y Y . We show that Z is a subpartition; suppose for a contradiction that this is not

the case. Then there exist distinct indices i ̸= j such that Zi ∩ Zj ̸= ∅. If d−(Zi ∩ Zj) = k then
Zi ∩Zj ⊆ Yℓ ∈ Y for some ℓ, contradicting that Zi ⊆ T −

⋃
Y ∈Y Y . Similarly, if d−(Zi ∪Zj) = k

then Zi ∪ Zj ⊆ Yℓ ∈ Y for some ℓ, contradicting that Zi ⊆ T −
⋃

Y ∈Y Y . Hence, by the
submodularity of d− and λ(H⃗) = k,

2(k + 1) = d−(Zi) + d−(Zj) ≥ d−(Zi ∩ Zj) + d−(Zi ∪ Zj) ≥ 2(k + 1),

so d−(Zi ∪ Zj) = k + 1, which contradicts the maximality of Zi.

8

Claim 11.1. The family Y ∪ Z does not cover all vertices of T .

Proof. Suppose this is not the case. Then P = Y ∪ Z ∪ {T̄} is a partition of V . Notice that
d−(T̄) = d+(T) = k and eH(P) =

∑
X∈P d−(X). Then, by (k + 1, k + 1)-partition-connectivity

of H, we have a contradiction: αk+β(k+1)+k = eH(P) ≥ |P|(k+1) = (α+β+1)(k+1). □

By Claim 11.1, there exists a vertex t ∈ T −
⋃

Y ∈Y Y −
⋃

Z∈Z Z. We first show that any
set X ∈ T− that contains t also contains T . If X ⊆ T then X ⊆ Yi for some i, contradicting
the choice of t. We hence suppose that X − T ̸= ∅. If T −X ̸= ∅ then by Claim 1(c), we have
T −X ∈ T+ which contradicts the minimality of T . This proves T ⊊ X.

We now show that any set X ∈ D− such that t ∈ X and T −X ̸= ∅ contains a set Y ⊆ X− t
such that Y ∈ T−. First, suppose X ⊊ T . Since t ∈ X ⊊ T , X ∈ D−, and t ̸∈

⋃
Z∈Z Z, we get

that X is not contained in T −
⋃

Y ∈Y Y . Thus, X must intersect a set Yi for some i. By the
submodularity of d−, λ(H⃗) = k, and the maximality of Yi, we have

(k + 1) + k = d−(X) + d−(Yi) ≥ d−(X ∩ Yi) + d−(X ∪ Yi) ≥ k + (k + 1).

Therefore, X ∩ Yi ∈ T−. Finally, suppose that X − T ̸= ∅. Then, by the minimality of T and
Claim 1(e), we have X − T ∈ T−, proving t is a safe sink in T . ■

For v ∈ V , Qv
− denotes the inclusion-wise minimal set of T− containing v and Qv

+ denotes
the inclusion-wise minimal set of T+ containing v. Notice that there is no ambiguity since, by
Claim 1(a), the sets Qv

− et Qv
+ are unique.

Lemma 12 (see [8, Lemma 4.12]).

(a) For every s ∈ V and t ∈ Qs
+, there exists an (s, t)-hyperpath P that does not leave Qs

+.

(b) For every t ∈ V and s ∈ Qt
−, there exists an (s, t)-hyperpath P that does not leave Qt

−.

Proof. (a) Suppose that the claim does not hold, so there exist s ∈ V and t ∈ Qs
+ such that

any (s, t)-hyperpath leaves Qs
+. Then there exists a vertex set s ∈ Z ⊆ Qs

+ − t such that any
hyperarc that leaves Z also leaves Qs

+. Therefore, we have k ≥ d+(Qs
+) ≥ d+(Z) ≥ k, which

implies that Z ∈ T+, contradicting the minimality of Qs
+.

(b) can be proved similarly as (a). Suppose that the claim does not hold, so there exist
t ∈ V − r and s ∈ Qt

− such that any (s, t)-hyperpath leaves Qt
−. Then there exists a vertex

set t ∈ Z ⊆ Qt
− − s such that any hyperarc that enters Z also enters Qt

−. Therefore, we have
k ≥ d−(Qt

−) ≥ d−(Z) ≥ k, which shows that Z ∈ T−, contradicting the minimality of Qt
−. ■

Lemma 13. Let R ∈ R, S ∈ M−, T ∈ M+ such that S, T ⊆ R. Furthermore, let s be a safe
source in S, and t a safe sink in T . Then for all sets X ⊆ V − r such that s ∈ X, t ̸∈ X, we
have d+(X) ≥ k+1, and for all sets X ⊆ V − r such that t ∈ X, s ̸∈ X, we have d−(X) ≥ k+1.

Proof. If the claim does not hold then, by λ(H⃗) = k, there exists X ⊆ V − r such that either
(a) s ∈ X, t ̸∈ X and X ∈ T+ or (b) t ∈ X, s ̸∈ X and X ∈ T−.

(a) By S ∈ T−, s ∈ X ∈ T+ and since s is a safe source, we have S ⊊ X. As t ∈ R −X and
R ∈ R, we have that X ⊈ R which implies X −R ̸= ∅.

- If R ∈ T− then by t ∈ R − X, X ∈ T+ and Claim 1 on X and R, we get that
R−X ∈ T−. If X ∩ T ̸= ∅, then, by Claim 1, we get that X ∩ T ∈ T+, contradicting
the minimality of T . Hence T ⊆ R−X. This, by T ∈ T+ and R−X ∈ T−, contradicts
that R ∈ R.

9

- If R ∈ T+, by X ∈ T+ and Claim 1, we get that X ∩ R ∈ T+. This, by S ∈ T−,
S ⊆ R ∩X and t ∈ R−X, contradicts that R ∈ R.

(b) By T ∈ T+, t ∈ X ∈ T− and since t is a safe sink, we have T ⊊ X. As s ∈ R − X and
R ∈ R, we have that X ̸⊆ R which implies X −R ̸= ∅.

- If R ∈ T− then by X ∈ T− and Claim 1, we get that X ∩ R ∈ T−. This, by T ∈ T+,
T ⊆ X ∩R and t ∈ R−X, contradicts that R ∈ R.

- If R ∈ T+, then by s ∈ R − X, X ∈ T− and Claim 1 on X and R, we get that
R−X ∈ T+. If X ∩ S ̸= ∅, then, by Claim 1, we get that X ∩ S ∈ T−, contradicting
the minimality of S. Hence S ⊆ R−X. This, by S ∈ T− and R−X ∈ T+, contradicts
that R ∈ R.

■

8 Finding an admissible hyperpath

In this section we present two algorithms to find an admissible hyperpath in a set R of R. We
use Algorithm 2 when R is in T− and Algorithm 3 when R is in T+.

Algorithm 2 finds an (s, t)-hyperpath P such that its trimming P ′ neither leaves R nor any
set of T+ it enters. The algorithm works as follows. First, we choose a minimal set S contained
in R (possibly R itself), such that S ∈ M− as well as a safe source s in S. We keep track of a set
Z of vertices we already explored (that contains s initially), a search s-out-arborescence F and
a set V ′ of vertices that will potentially be explored and which is initialized to R. While there is
a hyperarc (X, v) leaving Z and whose head v is in V ′, we pick an arbitrary vertex u ∈ X ∩ Z.
This vertex u will serve as the tail of the trimmed hyperarc. Note that u exists by the choice of
(X, v). We mark the head vertex v as explored, trim the hyperarc (X, v) into the arc uv, and
add it to F . We ensure that if our search enters a set in T+, we do not leave that set (see Line 11
of Algorithm 2). We let T be the last set in T+ entered. We will see that T ∈ M+ and we find
a safe sink t in T . Finally, we let P ′ be the unique directed (s, t)-path in F denoted by F [s, t].
Notice that P ′ is the trimming of an (s, t)-hyperpath P and the vertex set of P ′ is contained in
R. The algorithm returns S, T, s, t, P and terminates.

10

Algorithm 2: Admissible hyperpath in R ∈ T−
Input: A set R ∈ R ∩ T−.
Output: A safe source s in S ∈ M− with S ⊆ R, a safe sink t in T ∈ M+ with T ⊆ R,

and an (s, t)-hyperpath P that does not leave R.
1 Take a set S ∈ M− with S ⊆ R;
2 Take a safe source s in S;
3 Z := {s};
4 F := (Z, ∅);
5 V ′ := R;
6 while an (X, v) hyperarc exists in H⃗ such that v ∈ V ′ − Z and X ∩ Z ̸= ∅ do
7 Take an arbitrary vertex u ∈ X ∩ Z;
8 Z := Z ∪ {v};
9 F := F + uv;

10 if Qv
+ ⊊ V ′ then

11 V ′ := Qv
+;

12 T := V ′;
13 Take a safe sink t in T ;
14 P ′ := F [s, t];
15 Let P be the hyperpath in H⃗ corresponding to P ′;
16 Return S, T, s, t, P ;

We apply Algorithm 2 to prove the following lemma that we need in order to show the
existence of an admissible path in case of R ∈ R ∩ T−.

Lemma 14. If R ∈ R∩T− then there exist S ∈ M−, T ∈ M+, a safe source s in S, a safe sink
t in T, and an (s, t)-hyperpath P such that S ⊆ R, T ⊊ R, P does not leave R, Qt

− = R and
δ+P ′(X) = ∅ for every X ∈ T+ with s, t ̸∈ X where P ′ is the unique directed (s, t)-path obtained
from P by trimming.

Proof. The algorithm starts by taking a safe source in S. Such a safe source exists by Lemma 10.
We show that Algorithm 2 provides the required hyperpath P . Let T ′ ∈ M+ with T ′ ⊊ R

and t′ a safe sink in T ′ which exists by Lemma 11. Then, by the definition of a safe sink and
Claim 1(a), T ′ ⊊ Qt′

− ⊆ R. Thus, by minimality of R, we have Qt′
− = R. Hence, by Lemma 12(b),

t′ is reachable from s by a hyperpath P that does not leave Qt′
−. This implies that the algorithm

will eventually enter a set T ∈ M+, containing a safe sink t by Lemma 11. Thus, the algorithm
terminates with a safe source s in S ∈ M− with S ⊆ R, a safe sink t in T ∈ M+ with T ⊆ R,
and an (s, t)-hyperpath P that does not leave R.

Recall that P ′ = F [s, t]. It remains to prove that for all X ∈ T+ such that s, t ̸∈ X,
δ+P ′(X) = ∅. Suppose that δ+P ′(X) ̸= ∅. Since s ̸∈ X, the path P ′ enters X. Let uv be the first
arc of P ′ that enters X. Let Y = Qv

+ and note that P ′ enters Y . As v ∈ X ∩ Y,X, Y ∈ T+, we
get, using Claim 1(b) on X and Y and the minimality of Y , that Y ⊆ X ⊊ V − t. As Y ∈ T+
and t ∈ T ∈ M+, we get, by Claim 1(b) and the minimality of T , that Y and T are disjoint. If
Y −R ̸= ∅ then, by Y ∈ T+, R ∈ T−, t ∈ R−Y and by Claim 1(c), we obtain that R−Y ∈ T−.
Since T ⊆ R − Y , this contradicts R ∈ R. Hence, Qv

+ = Y ⊊ R. Then, since Q+
v ⊆ Q+

u , by the
if condition on line 10 of Algorithm 2, we have that F and hence P ′ contains no arc leaving Qv

+

and thus leaving X. This contradicts d+P ′(X) ̸= ∅, completing the proof. ■

Algorithm 3 finds an (s, t)-hyperpath P such that its trimming P ′ neither leaves R nor enters
any set of T− that does not contain neither s nor t.

11

Algorithm 3: Admissible hyperpath in R ∈ T+
Input: A set R ∈ R ∩ T+
Output: A safe source s in S ∈ M− with S ⊆ R, a safe sink t in T ∈ M+ with T ⊆ R,

and an (s, t)-hyperpath P that does not leave R.
1 Take a set T ∈ M+ with T ⊆ R;
2 Take a safe sink t in T ;
3 Z := {t};
4 F := (Z, ∅);
5 V ′ := R;
6 while an (X, v) hyperarc exists in H⃗ such that v ∈ Z and (X ∩ V ′)− Z ̸= ∅ do
7 while (X ∩ V ′)− Z ̸= ∅ do
8 Take u in (X ∩ V ′)− Z;
9 Z := Z ∪ {u};

10 F := F + uv;
11 if Qu

− ⊊ V ′ then
12 V ′ := Qu

−;
13 S := V ′;
14 Take a safe source s in S;
15 P ′ := F [s, t];
16 Let P be the hyperpath in H⃗ corresponding to P ′;
17 Return S, T, s, t, P ;

Algorithm 3 works as follows. First, we choose a minimal set T contained in R (possibly R
itself), such that T ∈ M+ as well as a safe sink t in T . We keep track of a set Z of vertices
we already explored (that contains t initially), a search t-in-arborescence F and a set V ′ of
vertices that will potentially be explored and which is initialized to R. While there is a hyperarc
(X, v) entering Z and whose tail vertex set X contains unexplored vertices in V ′, we consider
all possible trimmings of the hyperarc (X, v) into (u, v), where u ∈ (X ∩ V ′)−Z. We mark the
tail vertex u as explored, trim the hyperarc (X, v) into the arc uv, and add it to F . We ensure
that if our search enters a set in T−, we do not leave that set (see Line 11 of Algorithm 3). We
will see that the last set in T− entered by the search is in M− and we let S be that set. We
find a safe source s in S. Finally, we let P ′ be the unique directed (s, t)-path F [s, t]. Notice
that P ′ is the trimming of an (s, t)-hyperpath P and the vertex set of P ′ is contained in R. The
algorithm returns S, T, s, t, P and terminates.

The proof of Lemma 15 is similar to that of Lemma 14.

Lemma 15. If R ∈ R ∩ T+, then there exist S ∈ M−, T ∈ M+, a safe source s in S, a safe
sink t in T , and an (s, t)-hyperpath P such that S ⊊ R, T ⊆ R, P does not leave R, Qs

+ = R and
δ−P ′(X) = ∅ for every X ∈ T− with s, t ̸∈ X where P ′ is the unique directed (s, t)-path obtained
from P by trimming.

Proof. The algorithm starts by taking a safe sink in T . Such a safe sink exists by Lemma 11.
We show that Algorithm 3 provides the required hyperpath P . Let S′ ∈ M− with S′ ⊊ R

and s′ a safe sink in S′ by Lemma 10. Then, by Claim 1(a), S′ ⊊ Qs′
+ ⊆ R. Thus, by minimality

of R, Qs′
+ = R. Then, by Lemma 12(a), t is reachable from s′ by a hyperpath P that does not

leave Qs′
+. This implies that the algorithm will eventually enter a set S ∈ M−, containing a safe

source s by Lemma 10. Thus, the algorithm terminates with a safe source s in S ∈ M− with
S ⊊ R, a safe sink t in T ∈ M+ with T ⊆ R, and an (s, t)-hyperpath P that does not leave R.

12

Recall that P ′ = F [s, t]. It remains to prove that for all X ∈ T− such that s, t ̸∈ X,
δ−P ′(X) = ∅. Suppose that δ−P ′(X) ̸= ∅. Since t ̸∈ X, the path P ′ leaves X. Let uv be the first
arc of P ′ that leaves X. Let Y = Qu

− and note that P ′ leaves Y . As u ∈ X ∩ Y,X, Y ∈ T−,
we get, by Claim 1(a) on X and Y and the minimality of Y , that Y ⊆ X ⊊ V − t. As Y ∈ T−
and s ∈ S ∈ M−, we get, by Claim 1(a), that Y and S are disjoint. If Y − R ̸= ∅, then, by
Y ∈ T−, R ∈ T+, s ∈ R − Y and by Claim 1(c), we obtain that R − Y ∈ T+. Since S ⊆ R − Y ,
this contradicts R ∈ R. Hence, Qu

− = Y ⊊ R. Then, since Qu
− ⊆ Qv

−, by the if condition on
line 12 of the Algorithm 3, we have that F and hence P ′ contains no arc entering Qu

− and thus
entering X. This contradicts δ−P ′(X) ̸= ∅, completing the proof. ■

9 Proving the admissibility of the hyperpath

In this section, we prove that Algorithms 2 and 3 provide an admissible hyperpath.

Let R ∈ R and M ≠ {V }. By Lemmas 14 and 15, there exist S in M−, T in M+, with
S, T ⊆ R, a safe source s in S, a safe sink t in T , and an (s, t)-hyperpath P that does not leave
R. Let P ′ be the trimming of P found by either Algorithm 2 or Algorithm 3. Furthermore, if
R ∈ T−, δ+P ′(X) = ∅ for all X ∈ T+ with s, t ̸∈ X. Similarly, if R ∈ T+, δ−P ′(X) = ∅ for all X ∈ T−
with s, t ̸∈ X. It is clear, from the search technique of the algorithm, that ℓ := |A(P)| < |V |.
For i = 0, 1, . . . , ℓ, let H⃗i be obtained from H⃗ by reorienting the last (resp. first) i hyperarcs
(Aj , aj) of P towards aj−1 if R ∈ T− (resp. R ∈ T+).

We first prove that the hyperarc-connectivity never decreases when we reorient the hyperarcs
of P .

Lemma 16. For i = 1, . . . , ℓ, λ(H⃗i) ≥ k.

Proof. Suppose that there exists i and X ⊆ V − r such that either (a) d+
H⃗i
(X) < k or (b)

d−
H⃗i
(X) > k. We take the first of such i.

(a) – If R ∈ T− then, by λ(H⃗i−1) ≥ k, we get that t ̸∈ X ∈ T+ and d+P ′(X) ̸= ∅. By
the definition of P and Lemma 14, we have s ∈ X. Thus, by Lemma 13, since we
are reorienting hyperarcs along a path, we have a contradiction: k + 1 ≤ d+

H⃗0
(X) ≤

d+
H⃗i
(X) + 1 ≤ k.

– If R ∈ T+ then, by λ(H⃗i−1) ≥ k, we get s ∈ X ∈ T+. By s ∈ R ∈ T+ and Claim 1(b),
we get that X ∩ R ∈ T+. By Lemma 15, we have R = Qs

+ and δ+P ′(X) ̸= ∅. Hence
we have R = Qs

+ ⊆ X ∩R ⊊ R, a contradiction.

(b) – If R ∈ T− then, by λ(H⃗i−1) ≥ k, we get t ∈ X ∈ T−. By t ∈ R ∈ T− and Claim 1(a),
we get that X ∩ R ∈ T−. By Lemma 14, we have R = Qt

− and δ−P ′(X) ̸= ∅. Hence
we have R = Qt

− ⊆ X ∩R ⊊ R, a contradiction.

– If R ∈ T+, by λ(H⃗i−1) ≥ k, we get that s ̸∈ X ∈ T− and d−P ′(X) ̸= ∅. By the definition
of P and Lemma 15, we have t ∈ X. Thus, by Lemma 13, since we are reorienting
hyperarcs along a path, we have a contradiction: k+1 ≤ d−

H⃗0
(X) ≤ d−

H⃗i
(X) + 1 ≤ k.

■

Let H⃗′ = H⃗ℓ. We define the sets T ′
−, T ′

+ and M′ for H⃗′ as the sets T−, T+ and M were
defined for H⃗. Remark that if R is in T− (resp. T+) then by Lemma 14 (resp. Lemma 15) we
get that R is in T ′

− (resp. T ′
+). For P to be admissible, it remains to show the following.

13

Lemma 17. Either (a) |M′| < |M| or (b) |M′| = |M| and
∑

X∈M′ |X| >
∑

X∈M |X| holds.

Proof. If T ̸= R ̸= S then, by Claim 1(c) and the minimality of S and T , we get that S and
T are disjoint. Hence, since s ∈ S and t ∈ T , the path P ′ leaves S and enters T . If S = R
then, since s is a safe source in R, T ∈ T+ and T ⊊ R, we have s ̸∈ T . Hence, since t ∈ T ,
the path P ′ enters T . If T = R, then, since t is a safe sink in R, S ∈ T− and S ⊊ R, we
have t ̸∈ S. Hence, since s ∈ S, the path P ′ leaves S. Since H is (k + 1, k + 1)-partition-
connected, we have d−

H⃗′(T) = dH(T) − d+
H⃗′(T) ≥ (2k + 2) − (k + 1) = k + 1 if P ′ enters T and

d+
H⃗′(S) = dH(S)− d−

H⃗′(S) ≥ (2k+2)− (k+1) = k+1 if P ′ leaves S. Thus, S ∈ M− (T ′
− ∪T ′

+)

if P ′ leaves S, and T ∈ M − (T ′
− ∪ T ′

+) if P ′ enters T . We now characterize every element of
M′ −M in the following two claims.

Claim 17.1. If X ∈ (T− ∪ T+) ∩ (M′ −M), then X = R.

Proof. Since X ∈ (T−∪T+)∩ (T ′
−∪T ′

+), either s, t ̸∈ X or s, t ∈ X. In the former case, X ∈ M′

implies that X ∈ M which is a contradiction. Hence, we consider s, t ∈ X. We distinguish some
cases.

(a) If X ∈ T− then since t is a safe sink in T , we get T ⊊ X.

- If R ∈ T− then we know, by Claim 1(a), that s, t ∈ X∩R ∈ T−, so we have X∩R ∈ T ′
−.

Thus, by X ∈ M′, we obtain that X = X ∩R ⊆ R. Hence, by T ∈ T+, X ∈ T− and
T ⊊ X ⊆ R ∈ R, we have X = R.

- If R ∈ T+ then if R − X ̸= ∅ ≠ X − R, by Claim 1(c), we get X − R ∈ T ′
−

which contradicts X ∈ M′. Hence, either R ⊆ X or X ⊆ R. If R = X, we have a
contradiction from the (k+1, k+1)-partition-connectivity of H. Hence, in the former
case, we get X ̸∈ M′ and in the latter case, by T ∈ T+, X ∈ T− and T ⊊ X ⊊ R, we
get R ̸∈ R. In both cases, we have a contradiction.

(b) If X ∈ T+ then since s is a safe source in S, we get S ⊊ X.

- If R ∈ T− then if R − X ̸= ∅ ≠ X − R, by Claim 1(c), we get X − R ∈ T ′
+

which contradicts X ∈ M′. Hence, either R ⊆ X or X ⊆ R. If R = X, we have a
contradiction from the (k+1, k+1)-partition-connectivity of H. Hence, in the former
case, we get X ̸∈ M′ and in the latter case, by S ∈ T−, X ∈ T+ and S ⊊ X ⊊ R, we
get R ̸∈ R. In both cases, we have a contradiction.

- If R ∈ T+ then we know, by Claim 1(b), that s, t ∈ X ∩ R ∈ T+, so we have
X ∩R ∈ T ′

+. Thus, by X ∈ M′, we obtain that X = X ∩R ⊆ R. Hence, by S ∈ T−,
X ∈ T+ and S ⊊ X ⊆ R ∈ R, we have X = R.

□

Claim 17.2. If X ∈ M′ − (T− ∪ T+), then S ⊊ X ⊊ R or T ⊊ X ⊊ R.

Proof. Since X ∈ M′ − (T− ∪ T+), either (a) s ̸∈ X, t ∈ X ∈ D− or (b) t ̸∈ X, s ∈ X ∈ D+

holds.

(a) We first show that T ⊊ X. Indeed, if T − X ̸= ∅, then by the fact that t is a safe sink,
there exists Y ⊆ X − t with Y ∈ T−. Since s, t ̸∈ Y , Y ∈ T ′

− contradicting X ∈ M′.

– If R ∈ T− then R ∈ T ′
−, so by Claim 1(a) and X ∈ M′

−, we get that X ⊆ R. Since
s ∈ R−X, we obtain that X ⊊ R.

14

– If R ∈ T+ then, by X ∈ M′ ∩ T ′
−, R ∈ T ′

+ and Claim 1(c) on X and R, we get that
X and R are not crossing. Thus, by s ∈ R−X, t ∈ X ∩R and r ∈ V − (X ∪R), we
have X ⊊ R.

(b) We first show that S ⊊ X. Indeed, if S −X ̸= ∅, then by the fact that s is a safe source,
there exists Y ⊆ X − s with Y ∈ T+. Since s, t ̸∈ Y , Y ∈ T ′

+ contradicting X ∈ M′.

– If R ∈ T− then, by X ∈ M′ ∩ T ′
+, R ∈ T ′

− and Claim 1(c) on X and R, we get that
X and R are not crossing. Thus, by s ∈ R−X, t ∈ X ∩R and r ∈ V − (X ∪R), we
have X ⊊ R.

– If R ∈ T+ then R ∈ T ′
+, so by Claim 1(b) and X ∈ M′

+, we get that X ⊆ R. Since
t ∈ R−X, we obtain that X ⊊ R.

□

By Claims 17.1 and 17.2, every element of M′−M contains at least an element of M−M′

strictly (S or T). Furthermore, by Claim 1, the elements of M′ − M are disjoint. Thus,
|M′ −M| ≤ |M−M′|, and if |M′ −M| = |M−M′|, we have

∑
X∈M′ |X| >

∑
X∈M |X|. ■

10 Minimum (s, t)-separators in directed hypergraphs

For directed graphs, it is well-known that the max flow-min cut algorithm of Edmonds-Karp
[2] provides a minimum out-degree (s, t)-separator that is contained in all minimum out-degree
(s, t)-separators. By submodularity, for directed hypergraphs H⃗ also holds that for every s, t ∈ V,
there exists a minimum out-degree (s, t)-separator that is contained in all minimum out-degree
(s, t)-separators. We denote that unique set by SH⃗

s,t. Similarly, there exists a minimum in-degree
(t, s)-separator that is contained in all minimum in-degree (t, s)-separators. We denote that
unique set by T H⃗

t,s. The question is how to find them in polynomial time. For this purpose we
provide a simple reduction to the same problem on directed graphs. In a similar way, a reduction
for general directed capacitated hypergraphs can be obtained. For H⃗ = (V,A), we consider a
directed graph that is obtained from its directed bipartite incidence graph G⃗ = (V ′, A′) as
follows. We let V ′ = V ∪ {w(X,v) : (X, v) ∈ A}. The arc set A′ contains for every (X, v) ∈ A,
the arc w(X,v)v and |A| + 1 parallel arcs xw(X,v) for every x ∈ X. Note that |V ′| = |V | + |A|
and |A′| ≤ |V ||A|(|A|+ 1). An example of this construction is shown in Figure 3. Let ⃗G be the
directed graph obtained from G⃗ by changing the orientation of all arcs.

u1

u2

u3

v
(X, v)

u1

u2

u3

vw(X,v)=⇒

|A|+ 1

|A|+ 1

|A|+ 1

Figure 3: Arcs in G⃗ incident to w(X,v) resulting from a hyperedge (X, v) of H⃗

Lemma 18. SH⃗
s,t = V ∩ SG⃗

s,t and T H⃗
t,s = V ∩ S

⃗G
t,s.

15

Proof. Let Z ′ = SG⃗
s,t, Z = V ∩ Z ′ and X = SH⃗

s,t. Since Z ′ is an (s, t)-separator in G⃗, we have
s ∈ Z ⊆ V − t. For a set W ⊆ V, let φ(W) = W ∪ {w(Y,v) : (Y, v) ∈ A,W ∩ Y ̸= ∅}. Note
that, by the definition of Z, we have φ(Z) ⊆ Z ′. Let X ′ = φ(X). Note that if an arc leaves
X ′ in G⃗ then there exists a directed hyperedge that leaves X in H⃗. Note also that if a directed
hyperedge leaves Z in H⃗ then there exists an arc that leaves Z ′ in G⃗. Then, by the definitions of
Z ′ and X, we have d+

G⃗
(Z ′) ≤ d+

G⃗
(X ′) ≤ d+

H⃗
(X) ≤ d+

H⃗
(Z) ≤ d+

G⃗
(Z ′). It follows that equality holds

everywhere, in particular we get that X ′ is a minimum out-degree (s, t)-separator in G⃗ and Z
is a minimum out-degree (s, t)-separator in H⃗. Then we have Z ′ ⊆ X ′ and X ⊆ Z. Thus, by
φ(Z) ⊆ Z ′, we get X ′ = φ(X) ⊆ φ(Z) ⊆ Z ′ ⊆ X ′. It follows that equality holds everywhere, in
particular we get that φ(X) = φ(Z) and hence X = Z.

Let U ′ = S
⃗G

t,s, U := V ∩ U ′ and X = T H⃗
t,s. Since U ′ is a (t, s)-separator in ⃗G, we have that

t ∈ U ⊆ V − s. For a set W ⊆ V, let ϕ(W) = W ∪ {w(Y,v) : (Y, v) ∈ A, Y ∪ {v} ⊆ W}. Note
that, by the definition of U, we have ϕ(U) ⊆ U ′. Let X ′ = ϕ(X). Note that if an arc leaves X ′

in ⃗G then there exists a directed hyperedge that enters X in H⃗. Note also that if a directed
hyperedge enters U in H⃗ then there exists an arc that leaves U ′ in ⃗G. Then, by the definitions
of U ′ and X, we have d+⃗G

(U ′) ≤ d+⃗G
(X ′) ≤ d−

H⃗
(X) ≤ d−

H⃗
(U) ≤ d+

G⃗
(U ′). It follows that equality

holds everywhere, in particular we get that X ′ is a minimum out-degree (t, s)-separator in ⃗G
and U is a minimum in-degree (t, s)-separator in H⃗. Then we have U ′ ⊆ X ′ and X ⊆ U . Thus,
by ϕ(U) ⊆ U ′, we get X ′ = ϕ(X) ⊆ ϕ(U) ⊆ U ′ ⊆ X ′. It follows that equality holds everywhere,
in particular we get that ϕ(X) = ϕ(U) and hence X = U. ■

We can hence apply the algorithm of Edmonds-Karp [2] to compute in polynomial time the
sets SG⃗

s,t and S
⃗G

t,s and obtain, by Lemma 18, the sets SH⃗
s,t. and T H⃗

t,s.

11 Complexity of the algorithms

In order to compute the sets R, M−, and M+ used in Algorithm 1, we apply the algorithms of
Section 10.

Lemma 19. There is an algorithm that computes the sets R, M−, M+ in time polynomial in
the size of H.

Proof. Let Q =
⋃

v∈V {Qv
−} ∪ {Qv

+}. We may obtain Q in polynomial time by applying the
algorithms of Section 10 to compute SH⃗

u,v and T H⃗
u,v for every pair (u, v) of vertices of H⃗.

We show that R,M−,M+ ⊆ Q. If v ∈ S ∈ M− then Qv
− = S and if v ∈ T ∈ M+ then

Qv
+ = T , so M−,M+ ∈ Q. Let R ∈ R. If R ∈ T− then R contains T ∈ M+ and by Lemma 11

there exists a safe sink t in T . We have seen in the proof of Algorithm 2 that Qt
− = R. Similarly,

if R ∈ T+ then R contains S ∈ M− and by Lemma 10 there exists a safe source s in S. We
have seen in the proof of Algorithm 3 that Qt

+ = R. Therefore, R ⊆ Q.
Finally, we can iteratively eliminate the sets from Q not in R,M− and M+ in polynomial

time. ■

Lemma 20. Algorithms 2 and 3 run in time polynomial in the size of the input H.

Proof. Both algorithms execute a simple search which runs in polynomial time in the number
of hyperedges. It remains to show we can find a safe source and a safe sink in polynomial time.
By symmetry, we only show how to find a safe source in a given S ∈ M−. For u, v ∈ S, let
Xu

v = SH⃗
u,v.

16

Claim 20.1. The vertex u is not a safe source in S if and only if there exists a vertex v ∈ S−u
such that either Xu

v ∈ T+ or Xu
v ∈ D+ and Xu

v does not contain a set Z ∈ T+.

Proof. The sufficiency follows from the definition of a safe source. To prove the necessity, we
suppose that u is not a safe source in S and Xu

v /∈ T+ for all v ∈ S − u. Then there exists
by definition, for some vertex v ∈ S − u, a minimum out-degree (u, v)-separator Y u

v such that
Y u
v ∈ D+ where there is no set Z ∈ T+ such that Z ⊆ Y u

v − u. Since Xv
u ⊆ Y v

u , we get that Xu
v

does not contain a set Z ∈ T+. □

To compute whether u is a safe source in S or not, it then suffices, for all v ∈ S−u, to check
whether Xu

v ∈ T+ or whether Xu
v ∈ D+ contains a set Z ∈ T+, which can be done in polynomial

time. By Lemma 10, S contains a safe source, thus there exists at least one vertex s ∈ S that
does not satisfy the conditions above which can be checked in polynomial time. ■

It follows from the previous lemmas that Algorithm 1 runs in polynomial time.

12 Concluding remarks

We generalized the results of Ito et al. [8] to hypergraphs and gave an algorithmic proof of
Theorem 5. Several interesting questions remain open. We do not know if the |V |3 bound
on the number of hyperarc reorientations is tight. Generalizing this result to general directed
hypergraphs with tail vertex sets and head vertex sets for each hyperarc would also provide a
general characterization of k-hyperarc-connected orientable hypergraphs, which is not known to
our knowledge.

References

[1] Attila Bernáth, Satoru Iwata, Tamás Király, Zoltán Király, and Zoltán Szigeti. Recent
results on well-balanced orientations. Discrete Optimization, 5(4):663–676, 2008.

[2] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[3] András Frank. On the orientation of graphs. Journal of Combinatorial Theory, Series B,
28(3):251–261, 1980.

[4] András Frank. A note on k-strongly connected orientations of an undirected graph. Discrete
Mathematics, 39(1):103–104, 1982.

[5] András Frank. Connections in combinatorial optimization, volume 38. Oxford University
Press Oxford, 2011.

[6] András Frank, Tamás Király, and Zoltán Király. On the orientation of graphs and hyper-
graphs. Discrete Applied Mathematics, 131(2):385–400, 2003.

[7] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42(2-3):177–201, 1993.

[8] Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi,
Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki. Monotone edge flips
to an orientation of maximum edge-connectivity à la Nash-Williams. ACM Transactions
on Algorithms (TALG), 19(1), 2023.

17

[9] László Lovász. Connectivity in digraphs. Journal of Combinatorial Theory, Series B,
15(2):174–177, 1973.

[10] László Lovász. Combinatorial problems and exercises. North Holland, 1979.

[11] Crispin St. J. A. Nash-Williams. On orientations, connectivity and odd-vertex-pairings in
finite graphs. Canadian Journal of Mathematics, 12:555–567, 1960.

[12] Zoltán Szigeti. Orientations of graphs. Matemática Contemporânea, 39:179–188, 2010.

18

	Introduction
	Definitions
	Previous work
	New results
	Tight and dangerous sets
	Main algorithm
	Existence of safe sources and safe sinks
	Finding an admissible hyperpath
	Proving the admissibility of the hyperpath
	Minimum (s,t)-separators in directed hypergraphs
	Complexity of the algorithms
	Concluding remarks

