ON PACKING T-CUTS

by

András Frank and Zoltán Szigeti

(1992, June)

Abstract

A short proof of a difficult theorem of P.D. Seymour on grafts with the max-flow min-cut property is given.

I. INTRODUCTION

The Chinese Postman problem, in other words the minimum T-join problem, consists of finding a minimum cardinality subset of edges of a graph satisfying prescribed parity constraints on the degrees of nodes. This minimum is bounded from below by the maximum value of a (fractional) packing of T-cuts. In the literature there are several min-max theorems for cases when equality actually holds. In this paper we list some of these results and exhibit new relationships among them.

To be more specific, P. Seymour's theorem [1977] on binary matroids with the maxflow min-cut property, when specialized to T-joins, provides a characterization of pairs (G, T) for which the minimum weight of a T-join is equal to the maximum packing of T cuts for every integer weighting. Motivated by Seymour's theorem, A. Sebő [1988] proved a min-max theorem concerning minimum T-joins and maximum packing of T-borders. He also observed that his result, combined with a simple-sounding lemma on bi-critical graphs (Theorem 7 below), immediately implies Seymour's theorem.

The purpose of this note is two-fold. We show first that Sebő's theorem is an easy consequence of an earlier min-max theorem [Frank, Sebő, Tardos, 1984] and, second, we provide a simple proof of the above-mentioned statement on bi-critical graphs. This way we will have obtained a simple proof of Seymour's theorem.

A graft (G, T) is a pair consisiting of a connected undirected graph $G=(V, E)$ and a subset T of V of even cardinality. A subset J of edges is called a T-join if $d_{J}(v)$ is odd precisely when $v \in T$. Here $d_{J}(v)$ denotes the number of elements of J incident to $v . J$ is called a perfect matching if $d_{J}(v)=1$ for every $v \in V$. Note that a perfect matching is a T-join for which for $T=V$. A graph $G=(V, E)$ is called bi-critical if E is non-empty and every pair of nodes u, v, the graph $G-\{u, v\}$ contains a perfect matching. It follows immediately from Tutte's theorem (see Theorem 0 below) that G is bi-critical if and only if

$$
\begin{equation*}
q(X) \leq|X|-2 \text { for every subset } X \subseteq V \text { with }|X| \geq 2 \tag{1}
\end{equation*}
$$

where $q(X)$ denotes the number of odd-cardinality components of $G-X$.
Let us call a set $X \subseteq V T$-odd if $|X \cap T|$ is odd. Given a partition $\mathcal{P}=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of V, by a multicut $B=B(\mathcal{P})$ we mean the set of edges connecting different parts of \mathcal{P}. If each V_{i} is T-odd and induces a connected subgraph, B is called a T-border. Then clearly k is even and $\operatorname{val}(B):=k / 2$ is called the value of the T-border. When $k=2$ a T-border B is called a T-cut. Note that the value of a T-cut is one.

The border graph G_{B} of a T-border $B=B(\mathcal{P})$ is one obtained by contracting each V_{i} into one node. Let us call a T-border bi-critical if its border graph is bi-critical.

Note that the cardinality of the intersection of a T-cut and a T-join is always odd, in particular, at least one. Hence the cardinality of the intersection of a T-border B and a T-join J is always at least $\operatorname{val}(B)$ and equality holds precisely when the edges in J connecting distinct $V_{i}^{\prime} s$ form a perfect matching in the border graph of B.

A list $\mathcal{B}=\left\{B_{1}, \ldots, B_{l}\right\}$ of T-borders is called a packing (2-packing) if each edge of G belongs to at most one (two) member(s) of \mathcal{B}. The value of a packing is $\sum(\operatorname{val}(B): B \in \mathcal{B})$ and the value of a 2 -packing is $\sum(\operatorname{val}(B): B \in \mathcal{B}) / 2$. Note that a T-border of value t determines a 2 -packing of T-cuts of value t.

For an edge $e=u v$ we define the elementary T-contraction as a graft $\left(G^{\prime}, T^{\prime}\right)$ where G^{\prime} arises from G by contracting e and $T^{\prime}:=T-\{u, v\}$ if $|\{u, v\} \cap T|$ is even and $T^{\prime}:=T-\{u, v\}+x_{u v}$ if $|\{u, v\} \cap T|$ is odd where $x_{u v}$ denotes the contracted node. The T-contraction of a graph means a sequence of elementary T-contractions. If $X \subseteq V$ induces a connected subgraph of G, then by T-contracting X we mean the operation of T-contracting a spanning tree of X.

Let \mathbf{K}_{4} denote a graft $\left(K_{4}, V\left(K_{4}\right)\right)$ where K_{4} is a complete graph on 4 nodes. Note that a graft (G, T) can be T-contracted to \mathbf{K}_{4} precisely when there is a partition $\left\{V_{1}, V_{2}, V_{3}, V_{4}\right\}$ of V into T-odd sets so that each V_{i} induces a connected subgraph and there is an edge connecting V_{i} and V_{j} whenever $1 \leq i<j \leq 4$.

For a general account on matchings and T-joins, see [Lovász and Plummer, 1986].

II. RESULTS ON T-CUTS AND T-JOINS

Our starting point is Tutte's theorem [1947] on perfect matchings.
THEOREM 0 A graph $G=(V, E)$ contains no perfect matching if and only if there is a set X of nodes so that $G-X$ includes more than $|X|$ components of odd cardinality.

The perfect matching problem can be reformulated in terms of T-joins. Namely, by chosing $T:=V$, one observes that G has a perfect matching precisely if the minimum cardinality of a T-join is $|V| / 2$. Therefore it was natural to ask for theorems concerning the minimum cardinality of a T-join. Let us list some known results concerning this minimum. The first one was proved by L. Lovász [1975] (and was stated earlier in a more general form by J. Edmonds and E. Johnson [1970]).

THEOREM 1 The minimum cardinality of a T-join is equal to the maximum value of a 2-packing of T-cuts.

For example, in $\mathbf{K}_{\mathbf{4}}$ a perfect matching is a T-join of 2 elements and a 2-packing of T-cuts with value 2 is provided by taking each T-cut once. Note that the value of the best integral T-cut packing is 1 .

Although this theorem, when applied to $T:=V$, provides a good characterization for the existence of a perfect matching (namely, a graph $G=(V, E)$ with $|V|$ even has no perfect matching if and only if there is a list of more than $|V| V$-cuts so that every edge belongs to at most two of them), Tutte's theorem does not seem to follow directly.

For bipartite graphs P. Seymour [1981] proved a stronger statement:
THEOREM 2 In a bipartite graph the minimum cardinality of a T-join is equal to the maximum number of disjoint T-cuts.

This theorem immediately implies Theorem 1 by subdividing each edge by a new node. In [Frank, Sebő, Tardos, 1984] the following sharpening of Theorem 2 was proved:

THEOREM 3 In a bipartite graph $D=(U, V ; F)$ the minimum cardinality of a T-join is equal to max $\sum q_{T}\left(V_{i}\right)$ where the maximum is taken over all partitions $\left\{V_{1}, \ldots, V_{l}\right\}$ of V and $q_{T}(X)$ denotes the number of T-odd components of $D-X$.

Let $G=(V, E)$ be an arbitrary graph. Subdivide each edge by a new node and let $D=(V, U ; F)$ denote the resulting bipartite graph (where U denotes the set of new nodes). By applying Theorem 3 to this graph one can easily obtain the following.

THEOREM 4 In a graph $G=(V, E)$ the minimum cardinality of a T-join is equal to $\max \sum q_{T}\left(V_{i}\right) / 2$ where the maximum is taken over all partitions $\left\{V_{1}, \ldots, V_{l}\right\}$ of V.

Observe that Theorem 3 implies Seymour's Theorem 2. In [Frank, Sebő, Tardos] we pointed out via an elementary construction that Theorem 3 also implies the Berge-Tutte formula, a slight generalization of Tutte's theorem.

Let us show now an even simpler derivation of the (non-trivial part of) Tutte's theorem.

THEOREM $4 \rightarrow$ THEOREM 0

Apply Theorem 4 with the choice $T:=V$. Notice that in this case a set is T-odd if its cardinality is odd. If there is no perfect matching, then the minimum cardinality of a T-join is larger than $|V| / 2$. By Theorem 4 there is a partition $\left\{V_{1}, \ldots, V_{l}\right\}$ of V so that $\sum q_{T}\left(V_{i}\right) / 2>|V| / 2$, that is, $\sum q_{T}\left(V_{i}\right)>\sum\left|V_{i}\right|$. Therefore there must be a subscript i so that $q_{T}\left(V_{i}\right)>\left|V_{i}\right|$, that is, the number of components in $G-V_{i}$ with odd cardinality is larger than $\left|V_{i}\right|$, as required.
A. Sebő [1988] determined the minimal totally dual integral linear system defining the conical hull of T-joins. As a by-product, he derived the following integer min-max theorem concerning T-joins:

THEOREM 5 In a graph $G=(V, E)$ the minimum cardinality of a T-join is equal to the maximum value of a T-border packing $\left\{B_{1}, \ldots, B_{r}\right\}$. Furthermore, if an optimal packing is chosen in such a way that r is as large as possible, then each B_{i} is bi-critical.

Note that both Theorems 4 and 5 imply Theorem 1. The last theorem of our list is also due to P. Seymour [1977].

THEOREM 6 If a graft (G, T) cannot be T-contracted to $\mathbf{K}_{\mathbf{4}}$, then the minimum cardinality of a T-join is equal to the maximum number of disjoint T-cuts.

This theorem is a special case of a very difficult result of Seymour concerning binary matroids with the max-flow min-cut property. It can be formulated in an apparently stronger form:

A graft (G, T) cannot be T-contracted to $\mathbf{K}_{\mathbf{4}}$ if and only if for every integer weightfunction w the minimum weight of a T-join is equal to the maximum number of T-cuts so that every edge belongs to at most $w(e) T$-cuts.

Note, however, that the "if" part is trivial and the "only if" part easily follows from Theorem 6 if we delete each edge e with $w(e)=0$ and subdivide each edge e by $w(e)-1$ new nodes when $w(e)>0$.

III. PROOFS

We are going to show first that Sebő's Theorem 5 is also an easy consequence of Theorem 3 and, second, using Sebő's theorem we provide a simple proof of Seymour's Theorem 6.

Let $G=(V, E)$ be an arbitrary graph and let $D=(V, U ; F)$ be a bipartite graph arising from G by subdividing each edge by a new node. Here sets E and U are in a one-to-one correspondence and we will not distinguish between their corresponding elements. In particular, a subset of U will be considered as a subset of E and vice versa.

Observe that in Theorem 3 the two parts U and V of the bipartite graph play an asymmetric role. When one applies Theorem 3 to D and the maximum is taken over the partitions of V, Theorem 4 can be obtained. Sebő's theorem will follow from Theorem 3 by taking the maximum over the partitions of U.

Proof of Theorem 5

We have already seen that the value of a T-border packing is a lower bound for the minimum cardinality of a T-join. We are going to prove that there is a T-join J of G and a packing \mathcal{F} of T-borders of G so that

$$
\begin{equation*}
|J|=\operatorname{val}(\mathcal{F}) \tag{2}
\end{equation*}
$$

By Theorem 3 there is a partition \mathcal{U} of U and a T-join J^{\prime} of D for which

$$
\begin{equation*}
\left|J^{\prime}\right|=\sum\left(q_{T}(X): X \in \mathcal{U}\right) \tag{3}
\end{equation*}
$$

Assume that $l:=|\mathcal{U}|$ is as large as possible and let Z be an arbitrary member of \mathcal{U} with $q_{T}(Z)>0$. Let $K_{1}, K_{2}, \ldots, K_{h}$ be the components of $D-Z, V_{i}:=V \cap K_{i}$ and $\mathcal{P}:=\left\{V_{1}, \ldots, V_{h}\right\}$.

Clearly, $Z \supseteq B(\mathcal{P})$ and, in fact, we have equality here since if an edge e induced by V_{i} belonged to Z, then $|Z| \geq 2$ and in \mathcal{U} we could replace Z by two sets $Z-e$ and $\{e\}$ without destroying (3), contradicting the maximality of l. We also claim that each V_{i} is T-odd for otherwise $|Z| \geq 2$ and for an edge $e \in Z$ leaving V_{i} we could replace Z by $Z-e$ and $\{e\}$ without destroying (3), contradicting again the maximality of l.

Let $\mathcal{F}:=\left\{Z \in \mathcal{U}: q_{T}(Z)>0\right\}$. We have seen that each member Z of \mathcal{F} is a T-border of G with $\operatorname{val}(Z)=q_{T}(Z) / 2$. Hence (2) and the first half of Theorem 5 follows by noticing that J^{\prime} corresponds to a T-join J of G with $|J|=\left|J^{\prime}\right| / 2$.

To prove the second half of the theorem let \mathcal{B} be a T-border packing of maximum value such that $r:=|\mathcal{B}|$ is as large as possible. Suppose indirectly, that a member $B \in \mathcal{B}$ is not bi-critical. That is, the border graph G_{B} of B includes a subset X of nodes with $|X| \geq 2$ for which $q(X) \geq|X|$. (Here $q(X)$ denotes the number of odd-cardinality components of $G_{B}-X$.)

For any odd component K of $G_{B}-X$ let us define a partition of $V\left(G_{B}\right)$ consisting of the elements of K as singletons and a set $V\left(G_{B}\right)-K$. This partition defines a T-border of G with value $(|K|+1) / 2$. For any even component L of $G_{B}-X$ let us define a partition of $V\left(G_{B}\right)$ consisting of the elements of $L-v$ as singletons and the set $V\left(G_{B}\right)-(L-v)$ where v is an arbitrary element of L. This partition defines a T-border of G with value $|L| / 2$. The T-borders defined this way are pairwise disjoint subsets of B and their total value is $\left|V\left(G_{B}\right)\right| / 2$, the value of B. This contradicts the maximal choice of r.

The following Theorem 7, interesting for its own right, was stated by A. Sebő [1988]. He noted that it follows from Seymour's Theorem 6 and observed that, conversely, Theorem 6 is an easy consequence of Theorems 5 and 7 . We provide here a simple proof.

THEOREM 7 The node set of an arbitrary bi-critical graph G_{B} on $k \geq 4$ nodes can be partitioned into four subsets $V_{1}, V_{2}, V_{3}, V_{4}$ of odd cardinality so that each V_{i} induces a connected subgraph and there is an edge connecting V_{i} and V_{j} whenever $1 \leq i<j \leq 4$.

Proof. Let M be a perfect matching of $G_{B}, u v \in M$ and $M_{u v}:=M-u v$. Let $z(\neq v)$ be a neighbour of u. Since G_{B} is bi-critical $G_{B}-\{v, z\}$ contains a perfect matching $M_{v z}$. The symmetric difference $M_{u v} \oplus M_{v z}$ consists of node-disjoint circuits and a path P connecting z and u. Now $C:=P+u z$ is an odd circuit of G_{B} so that, starting at u and going along C, every second edge of C belongs to M.

Let u, u_{1}, \ldots, u_{h} be the nodes of C (in this order). Because of the existence of M, the component K of $G_{B}-V(C)$ containing v is of odd cardinality while all the other components are of even cardinality.

Let $V_{1}:=K$. It follows from (1) that G_{B} is 2-connected and, moreover, contains no separating set X of two elements for which $q(X)>0$. Hence K must have at least three distinct neighbours u, u_{i}, u_{j} in C.

If there is a matching edge $x y \in M$ on C so that u, u_{i}, x, y, u_{j} reflects the order of these nodes around C (where both $u_{i}=x$ and $u_{j}=y$ are possible), then define $V_{2}^{\prime}:=\left\{u_{1}, u_{2}, \ldots, x\right\}, V_{3}^{\prime}:=\left\{y, \ldots, u_{h-1}, u_{h}\right\}, V_{4}^{\prime}:=\{u\}$.

If there is no such matching edge, that is, $j=i+1$ and i is even, then define $V_{2}^{\prime}:=\left\{u_{i}\right\}$, $V_{3}^{\prime}:=\left\{u_{i+1}\right\}, V_{4}^{\prime}:=V(C)-\left\{u_{i}, u_{i+1}\right\}$.

In both cases $\left\{V_{2}^{\prime}, V_{3}^{\prime}, V_{4}^{\prime}\right\}$ is a partition of $V(C)$. Let \mathcal{L} denote the set of even components of $G_{B}-V(C)$. For each $L \in \mathcal{L}$ choose a subscript $s=s(L)(=2,3,4)$ so that L is connected to a node in V_{s}^{\prime}. For $t=2,3,4$ define $V_{t}:=V_{t}^{\prime} \cup \cup(L \in \mathcal{L}: s(L)=t)$

The partition $\left\{V_{1}, V_{2}, V_{3}, V_{4}\right\}$ constructed this way satisfies the requirements.

Proof of Theorem 6

Let \mathcal{B} be an optimal packing of bi-critical T-borders provided by Theorem 5 . We claim that each member of \mathcal{B} is a T-cut. Indeed, if $B \in \mathcal{B}$ is a T-border determined by a partition \mathcal{P} of $V(|\mathcal{P}| \geq 4)$ into T-odd sets, then the graft $\left(G_{B}, V\left(G_{B}\right)\right)$ arises from (G, T) by T-contracting each member of \mathcal{P} and then, by Theorem $7,(G, T)$ can be T-contracted to $\mathbf{K}_{\mathbf{4}}$, a contradiction.

In order for the paper to be self-contained, we include here a proof of Theorem 3, due to A. Sebő [1987].

Proof of Theorem 3

We prove only the non-trivial direction max $\leq \min$. Let J be a T-join of minimum cardinality. Let w denote a weighting on F for which $w(e)=-1$ if $e \in J$ and $w(e)=1$ if $e \in F-J$. Then w is clearly conservative, that is, there is no circuit of negative total weight. Actually, we prove the following:

THEOREM 3, Let $D=(U, V ; F)$ be a bipartite graph and $w: F \rightarrow\{+1,-1\}$ a conservative weighting. There is a partition \mathcal{L} of V so that for each part $P \in \mathcal{L}$ and for each component C of $D-P$ there is at most one negative edge connecting P and C.

Proof. We use induction on $|J|$ where J denotes the set of negative edges. If J is empty, $\mathcal{L}:=\{V\}$ will do. Assume that J is non-empty and let s be an arbitrary node incident to an element of J. Let P be a path of D starting at s so that its weight $m:=w(P)$ is minimum and, in addition, P has as few edges as possible. Let t denote the other end-node of $P, x t$ the last edge of P and B the set of edges of D incident to t. Since B is a cut of
D, the graph $D^{\prime}:=D / B:=\left(U^{\prime}, V^{\prime} ; F^{\prime}\right)$ arising from D by contracting the elements of B is bipartite. Let t^{\prime} denote the contracted node of D^{\prime} corresponding to t and let w^{\prime} denote the weighting of D^{\prime} determined by w. We call a subpath $P[y, t]$ of P an end-segment. Clearly $m<0$ by the choice of s and

$$
\begin{equation*}
\text { each end-segment of } P \text { has negative weight, } \tag{*}
\end{equation*}
$$

in particular, $w(x t)<0$.
CLAIM (i) $x t$ is the only negative edge incident to t. (ii) In $D-t$ there is no negative path R connecting two neighbours u, v of t.

Proof. (i) Let $t z$ be another negative edge. If $z \in P$, then $P[z, t]+t z$ would form a negative circuit contradicting that w is conservative. If $z \notin P$, then $P^{\prime}:=P+t z$ would be a path with $w\left(P^{\prime}\right)<w(P)$ contradicting the minimal choice of P. Thus (i) follows.
(ii) Let R be a path for which $w(R)$ is minimum and suppose for a contradiction that $w(R)<0$. Clearly u and v are distinct from x since otherwise $R+u t+t v$ would form a negative circuit in G.

An arbitrary node y of R subdivides R into two segments $R[y, u]$ and $R[y, v]$. Since $w(R)<0$, at least one of the two segments has negative weight.

Suppose first that P and R have a node y in common. Choose y so that $P[y, t]$ has as few edges as possible. Assume that $w(R[u, y])<0$. Property $\left(^{*}\right)$ implies that $P[t, y]+R[y, u]+u t$ is a negative circuit in D, a contradiction.

Now let P and R be disjoint. Since D is bipartite, R has even length from which $w(R) \leq-2$. Hence $P^{\prime}:=P+t u+R$ is a simple path starting at s such that $w\left(P^{\prime}\right)<m$ contradicting the minimal choice of P.

The claim is equivalent to saying that w^{\prime} is a conservative weighting of D^{\prime}. By the inductional hypothesis, there is a partition \mathcal{L}^{\prime} of V^{\prime} satisfying the requirement of the theorem with respect to w^{\prime}. If $t \in U$ (that is, $t^{\prime} \in V^{\prime}$), then \mathcal{L}^{\prime} determines a partition \mathcal{L} of V. If $t \in V$, then define $\mathcal{L}:=\mathcal{L}^{\prime} \cup\{t\}$. In both cases it is easily seen that \mathcal{L} satisfies the requirements of the theorem.

REFERENCES

[1970] J. Edmonds and E. Johnson, Matching: a well-solved class of linear programs, in: Combinatorial Structures and Their Applications, 89-92, Gordon and Breach, New York.
[1984] A. Frank, A. Sebő and É. Tardos, Covering directed and odd cuts, Math. Programming Study 22, 99-112.
[1975] L. Lovász, 2-matchings and 2-covers of hypergraphs, Acta Sci. Math. Hungar. 26, 433-444.
[1986] L. Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam.
[1987] A. Sebő, A quick proof of Seymour's theorem on t-joins, Discrete Mathematics, 64, 101-103.
[1988] A. Sebő, The Schrijver-system of odd-join polyhedra, Combinatorica 8, No. 1. 103-116.
[1977] P. Seymour, The matroids with the max-flow min-cut property, J.Combinatorial Theory, Ser.B, 23, 189-222.
[1981] P. Seymour, On odd cuts and planar multicommodity flows, Proc. London Math. Soc., III. Ser.42, 178-192.
[1947] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22, 107-111.

