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ABSTRACT A short proof of a difficult theorem of P.D. Seymour on grafts with the max-flow

min-cut property is given.

I. INTRODUCTION

The Chinese Postman problem, in other words the minimum T -join problem, consists
of finding a minimum cardinality subset of edges of a graph satisfying prescribed parity
constraints on the degrees of nodes. This minimum is bounded from below by the maximum
value of a (fractional) packing of T -cuts. In the literature there are several min-max
theorems for cases when equality actually holds. In this paper we list some of these results
and exhibit new relationships among them.

To be more specific, P. Seymour’s theorem [1977] on binary matroids with the max-
flow min-cut property, when specialized to T -joins, provides a characterization of pairs
(G,T ) for which the minimum weight of a T -join is equal to the maximum packing of T -
cuts for every integer weighting. Motivated by Seymour’s theorem, A. Sebő [1988] proved
a min-max theorem concerning minimum T -joins and maximum packing of T -borders. He
also observed that his result, combined with a simple-sounding lemma on bi-critical graphs
(Theorem 7 below), immediately implies Seymour’s theorem.

The purpose of this note is two-fold. We show first that Sebő’s theorem is an easy
consequence of an earlier min-max theorem [Frank, Sebő, Tardos, 1984] and, second, we
provide a simple proof of the above-mentioned statement on bi-critical graphs. This way
we will have obtained a simple proof of Seymour’s theorem.

A graft (G,T ) is a pair consisiting of a connected undirected graph G = (V,E) and
a subset T of V of even cardinality. A subset J of edges is called a T -join if dJ(v) is odd
precisely when v ∈ T . Here dJ (v) denotes the number of elements of J incident to v. J is
called a perfect matching if dJ(v) = 1 for every v ∈ V . Note that a perfect matching is
a T -join for which for T = V . A graph G = (V,E) is called bi-critical if E is non-empty
and every pair of nodes u, v, the graph G − {u, v} contains a perfect matching. It follows
immediately from Tutte’s theorem (see Theorem 0 below) that G is bi-critical if and only
if
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q(X) ≤ |X| − 2 for every subset X ⊆ V with |X| ≥ 2 (1)

where q(X) denotes the number of odd-cardinality components of G − X.
Let us call a set X ⊆ V T -odd if |X∩T | is odd. Given a partition P= {V1, V2, . . . , Vk}

of V , by a multicut B = B(P) we mean the set of edges connecting different parts of
P. If each Vi is T -odd and induces a connected subgraph, B is called a T -border. Then
clearly k is even and val(B) := k/2 is called the value of the T -border. When k = 2 a
T -border B is called a T -cut. Note that the value of a T -cut is one.

The border graph GB of a T -border B = B(P) is one obtained by contracting each
Vi into one node. Let us call a T -border bi-critical if its border graph is bi-critical.

Note that the cardinality of the intersection of a T -cut and a T -join is always odd,
in particular, at least one. Hence the cardinality of the intersection of a T -border B and
a T -join J is always at least val(B) and equality holds precisely when the edges in J
connecting distinct V ′

i s form a perfect matching in the border graph of B.
A list B= {B1, . . . , Bl} of T -borders is called a packing (2-packing) if each edge of G

belongs to at most one (two) member(s) of B. The value of a packing is
∑

(val(B) : B ∈ B)
and the value of a 2-packing is

∑
(val(B) : B ∈ B)/2. Note that a T -border of value t

determines a 2-packing of T -cuts of value t.
For an edge e = uv we define the elementary T -contraction as a graft (G′, T ′)

where G′ arises from G by contracting e and T ′ := T − {u, v} if |{u, v} ∩ T | is even and
T ′ := T − {u, v} + xuv if |{u, v} ∩ T | is odd where xuv denotes the contracted node. The
T -contraction of a graph means a sequence of elementary T -contractions. If X ⊆ V
induces a connected subgraph of G, then by T -contracting X we mean the operation of
T -contracting a spanning tree of X.

Let K4 denote a graft (K4, V (K4)) where K4 is a complete graph on 4 nodes. Note that
a graft (G,T ) can be T -contracted to K4 precisely when there is a partition {V1, V2, V3, V4}
of V into T -odd sets so that each Vi induces a connected subgraph and there is an edge
connecting Vi and Vj whenever 1 ≤ i < j ≤ 4.

For a general account on matchings and T -joins, see [Lovász and Plummer, 1986].

II. RESULTS ON T-CUTS AND T-JOINS

Our starting point is Tutte’s theorem [1947] on perfect matchings.

THEOREM 0 A graph G = (V,E) contains no perfect matching if and only if there is a
set X of nodes so that G − X includes more than |X| components of odd cardinality.

The perfect matching problem can be reformulated in terms of T-joins. Namely, by
chosing T := V , one observes that G has a perfect matching precisely if the minimum
cardinality of a T -join is |V |/2. Therefore it was natural to ask for theorems concerning
the minimum cardinality of a T -join. Let us list some known results concerning this
minimum. The first one was proved by L. Lovász [1975] (and was stated earlier in a more
general form by J. Edmonds and E. Johnson [1970]).
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THEOREM 1 The minimum cardinality of a T -join is equal to the maximum value of a
2-packing of T -cuts.

For example, in K4 a perfect matching is a T -join of 2 elements and a 2-packing of
T -cuts with value 2 is provided by taking each T -cut once. Note that the value of the best
integral T -cut packing is 1.

Although this theorem, when applied to T := V , provides a good characterization for
the existence of a perfect matching (namely, a graph G = (V,E) with |V | even has no
perfect matching if and only if there is a list of more than |V | V -cuts so that every edge
belongs to at most two of them), Tutte’s theorem does not seem to follow directly.

For bipartite graphs P. Seymour [1981] proved a stronger statement:

THEOREM 2 In a bipartite graph the minimum cardinality of a T -join is equal to the
maximum number of disjoint T -cuts.

This theorem immediately implies Theorem 1 by subdividing each edge by a new node.
In [Frank, Sebő, Tardos, 1984] the following sharpening of Theorem 2 was proved:

THEOREM 3 In a bipartite graph D = (U, V ;F ) the minimum cardinality of a T -join
is equal to max

∑
qT (Vi) where the maximum is taken over all partitions {V1, . . . , Vl} of

V and qT (X) denotes the number of T -odd components of D − X.

Let G = (V,E) be an arbitrary graph. Subdivide each edge by a new node and let
D = (V,U ;F ) denote the resulting bipartite graph (where U denotes the set of new nodes).
By applying Theorem 3 to this graph one can easily obtain the following.

THEOREM 4 In a graph G = (V,E) the minimum cardinality of a T -join is equal to
max

∑
qT (Vi)/2 where the maximum is taken over all partitions {V1, . . . , Vl} of V .

Observe that Theorem 3 implies Seymour’s Theorem 2. In [Frank, Sebő, Tardos] we
pointed out via an elementary construction that Theorem 3 also implies the Berge-Tutte
formula, a slight generalization of Tutte’s theorem.

Let us show now an even simpler derivation of the (non-trivial part of) Tutte’s theo-
rem.

THEOREM 4 → THEOREM 0

Apply Theorem 4 with the choice T := V . Notice that in this case a set is T -odd if
its cardinality is odd. If there is no perfect matching, then the minimum cardinality of a
T -join is larger than |V |/2. By Theorem 4 there is a partition {V1, . . . , Vl} of V so that∑

qT (Vi)/2 > |V |/2, that is,
∑

qT (Vi) >
∑

|Vi|. Therefore there must be a subscript i so
that qT (Vi) > |Vi|, that is, the number of components in G − Vi with odd cardinality is
larger than |Vi|, as required. ♠
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A. Sebő [1988] determined the minimal totally dual integral linear system defining the
conical hull of T -joins. As a by-product, he derived the following integer min-max theorem
concerning T -joins:

THEOREM 5 In a graph G = (V,E) the minimum cardinality of a T -join is equal to the
maximum value of a T -border packing {B1, . . . , Br}. Furthermore, if an optimal packing
is chosen in such a way that r is as large as possible, then each Bi is bi-critical.

Note that both Theorems 4 and 5 imply Theorem 1. The last theorem of our list is
also due to P. Seymour [1977].

THEOREM 6 If a graft (G,T ) cannot be T -contracted to K4, then the minimum cardi-
nality of a T -join is equal to the maximum number of disjoint T -cuts.

This theorem is a special case of a very difficult result of Seymour concerning binary
matroids with the max-flow min-cut property. It can be formulated in an apparently
stronger form:

A graft (G,T ) cannot be T -contracted to K4 if and only if for every integer weight-
function w the minimum weight of a T -join is equal to the maximum number of T -cuts so
that every edge belongs to at most w(e) T -cuts.

Note, however, that the ”if” part is trivial and the ”only if” part easily follows from
Theorem 6 if we delete each edge e with w(e) = 0 and subdivide each edge e by w(e) − 1
new nodes when w(e) > 0.

III. PROOFS

We are going to show first that Sebő’s Theorem 5 is also an easy consequence of
Theorem 3 and, second, using Sebő’s theorem we provide a simple proof of Seymour’s
Theorem 6.

Let G = (V,E) be an arbitrary graph and let D = (V,U ;F ) be a bipartite graph
arising from G by subdividing each edge by a new node. Here sets E and U are in a one-
to-one correspondence and we will not distinguish between their corresponding elements.
In particular, a subset of U will be considered as a subset of E and vice versa.

Observe that in Theorem 3 the two parts U and V of the bipartite graph play an
asymmetric role. When one applies Theorem 3 to D and the maximum is taken over the
partitions of V , Theorem 4 can be obtained. Sebő’s theorem will follow from Theorem 3
by taking the maximum over the partitions of U .

Proof of Theorem 5

We have already seen that the value of a T -border packing is a lower bound for the
minimum cardinality of a T -join. We are going to prove that there is a T -join J of G and
a packing F of T -borders of G so that
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|J | = val(F). (2)

By Theorem 3 there is a partition U of U and a T -join J ′ of D for which

|J ′| =
∑

(qT (X) : X ∈ U). (3)

Assume that l := |U| is as large as possible and let Z be an arbitrary member of U
with qT (Z) > 0. Let K1,K2, . . . ,Kh be the components of D − Z, Vi := V ∩ Ki and
P:= {V1, . . . , Vh}.

Clearly, Z ⊇ B(P) and, in fact, we have equality here since if an edge e induced by
Vi belonged to Z, then |Z| ≥ 2 and in U we could replace Z by two sets Z − e and {e}
without destroying (3), contradicting the maximality of l. We also claim that each Vi is
T -odd for otherwise |Z| ≥ 2 and for an edge e ∈ Z leaving Vi we could replace Z by Z − e
and {e} without destroying (3), contradicting again the maximality of l.

Let F :={Z ∈ U :qT (Z) > 0}. We have seen that each member Z of F is a T -border of
G with val(Z) = qT (Z)/2. Hence (2) and the first half of Theorem 5 follows by noticing
that J ′ corresponds to a T -join J of G with |J | = |J ′|/2.

To prove the second half of the theorem let B be a T -border packing of maximum value
such that r := |B| is as large as possible. Suppose indirectly, that a member B ∈ B is not
bi-critical. That is, the border graph GB of B includes a subset X of nodes with |X| ≥ 2
for which q(X) ≥ |X|. (Here q(X) denotes the number of odd-cardinality components of
GB − X.)

For any odd component K of GB −X let us define a partition of V (GB) consisting of
the elements of K as singletons and a set V (GB)−K. This partition defines a T -border of
G with value (|K| + 1)/2. For any even component L of GB − X let us define a partition
of V (GB) consisting of the elements of L − v as singletons and the set V (GB) − (L − v)
where v is an arbitrary element of L. This partition defines a T -border of G with value
|L|/2. The T -borders defined this way are pairwise disjoint subsets of B and their total
value is |V (GB)|/2, the value of B. This contradicts the maximal choice of r. ♠♠♠

The following Theorem 7, interesting for its own right, was stated by A. Sebő [1988].
He noted that it follows from Seymour’s Theorem 6 and observed that, conversely, Theorem
6 is an easy consequence of Theorems 5 and 7. We provide here a simple proof.

THEOREM 7 The node set of an arbitrary bi-critical graph GB on k ≥ 4 nodes can
be partitioned into four subsets V1, V2, V3, V4 of odd cardinality so that each Vi induces a
connected subgraph and there is an edge connecting Vi and Vj whenever 1 ≤ i < j ≤ 4.

Proof. Let M be a perfect matching of GB , uv ∈ M and Muv := M − uv. Let
z( 6= v) be a neighbour of u. Since GB is bi-critical GB −{v, z} contains a perfect matching
Mvz. The symmetric difference Muv ⊕Mvz consists of node-disjoint circuits and a path P
connecting z and u. Now C := P + uz is an odd circuit of GB so that, starting at u and
going along C, every second edge of C belongs to M .
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Let u, u1, . . . , uh be the nodes of C (in this order). Because of the existence of M ,
the component K of GB − V (C) containing v is of odd cardinality while all the other
components are of even cardinality.

Let V1 := K. It follows from (1) that GB is 2-connected and, moreover, contains no
separating set X of two elements for which q(X) > 0. Hence K must have at least three
distinct neighbours u, ui, uj in C.

If there is a matching edge xy ∈ M on C so that u, ui, x, y, uj reflects the order
of these nodes around C (where both ui = x and uj = y are possible), then define
V ′

2 := {u1, u2, . . . , x}, V ′

3 := {y, . . . , uh−1, uh}, V ′

4 := {u}.
If there is no such matching edge, that is, j = i+1 and i is even, then define V ′

2 := {ui},
V ′

3 := {ui+1}, V ′

4 := V (C) − {ui, ui+1}.
In both cases {V ′

2 , V ′

3 , V ′

4} is a partition of V (C). Let L denote the set of even com-
ponents of GB − V (C). For each L ∈ L choose a subscript s = s(L)(= 2, 3, 4) so that L is
connected to a node in V ′

s . For t = 2, 3, 4 define Vt := V ′

t ∪ ∪(L ∈ L: s(L) = t)
The partition {V1, V2, V3, V4} constructed this way satisfies the requirements. ♠♠♠

Proof of Theorem 6

Let B be an optimal packing of bi-critical T -borders provided by Theorem 5. We
claim that each member of B is a T -cut. Indeed, if B ∈ B is a T -border determined by a
partition P of V (|P| ≥ 4) into T -odd sets, then the graft (GB , V (GB)) arises from (G,T )
by T -contracting each member of P and then, by Theorem 7, (G,T ) can be T -contracted
to K4, a contradiction. ♠♠♠

In order for the paper to be self-contained, we include here a proof of Theorem 3, due
to A. Sebő [1987].

Proof of Theorem 3

We prove only the non-trivial direction max ≤ min. Let J be a T -join of minimum
cardinality. Let w denote a weighting on F for which w(e) = −1 if e ∈ J and w(e) = 1 if
e ∈ F − J . Then w is clearly conservative, that is, there is no circuit of negative total
weight. Actually, we prove the following:

THEOREM 3’ Let D = (U, V ;F ) be a bipartite graph and w : F → {+1,−1} a con-
servative weighting. There is a partition L of V so that for each part P ∈ L and for each
component C of D − P there is at most one negative edge connecting P and C.

Proof. We use induction on |J | where J denotes the set of negative edges. If J is empty,
L:= {V } will do. Assume that J is non-empty and let s be an arbitrary node incident
to an element of J . Let P be a path of D starting at s so that its weight m := w(P ) is
minimum and, in addition, P has as few edges as possible. Let t denote the other end-node
of P , xt the last edge of P and B the set of edges of D incident to t. Since B is a cut of
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D, the graph D′ := D/B := (U ′, V ′;F ′) arising from D by contracting the elements of B
is bipartite. Let t′ denote the contracted node of D′ corresponding to t and let w′ denote
the weighting of D′ determined by w. We call a subpath P [y, t] of P an end-segment.

Clearly m < 0 by the choice of s and

each end-segment of P has negative weight, (∗)

in particular, w(xt) < 0.

CLAIM (i) xt is the only negative edge incident to t. (ii) In D − t there is no negative
path R connecting two neighbours u, v of t.

Proof. (i) Let tz be another negative edge. If z ∈ P , then P [z, t] + tz would form a
negative circuit contradicting that w is conservative. If z 6∈ P , then P ′ := P + tz would
be a path with w(P ′) < w(P ) contradicting the minimal choice of P . Thus (i) follows.

(ii) Let R be a path for which w(R) is minimum and suppose for a contradiction that
w(R) < 0. Clearly u and v are distinct from x since otherwise R + ut + tv would form a
negative circuit in G.

An arbitrary node y of R subdivides R into two segments R[y, u] and R[y, v]. Since
w(R) < 0, at least one of the two segments has negative weight.

Suppose first that P and R have a node y in common. Choose y so that P [y, t]
has as few edges as possible. Assume that w(R[u, y]) < 0. Property (*) implies that
P [t, y] + R[y, u] + ut is a negative circuit in D, a contradiction.

Now let P and R be disjoint. Since D is bipartite, R has even length from which
w(R) ≤ −2. Hence P ′ := P + tu + R is a simple path starting at s such that w(P ′) < m
contradicting the minimal choice of P . ♠

The claim is equivalent to saying that w′ is a conservative weighting of D′. By the
inductional hypothesis, there is a partition L′ of V ′ satisfying the requirement of the
theorem with respect to w′. If t ∈ U (that is, t′ ∈ V ′), then L′ determines a partition L
of V . If t ∈ V , then define L:= L′ ∪ {t}. In both cases it is easily seen that L satisfies the
requirements of the theorem. ♠♠♠
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