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Abstract

We give a simple and short proof for the two ear theorem on matching-
covered graphs which is a well-known result of Lovász and Plummer. The
proof relies only on the classical results of Tutte and Hall on the existence
of perfect matching in (bipartite) graphs.

1 Introduction

A set M of edges is called matching if no two edges in M have a common end
vertex. A matching M of a graph G is perfect if M covers all the vertices of G.

We shall denote the number of perfect matchings of a graph G by Φ(G). Let
M be a matching of G. A path or cycle P is said to be alternating if the edges
of P are alternately in and not in M. For a subgraph F of G, the subset of M

contained in F is denoted by M(F ).
Let G be a graph having a perfect matching. G is called elementary if the

edges which belong to some perfect matching of G form a connected subgraph.
Note that if G is elementary, then after adding some edges to G the resulting
graph remains elementary. G is matching-covered if it is connected and each
edge belongs to a perfect matching of G. Of course, if G is matching-covered
then it is elementary.

Let G be an arbitrary graph. A subgraph H of G is nice if G − V (H)
has a perfect matching. A sequence of subgraphs of G, (G0, G1, ..., Gm) is a
graded ear-decomposition of G if G0 is an even cycle, Gm = G, every Gi for
i = 0, 1, ...,m is a nice matching-covered subgraph of G and Gi+1 is obtained
from Gi by adding at most two disjoint odd paths which are openly disjoint
from Gi but their end-vertices belong to Gi. Clearly, if G possesses a graded
ear-decomposition, then it is matching-covered. Lovász and Plummer [6], [7]
proved the following important result on matching-covered graphs.

Theorem 1 Every matching-covered graph with at least four vertices has a
graded ear-decomposition.
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The proof of this theorem relies on the following theorem. For the sake of
completeness we shall repeat the implication from [7] in Section 3.

Theorem 2 Let G be an elementary graph and let e1, ..., ek be edges not in G

but having both end-vertices in V (G). Suppose that Φ(G+ e1 + ...+ ek) > Φ(G).
Then there exist i and j, 1 ≤ i ≤ j ≤ k such that Φ(G + ei + ej) > Φ(G).

The original proof of Theorem 2 in [7] is involved and it is far from being
simple. Here we shall derive it by a standard method from the following theorem.
The main contribution of this note is a new proof of Theorem 3 which relies
only on Tutte’s theorem and Hall’s theorem.

Theorem 3 Let G be an elementary graph and let e1, e2, e3 be edges not in G

so that G+ e1 + e2 + e3 has a perfect matching M containing e1, e2, e3. Suppose
that for each ei (1 ≤ i ≤ 3), no perfect matching of G+ ei contains ei. Then for
each ei (1 ≤ i ≤ 3) there exists an ej (1 ≤ j ≤ 3) i 6= j such that G + ei + ej

has a perfect matching containing ei and ej .

However, we mention that the obvious generalization of Theorem 3 for k ≥ 4
is not true, here is a counter-example. Let G be the cycle (1, 2, ..., 8) on eight
vertices and let 15, 24, 37, 68 be the four new edges. Then for the edge 15 the
generalization of Theorem 3 does not hold.

Little and Rendl [8] have given a shorter proof for Theorem 1 than the
original one, but our proof is even shorter and simpler. Recently, Carvalho et
al. [2] generalized Theorem 1 by showing that a matching-covered graph of
maximum degree ∆ has at least ∆! graded ear-decompositions.

2 Prelimineries

Let us recall the two classical and basic results on matching theory due to Hall
[3] and Tutte [9].

Theorem 4 [3] A bipartite graph B = (U, V ;E) possesses a perfect matching
if and only if |U | = |V | and |Γ(X)| ≥ |X| for all X ⊆ U, where Γ(X) denotes
the set of neighbors of X.

Theorem 5 [9] A graph G has a perfect matching if and only if for every
X ⊆ V (G), c0(G−X) ≤ |X|, where the number of odd components of the graph
obtained from G by deleting a vertex set X is denoted by c0(G − X).

In fact we shall use some well-known and easy corollaries of these theorems.

Claim 1 [7] A bipartite graph B = (U, V ;E) is matching covered if and only if
|U | = |V | and |Γ(X)| ≥ |X| + 1 for all ∅ 6= X ⊂ U.
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For a graph G let def(G) := max{c0(G − X) − |X| : X ⊆ V (G)}. A vertex
set X of G is called barrier if X attains this maximum, that is if G − X has
exactly |X|+def(G) odd components. By a maximal barrier we mean one that
is inclusionwise maximal. A graph G is called factor-critical if for each vertex
v of G there exists a perfect matching in G − v. A barrier X is called strong
if each odd component of G − X is factor-critical. For more results on strong
barriers see Király [4].

Claim 2 [1] Let G be a graph so that it has an even number of vertices and it has
no perfect matching. Let X be a maximal barrier of G. Then c0(G−X) ≥ |X|+2
and X is a strong barrier.

Claim 3 Let G be an elementary graph. Then for any barrier X 6= ∅ of G,

G − X has no even components.

In fact, elementary graphs can be characterized this way. A graph having a
perfect matching is elementary if and only if for any barrier X 6= ∅ of G, G−X

has no even components, see [7], but we shall not use this characterization. We
mention that by Claim 3 the notion of maximal barriers and strong barriers
coincide for elementary graphs.

Lovász [5] proved that for elementary graphs (i) the maximal barriers form
a partition of the vertex set and (ii) an edge belongs to a perfect matching if
and only if its end-vertices lie in different maximal barriers. We do not want to
rely on these results, instead we prove the following claim. This claim will be
applied frequently in our proof.

Claim 4 Let X be a strong barrier of an elementary graph G. Then each edge
leaving X belongs to some perfect matching of G.

Proof. Since all the components of G − X are factor-critical by Claim 3 it
suffices to prove that each edge e of the bipartite graph B, obtained from G by
deleting the edges spanned by X and contracting each component of G−X into
one vertex, belongs to a perfect matching of B, that is B is matching covered.
Let us denote the colour class of B different from X by Y. Clearly |X| = |Y |.
Furthermore, for any set Z ⊂ Y, |Γ(Z)| ≥ |Z|+1, otherwise Γ(Z) would violate
in G either the Tutte’s condition or Claim 3, both cases lead to contradiction.
Then, by Claim 1, B is matching covered which was to be proved. 2

3 The proof

Proof. (of Theorem 6) Let us assume that there is no perfect matching of
G′ := G + e1 + e2 containing e1 and e2. We shall prove that there is a perfect
matching of G + e1 + e3 containing e1 and e3. Let us denote the vertices of ei

by xi, yi.
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(1) There exists a strong barrier P in G′ containing x1 and y1.

G′ − x1 − y1 has no perfect matching by assumption, thus by Claim 2 there
exists a barrier of G′ containing x1 and y1. Let P be a maximal barrier of G′

containing x1 and y1. Then, by Claim 2, P is a strong barrier that is each
component Fi of G − P (1 ≤ i ≤ |P |) is factor-critical.

(2) e2 is in one of the factor-critical components (say in F1).

Indeed, by Claim 4, e2 does not enter P. Moreover, x2 and y2 can not be
contained in P , otherwise P −x1 −y1 −x2 −y2 violates the Tutte’s condition in
G+e3−x1−y1−x2−y2 contradicting the assumption that G′′ := G+e1+e2+e3

has the perfect matching M containing e1, e2 and e3.

(3) x3 and y3 are in different factor-critical components of G′ − P .

This follows from the fact that G′−x1−y1+e3 contains the perfect matching
M − e1. It also follows that

(4) for each Fi (1 ≤ i ≤ |P |) exactly one edge mi of M leaves Fi in G′′.

(5) e3 leaves the factor-critical component that contains e2 in G′′, that is m1 =
e3.

Suppose on the contrary that m1 enters P . P is a strong barrier in G + e2,
thus, by Claim 4, m1 belongs to a perfect matching M1 of G + e2. Then (M1 −
M1(F1))∪M(F1) is a perfect matching of G+e2 containing e2, a contradiction.

Assume without loss of generality that x3 is in F1. We know that H := F1−x3

has a perfect matching, namely M(H).

(6) H − e2 has a perfect matching M2.

Otherwise, for a maximal barrier X of H − e2, we have by Claim 2, c0(H −
e2 − X) ≥ |X| + 2. Then, by Claim 2, P ′ := P ∪ X ∪ x3 is a strong barrier in
G + e3, and e3 enters P ′, thus by Claim 4, G + e3 contains a perfect matching
containing e3, a contradiction.

(7) M(G′′−H)∪M2 is a perfect matching of G+ e1 + e3 containing e1 and e3,

as we claimed. 2

THEOREM 3 =⇒ THEOREM 2

Proof. We may suppose that (∗) no proper subset of {e1, . . . , ek} satisfies the
conditions of the theorem. Then we claim that k ≤ 3. Assume that k ≥ 4 and let
G′ := G+ e4 + . . .+ ek. Then by (∗) Φ(G′) = Φ(G) and Φ(G′ + ei) = Φ(G′) i =
1, 2, 3 but Φ(G′+e1+e2+e3) > Φ(G) = Φ(G′). Theorem 3 implies that for some
1 ≤ i < j ≤ 3 Φ(G′+ei+ej) > Φ(G′), that is Φ(G+ei+ej+e4+. . .+ek) > Φ(G),
contradicting (∗). By applying Theorem 3 again Theorem 2 follows. 2

THEOREM 2 =⇒ THEOREM 1
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Proof. Let e and f be two incident edges of G. Let Me and Mf be perfect
matchings of G containing e and f . The symmetric difference of these two
perfect matchings consists of vertex disjoint alternating cycles. Let G0 be one of
them. Then G0 is a nice matching-covered subgraph of G. Assume that for some
i the nice matching-covered subgraph Gi has already been contructed. If Gi

does not span V (G) then let e be an edge connecting V (Gi) and V (G)−V (Gi).
Let Mi be a perfect matching of G − V (Gi) and Me a perfect matching of G

containing e. The symmetric difference of Mi and Me consists of vertex disjoint
cycles and a set (P1, . . . , Pk) of alternating paths connecting vertices in V (Gi).
If Gi spans V (G) but does not contain all the edges of G then the edges in
E(G)−E(Gi) are denoted by (P1, . . . , Pk). Clearly, after adding all these paths
to Gi, the resulting graph is a nice matching-covered subgraph of G. We have
to show that Gi+1 can be constructed by adding at most two of these paths
to Gi. We define an auxiliary graph G′

i := Gi + e1 + . . . + ek, where ei is the
edge connecting the two end-vertices of Pi for i = 1, . . . , k. Clearly, for a subset
(Pi1 , . . . , Pir

) of (P1, . . . , Pk), Gi + Pi1 + . . . + Pir
is matching-covered if and

only if Gi + ei1 + . . . + eir
is matching-covered. Thus Theorem 2 implies the

theorem. 2
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