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Abstract

We consider two possible extensions of a theorem of Thomassen characterizing
the graphs admitting a 2-vertex-connected orientation. First, we show that the
problem of deciding whether a mixed graph has a 2-vertex-connected orientation
is NP-hard. This answers a question of Bang-Jensen, Huang and Zhu. For the
second part, we call a directed graph D = (V,A) 2T -connected for some T ⊆ V
if D is 2-arc-connected and D−v is strongly connected for all v ∈ T . We deduce
a characterization of the graphs admitting a 2T -connected orientation from the
theorem of Thomassen.

1. Introduction

In this article, we deal with two possible extensions of a theorem of Thomassen
characterizing graphs having a 2-vertex-connected orientation. All undefined
notions can be found in Section 2.

During the history of graph orientations, the question of characterizing
graphs having orientations with certain connectivity properties has played a
central role. The following fundamental theorem of Robbins [8] dates back to
1939.

Theorem 1. A graph has a strongly connected orientation if and only if it is
2-edge-connected.

For higher arc-connectivity, this theorem was later generalized by Nash-
Williams [7].

Theorem 2. Let G be a graph and k a positive integer. Then G has a k-arc-
connected orientation if and only if G is 2k-edge-connected.

The analogous problem for vertex-connectivity turns out to be much more
complicated. The following conjecture was proposed by Frank in [6].
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Conjecture 1. Let G = (V,E) be a graph and k a positive integer. Then G
has a k-vertex-connected orientation if and only if |V | ≥ k + 1 and G − X is
2(k − |X|)-edge-connected for all X ⊆ V with |X| ≤ k − 1.

Although Conjecture 1 remained open for a long time, little progress was
made on it. Finally, Conjecture 1 was proven for k = 2 by Thomassen [11].
More explicitly, he proved the following theorem.

Theorem 3. A graph G has a 2-vertex-connected orientation if and only if G
is 4-edge-connected and G− v is 2-edge-connected for all v ∈ V .

On the other hand, Conjecture 1 was disproven for every k ≥ 3 by Durand
de Gevigney [3]. Moreover, he proved the following result which makes a good
characterization of the graphs admitting a k-vertex-connected orientation for
any k ≥ 3 seem out of reach.

Theorem 4. The problem of deciding whether a given graph has a k-vertex-
connected orientation is NP-hard for any k ≥ 3.

It remains interesting to search for some big class of graphs that admit
highly vertex-connected orientations. The following conjecture was proposed
by Thomassen [10].

Conjecture 2. There is a function f : Z+ → Z+ such that every f(k)-vertex-
connected graph has a k-vertex-connected orientation for all k ∈ Z+.

Conjecture 2 remains open for all k ≥ 3.

In this article, we deal with two possible extensions of Theorem 3. In the
first part, we deal with a possible generalization of Theorem 3 to the case when
some of the edges are pre-oriented. The following is the first important result on
orientations of mixed graphs satisfying connecitivity properties. It was proven
by Boesch and Tindell [2].

Theorem 5. A mixed graph G = (V,A∪E) has a strongly connected orientation
if and only if d−A(X) + 1

2dE(X) ≥ 1 for every nonempty X ⊊ V .

For general arc-connectivity, this problem has been solved by Frank [5] who
obtained a pretty technical characterization of mixed graphs admitting a k-arc-
connected orientation for all k ∈ Z+ using the theory of generalized polyma-
troids. For higher vertex-connectivity, the possibility of a good characterization
of the mixed graphs admitting a k-vertex-connected orientation has been ruled
out by Theorem 4 for any k ≥ 3. However, the case of k = 2 remained open.

The first main contribution of this work is to show that there is also no hope
to find a good characterization for this problem. More formally, we consider the
following algorithmic problem:

2-vertex-connected orientation of mixed graphs (2VCOMG):

Input: A mixed graph G = (V,A ∪ E).

Question: Does G have a 2-vertex-connected orientation?

The question of determining the complexity of this problem was first hinted
at by Thomassen in [11] and then asked explicitely by Bang-Jensen, Huang and
Zhu [1]. Our main contribution is the following answer to this problem.
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Theorem 6. 2VCOMG is NP-hard.

Our reduction that proves Theorem 6 is inspired by the one used by Durand
de Gevigney when proving Theorem 4.

In the second part, we deal with a connectivity property that generalizes both
2-vertex-connectivity and 2-arc-connectivity and was introduced by Durand de
Gevigney and the second author in [4]. Namely a given digraph D = (V,A)
is called 2T -connected for some T ⊆ V if D is 2-arc-connected and D − v is
strongly connected for all v ∈ T . We prove the following theorem characterizing
the graphs G = (V,E) admitting a 2T -connected orientation for some given
T ⊆ V .

Theorem 7. Let G be a graph and T ⊆ V (G). Then G has a 2T -connected
orientation if and only if G is 4-edge-connected and G − v is 2-edge-connected
for all v ∈ T .

Observe that Theorem 7 implies both Theorem 3 and Theorem 2 for k = 2
as 2T -connectivity corresponds to 2-arc-connectivity for T = ∅ and to 2-vertex-
connectivity for T = V . The proof of Theorem 7 works by a rather simple
deduction from Theorem 3. It would be nice to find a proof of Theorem 7 that
does not use Theorem 3 and hence to get a transparent proof of Theorem 3.

The rest of this article is structured as follows: In Section 2, we give some
more formal definitions and some preliminary results. In Section 3, we give the
reduction that proves Theorem 6. In Section 4, we prove Theorem 7. Finally,
in Section 5, we conclude our work.

2. Preliminaries

We first give some basic notation in graph theory. A mixed graph consists
of a vertex set V , an arc set A and an edge set E. If A = ∅, then G is a
graph and if E = ∅, then G is a digraph. For a single vertex v, we often use v
instead of {v}. For some mixed graph G = (V,A∪E) and some X ⊆ V , we use

d−
A(X) for the number of arcs in A whose tail is in V −X and whose head is

in X, d+
A(X) for d−A(V −X) and dE(X) to denote the number of edges in E

that have exactly one endvertex in X. For some u, v ∈ V , an uv-path in G is a
sequence of vertices v1, . . . , vt sucht that u = v0, v = vt and for all i = 0, . . . , t−1
either vivi+1 ∈ E or vivi+1 ∈ A. Two uv-paths are called internally disjoint
if they share no vertices apart from u and v. For a vertex set X ⊆ V and a
vertex v ∈ V − X, a (v,X)-path is a path from v to a vertex of X. Similarly,
a (X, v)-path is a path from a vertex of X to v. Further, for some X ⊆ V ,
G is called k-vertex-connected in X if |V | ≥ k + 1 and there are k internally
disjoint uv-paths for any u, v ∈ X. Also, G is called k-vertex-connected if G is
k-vertex-connected in V . For some X ⊆ V , we denote by G[X] the subgraph
of G induced on X.

A graph G = (V,E) is called k-edge-connected for some positive integer k
if dE(X) ≥ k for every nonempty X ⊊ V . A digraph D = (V,A) is called
k-arc-connected for some positive integer k if d−A(X) ≥ k for every nonempty
X ⊊ V . If D is 1-arc-connected then we say that it is strongly connected.
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A connected graph with every vertex of degree 2 is called a cycle and a
double cycle is obtained from a cycle by duplicating every edge. A strongly
connected orientation of a cycle is called a circuit. A digraph D = (V,A) whose
underlying graph does not contain a cycle is called an r-in-arborescence (r-out-
arborescence) if r ∈ V and D contains a path from v to r (from r to v) for every
v ∈ V .

Given two graphs G and H and a vertex v of G, blowing up v into H means
that we replace v by H and we replace every edge wv incident to v in G by an
edge wu for some vertex u in H.

We now give one basic result on vertex-connectivity in digraphs.

Proposition 1. Let D = (V,A) be a digraph, X ⊆ V such that D is 2-vertex-
connected in X and v ∈ V − X. If D contains two (v,X)-paths whose vertex
sets only intersect in v and D contains two (X, v)-paths whose vertex sets only
intersect in v, then D is 2-vertex-connected in X ∪ v.

We also need one property on edge-connectivity in graphs.

Proposition 2. Given two graphs G and H and a vertex v of G, if G and H
are k-edge-connected then so is the graph obtained from G by blowing up v into
H.

The algorithmic problem we need for our reduction is MNAE3SAT.

Monotone not-all-equal-3SAT (MNAE3SAT)

Input: A set X of boolean variables, a formula consisting of a set C of clauses
each containing 3 distinct variables, none of which are negated.

Question: Is there a truth assignment to the variables of X such that every
clause in C contains at least one true and at least one false literal?

An assignment satisfying the above condition will be called feasible.

This problem will be used in the reduction which is justified by the following
result due to Schaefer [9].

Theorem 8. MNAE3SAT is NP-complete.

3. The reduction

Let Φ = (X, C) be an instance of MNAE3SAT. The set of pairs (x,C) such
that x ∈ C ∈ C is denoted by P (Φ). In the following, we first create an instance
of 2VCOMG and then show that it is a positive instance if and only if Φ is a
positive instance of MNAE3SAT.

We construct a mixed graph G = (V,A ∪E) as follows. First, let V contain
a set Q of three vertices p, q and r. Further, V contains a set Z containing one
vertex zC for every C ∈ C. Finally, for every (x,C) ∈ P (Φ), V contains a set Rx

C

of 4 vertices {txC , ux
C , w

x
C , y

x
C}. First, let A contain the arcs pq, qp, pr, rp, qr, rq.

Further, for every C ∈ C, A contains the arcs pzC and zCq. Finally, for every
(x,C) ∈ P (Φ), A contains the arcs of the path p, txC , u

x
C , y

x
C , u

x
C , w

x
C , q. First,

let E contain an edge zCu
x
C for every (x,C) ∈ P (Φ). Now for every x ∈ X,

let C1, . . . , Cµ(x) be an arbitrary ordering of the clauses in C containing x. Let
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bx1 = r and for i = 1, . . . , µ(x), let bx3i−1 = yxCi
, bx3i = wx

Ci
and bx3i+1 = txCi

. We
add the edges of the cycle Bx = bx1 , b

x
2 , . . . , b

x
3µ(x)+1, b

x
1 to E. This finishes the

construction of G. Note that the size of G is clearly polynomial in the size of
Φ. A drawing can be found in Figure 1.

q p

r

zC

yxC

uxC

txCwx
C

Bx

Figure 1: A schematic drawing of G containing Q and Rx
C and zC for some (x,C) ∈ P (Φ).

For some x ∈ X, we will refer to the circuit bx1 , b
x
2 , . . . , b

x
3µ(x)+1, b

x
1 as
−→
Bx and

to the circuit bx1 , b
x
3µ(x)+1, . . . , b

x
2 , b

x
1 as

←−
Bx.

To show that G is a positive instance of 2VCOMG if and only if Φ is a
positive instance of MNAE3SAT we need the following lemma.

Lemma 1. An orientation G⃗ = (V,A ∪ E⃗) of G is 2-vertex-connected if and
only if

G⃗[Bx] =
−→
Bx or G⃗[Bx] =

←−
Bx for every x ∈ X, (1)

ux
CzC ∈ E⃗ if and only if G⃗[Bx] =

−→
Bx for every (x,C) ∈ P (Φ), (2)

ux1

C zC , zCu
x2

C ∈ E⃗ for some x1, x2 ∈ C for every C ∈ C. (3)

Proof First suppose that G⃗ is 2-vertex-connected.
Since for every (x,C) ∈ P (Φ), the vertices txC , w

x
C and yxC have one arc

entering in A, one arc leaving in A and two edges entering in E, (1) follows.

Let (x,C) ∈ P (Φ). For some i, we have yxC = bx3i−1. Since G⃗− txC is strongly
connected, {ux

C , w
x
C , y

x
C} has no arc entering in A and two edges entering in

E, at least one of zCu
x
C and bx3i−2b

x
3i−1 exists in E⃗. Since G⃗ − wx

C is strongly
connected, {ux

C , y
x
C} has no arc leaving in A and two edges entering in E, at

least one of ux
CzC and bx3i−1b

x
3i−2 exists in E⃗. We obtain that ux

CzC ∈ E⃗ if and

only if bx3i−2b
x
3i−1 ∈ E⃗. Now (1) yields (2).

Since for every C ∈ C, the vertex zC has one arc entering in A, one arc
leaving in A and three edges entering in E, (3) follows.

Now suppose that (1), (2) and (3) hold.

We first show that G⃗ is 2-vertex-connected inQ∪Rx
C for every (x,C) ∈ P (Φ).

We fix some (x,C) ∈ P (Φ) and for convenience, we denote zC , t
x
C , u

x
C , w

x
C , y

x
C by

z, t, u, w, y, respectively. Note that G⃗[Q] is 2-vertex-connected. We distinguish

two cases depending on the orientation of Bx in G⃗. By (1), we have either

G⃗[Bx] =
−→
Bx or G⃗[Bx] =

←−
Bx.
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Case 1. G⃗[Bx] =
−→
Bx. Observe that G⃗[Bx] consists of a path S1 from r to y

disjoint from {t, w}, of the arcs yw,wt and of a path S2 from t to r disjoint from

{y, w}. By (2), we have uz ∈ E⃗. Let F1 be the r-out-arborescence consisting
of S1 and the arcs yu, yw and wt. Let F2 be the p-out-arborescence consisting
of the arcs pt, tu, uw and uy. Then F1 and F2 contain two (Q, v)-paths whose
vertex sets only intersect in v for every vertex v in Rx

C . Let F3 be the r-in-
arborescence consisting of S2 and the arcs yw, uw and wt. Let F4 be the q-
in-arborescence consisting of the arcs tu, yu, uz, zq and wq. Then F3 and F4

contain two (v,Q)-paths whose vertex sets only intersect in v for every vertex
v in Rx

C . An illustration can be found in Figure 2.

q p

r

z

y

u

tw
−→
Bx

S1 S2

q p

r

z

y

u

t
−→
Bx

S1 S2

w

Case 1

q p

r

z

y

u

tw
←−
Bx

S1 S2

q p

r

z

y

u

t
←−
Bx

S1 S2

w

Case 2

Figure 2: An illustration for the two cases in the proof of Lemma 1. The out-arborescences
F1, F2 and the in-arborescences F3, F4 are depicted in green, blue, yellow and orange, respec-
tively.

Case 2. G⃗[Bx] =
←−
Bx. Observe that G⃗[Bx] consists of a path S1 from y to r

disjoint from {t, w}, of the arcs tw,wy and of a path S2 from r to t disjoint from

{y, w}. By (2), we have zu ∈ E⃗. Let F1 be the r-out-arborescence consisting
of S2 and the arcs tu, tw and wy. Let F2 be the p-out-arborescence consisting
of the arcs pt, pz, zu, uw and uy. Then F1 and F2 contain two (Q, v)-paths
whose vertex sets only intersect in v for every vertex v in Rx

C . Let F3 be the
r-in-arborescence consisting of S1 and the arcs tu, uy and wy. Let F4 be the
q-in-arborescence consisting of the arcs tw, uw, yu and wq. Then F3 and F4

contain two (v,Q)-paths whose vertex sets only intersect in v for every vertex
v in Rx

C . An illustration can be found in Figure 2.

In either case, we obtain by Proposition 1, that G⃗ is 2-vertex-connected
in Q ∪ Rx

C . As (x,C) was chosen arbitrarily, we in fact obtained that G⃗ is
2-vertex-connected in V − Z.

To finish the proof we consider some C ∈ C. By (3), ux1

C zC , zCu
x2

C ∈ E⃗ for

some x1, x2 ∈ C. Further, zCq, pzC ∈ A. Then Proposition 1 yields that G⃗ is
2-vertex-connected in (V − Z) ∪ zC . As C was chosen arbitrarily, the proof of
Lemma 1 is finished.

Lemma 2. There exists a feasible truth assignment for Φ if and only if G has
a 2-vertex-connected orientation.

Proof First suppose that there exists a feasible truth assignment f : X →
{true, false} for Φ. We create an orientation G⃗ of G in the following way: for
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every x ∈ X, we orient Bx as
−→
Bx if f(x) = true and as

←−
Bx if f(x) = false.

Further, for every (x,C) ∈ P (Φ), we orient zCu
x
C ∈ E from ux

C to zC if f(x) =
true and from zC to ux

C if f(x) = false. Observe that (1) and (2) hold. Since

f is feasible for Φ, (3) also holds. Then, by Lemma 1, G⃗ is 2-vertex-connected.

Now suppose that G has a 2-vertex-connected orientation G⃗. Then, by

Lemma 1, (1), (2) and (3) hold. For every x ∈ X, by (1), we have G⃗[Bx] =
−→
Bx

or G⃗[Bx] =
←−
Bx. We can hence define a truth assignment f as follows: we

set f(x) = true if G⃗[Bx] =
−→
Bx and false if G⃗[Bx] =

←−
Bx. For every C ∈ C,

by (3), there exist arcs ux1

C zC and zCu
x2

C for some x1, x2 ∈ C. By (2), we

have G⃗[Bx1 ] =
−−→
Bx1 and G⃗[Bx2 ] =

←−
B x2 . We obtain that f(x1) = true and

f(x2) = false. This implies that f is feasible for Φ.

By Lemma 2 and Theorem 8, the proof of Theorem 6 is finished.

4. Orientations for 2T -connectivity

This section is dedicated to proving Theorem 7.

Proof(of Theorem 7) Necessity is evident.
To prove the sufficiency, let H be obtained from G = (V,E) by blowing

up every vertex v ∈ V − T into a double cycle Cv on a vertex set of size

max{3, ⌈dG(v)
2 ⌉} such that every new vertex is incident to a set Fv of at most 2

edges not belonging to Cv.

Claim 1. H is 4-edge-connected and H − w is 2-edge-connected for all w ∈
V (H).

Proof Since G and Cv for all v ∈ V − T are 4-edge-connected, so is H by
Proposition 2.

Now let w ∈ V (H). If w ∈ T , then since G − w and Cv for all v ∈ V − T
are 2-edge-connected, so is H − w by Proposition 2. Otherwise, w ∈ V (Cu)
for some u ∈ V − T. Note that G′ = G − Fu is 2-edge-connected because G is
4-edge-connected. Further, Cu − u is 2-edge-connected. Observe that H − w is
the graph obtained from G′ by blowing up every vertex v ∈ (V − u) − T into
Cv and then blowing up u into Cu−u. It follows, by Proposition 2, that H −w
is 2-edge-connected.

By Claim 1 and Theorem 6, we obtain that H has a 2-vertex-connected
orientation H⃗. Now let G⃗ be obtained from contracting V (Cv) into v for all

v ∈ V (G) − T . We will show that G⃗ is 2T -connected. Since H⃗ is 2-vertex-

connected, we obtain that H⃗ is also 2-arc-connected. As G⃗ is obtained from H⃗
through contractions, we obtain that G⃗ is also 2-arc-connected. Now let v ∈ T .
Since H⃗ is 2-vertex-connected, we obtain that H⃗ − v is strongly connected. As
G⃗− v is obtained from H⃗ − v through contractions, we obtain that G⃗− v is also
strongly connected.
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5. Conclusion

We show that the problem of deciding whether a mixed graph has a 2-vertex-
connected orientation is NP-hard and give a characterization for the graphs
admitting a 2T -connected orientation. The first result closes the dichotomy for
the problem of finding k-vertex-connected orientations of mixed graphs.

In the spirit of Conjecture 2, we pose the following problem.

Conjecture 3. There is a function f : Z+ → Z+ such that every f(k)-vertex-
connected mixed graph has a k-vertex-connected orientation for all k ∈ Z+.

Clearly, for any fixed k ≥ 3, Conjecture 3 implies Conjecture 2. It would be
interesting to see whether Conjecture 3 is tractable more easily for k = 2.
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