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a b s t r a c t

In the Binary Paint Shop Problem proposed by Epping et al. (2004) [4] one has to find a
0/1-coloring of the letters of a word in which every letter from some alphabet appears
twice, such that the two occurrences of each letter are colored differently and the total
number of color changes is minimized. Meunier and Sebő (2009) [5] and Amini et al.
(2010) [1] gave sufficient conditions for the optimality of a natural greedy algorithm for
this problem. Our result is a best possible generalization of their results. We prove that
the greedy algorithm optimally colors every suitable subword of a given instance word
w if and only if w contains none of the three words (a, b, a, c, c, b), (a, d, d, b, c, c, a, b),
and (a, d, d, c, b, c, a, b) as a subword. Furthermore, we relate this to the fact that every
member of a family of hypergraphs associated with w is evenly laminar.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The following so-called Binary Paint Shop Problem proposed by Epping et al. [4], has recently received considerable
attention:

Given a word w = (w1, . . . , wn) over some alphabet Σ such that each letter from Σ appears twice in w, find a
0/1-coloring f = (f1, . . . , fn) ∈ {0, 1}n of w in which the two occurrences of each letter are colored differently, that
is, wi = wj for some i < j implies fi ≠ fj, such that the number of color changes between consecutive letters is
minimized.

A word in which each letter from some alphabet Σ appears either twice or never is called an admissible word. A coloring f of
a wordw with 0 and 1 is called a 0/1-coloring. A 0/1-coloring f of an admissible wordw is called good if the two occurrences
of each letter of w are colored differently. If fi ≠ fi+1, then we say that there is a color change at position i + 1

2 , that is, there
is a color change between i and i + 1.

The Binary Paint Shop Problem is APX-hard [3,4] but there is a natural greedy algorithm, which works for an admissible
word w = (w1, . . . , wn) as follows:

Set g1 := 0 and for j from 2 up to n, set gj := gj−1 unless there is some i < j with wi = wj and gi = gj−1. In the latter
case, set gj := 1 − gj−1.

The coloring produced by the greedy algorithm is called the greedy coloring. The following claim is evident.

Claim 1. For every admissible word, its greedy coloring is good. �

The performance of the greedy algorithm on random instances was studied in [1,2].
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A word w′ is a subword of a word w = (w1, . . . , wn) if there are indices 1 ≤ i1 < i2 < · · · < ik ≤ n with
w′

= (wi1 , wi2 , . . . , wik). Meunier and Sebő [5] proved the optimality of the greedy algorithm for instances that do not
contain (a, b, b, a) as a subword. Their result was extended by Amini et al. [1] who proved the optimality of the greedy
algorithm for instances that do not contain (a, b, a, c, c, b) or (a, b, b, c, a, c) as a subword. Our aim in the present note is
to extend the last two results optimally in a certain sense. We need some terminology.

For two integers i < j, let

I(i, j) =


i +

1
2
, (i + 1) +

1
2
, . . . , (j − 1) +

1
2


.

For an admissible word w = (w1, . . . , wn) and its greedy coloring g = (g1, . . . , gn), let

I(w) = {I(i, j) | 1 ≤ i < j ≤ n, wi = wj} and
G(w) = {I(i, j) ∈ I(w) | gj−1 ≠ gj}.

By the definition of a good coloring, the following is obvious.

Claim 2. For every good coloring f = (f1, . . . , fn) of an admissiblewordw = (w1, . . . , wn), if wi andwj are the two occurrences
of some letter in w, then there is an odd number of color changes between i and j. �

A hypergraph H is called evenly laminar if it is laminar, that is, every two hyperedges of H are disjoint or one contains the
other, and each of its hyperedges properly contains an even number of hyperedges of H . An odd transversal of a hypergraph
H is a subset of its vertex set that intersects each hyperedge of H in an odd number of elements.

We can now state and prove our result.

Theorem 1. For every admissible word w, the following three statements are equivalent.

(a) The greedy coloring is optimal for every admissible subword w′ of w.
(b) G(w′) is an evenly laminar hypergraph for every admissible subword w′ of w.
(c) w contains none of the three words (a, b, a, c, c, b), (a, d, d, b, c, c, a, b), and (a, d, d, c, b, c, a, b) as a subword.

Proof. We prove the three implications (a) ⇒ (c), (c) ⇒ (b), and (b) ⇒ (a).
(a) ⇒ (c): Let w1 = (a, b, a, c, c, b), w2 = (a, d, d, b, c, c, a, b), and w3 = (a, d, d, c, b, c, a, b). The greedy coloring gi and
an optimal coloring fi of the word wi are as follows

g1 = (0, 0, 1, 1, 0, 1), g2 = (0, 0, 1, 1, 1, 0, 1, 0), and g3 = (0, 0, 1, 1, 1, 0, 1, 0)

f1 = (0, 1, 1, 1, 0, 0), f2 = (0, 1, 0, 0, 0, 1, 1, 1), and f3 = (0, 1, 0, 0, 0, 1, 1, 1).

Counting the color changes, the desired implication follows.
(c) ⇒ (b): Let w = (w1, . . . , wn) be an admissible word as in (c) and let g = (g1, . . . , gn) be its greedy coloring. To show
(b), clearly, it suffices to prove that G(w) is evenly laminar. If I(i, j) ∈ G(w), then wi = wj and gi ≠ gj ≠ gj−1. By Claims 1
and 2, there is an odd number of color changes between i and j, hence an even number between i and j − 1, which, by the
construction of G(w), implies that G(w) contains an even number of sets I(i′, j′) with (j′ − 1) +

1
2 ∈ I(i, j) that are distinct

from I(i, j). Therefore, ifG(w) is laminar, then it is evenly laminar andwemay assume, for a contradiction, thatG(w) contains
two sets I(a1, a2) and I(b1, b2) and neither I(a1, a2) ⊆ I(b1, b2) nor I(b1, b2) ⊆ I(a1, a2) nor I(a1, a2) ∩ I(b1, b2) = ∅. We
may suppose that

a1 < b1 < a2 < b2. (1)

Let us choose the two sets such that a1 is minimal and, subject to this, b2 is minimal.

Claim 3. There is a unique color change between a2 and b2, which is at position (b2 − 1) +
1
2 .

Proof. Suppose, for a contradiction, that there is a set I(c1, c2) in G(w) with a2 < c2 < b2. If a2 < c1, then, by (1), a1 <
b1 < a2 < c1 < c2 < b2 and w contains the subword (a, b, a, c, c, b), which is a contradiction. If a1 < c1 < a2, then
a1 < c1 < a2 < c2, and c2 < b2 implies a contradiction to the minimality of b2. If c1 < a1, then, by (1), c1 < b1 < c2 < b2,
and c1 < a1 implies a contradiction to the minimality of a1. Hence the claim follows. �

By Claims 1–3, there is a color change between b1 and a2 − 1, that is, G(w) contains a set I(c1, c2) with b1 < c2 < a2. We
assume that this set is chosen such that c2 is maximal. By this choice, we obtain the following.

Claim 4. There is a unique color change between c2 and a2, which is at position (a2 − 1) +
1
2 . �

If c1 < a1, then c1 < a1 < c2 < a2, and c1 < a1 implies a contradiction to the minimality of a1. Hence a1 < c1.

Claim 5. If I1 and I2 are sets in G(w), then the number of color changes in (I1 \ I2) ∪ (I2 \ I1) is even.
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Proof. The number of color changes in (I1 \ I2) ∪ (I2 \ I1) is equal to the number of color changes in I1 plus the number of
color changes in I2 minus twice the number of color changes in I1 ∩ I2, that is, by Claims 1 and 2, its parity is odd plus odd
minus even, which is even. �

Suppose that b1 < c1. Then, by Claims 3 and 5, there is a set I(d1, d2) in G(w) with a1 < d2 < b1. If d1 < a1, then d1 < a1 <
d2 < a2, and d1 < a1 implies a contradiction to theminimality of a1. Hence, by (1), a1 < d1 < d2 < b1 < c1 < c2 < a2 < b2
and w contains the subword (a, d, d, b, c, c, a, b), which is a contradiction.

Finally, suppose that c1 < b1. Then, by Claims 4 and 5, there is a set I(d1, d2) in G(w) with a1 < d2 < c1. If d1 < a1,
then d1 < a1 < d2 < a2, and d1 < a1 implies a contradiction to the minimality of a1. Hence, by (1), a1 < d1 < d2 < c1 <
b1 < c2 < a2 < b2 and w contains the subword (a, d, d, c, b, c, a, b), which is a contradiction and completes the proof of
this implication.
(b) ⇒ (a): This implication follows from Lemma 2 in [1], which states that every odd transversal T of an evenly laminar
hypergraph H contains at least as many elements as there are hyperedges in H , that is, |T | ≥ |E(H)|. For the sake of
completeness, we give a short proof. Possibly by adding a new vertex, wemay assume that every hyperedge ofH is a proper
subset of the vertex set of H .

Claim 6. If e is a set of vertices of H that properly contains k hyperedges of H , then |e ∩ T | ≥ k.

Proof. We prove this claim by induction on k. For k = 0, it is trivial. For k > 0, let e1, . . . , eℓ denote the maximal
hyperedges properly contained in e. Let ki for 1 ≤ i ≤ ℓ denote the number of hyperedges properly contained in ei. Clearly,
k = (k1 + 1) + · · · + (kℓ + 1). Since H is evenly laminar, ki is even for every 1 ≤ i ≤ ℓ. Since T is an odd transversal,
|ei ∩ T | is odd for every 1 ≤ i ≤ ℓ. Hence, by induction, |ei ∩ T | ≥ ki + 1 and we obtain |T ∩ e| ≥ |T ∩ (e1 ∪ · · · ∪ eℓ)| =

|T ∩ e1| + · · · + |T ∩ eℓ| ≥ (k1 + 1) + · · · + (kℓ + 1) = k. �

Applying Claim 6 to the vertex set of H implies |T | ≥ |E(H)|.
Let w = (w1, . . . , wn) be an admissible word as in (b). It suffices to argue that the greedy coloring g = (g1, . . . , gn) of w

has at most as many color changes as any other good coloring f = (f1, . . . , fn) of w. Let

G =


i +

1
2

| 1 ≤ i ≤ n − 1, gi ≠ gi+1


and F =


i +

1
2

| 1 ≤ i ≤ n − 1, fi ≠ fi+1


.

By definition, we have |G| = |G(w)|. By Claim 2, F is an odd transversal of the evenly laminar hypergraph G(w). Hence
|F | ≥ |G(w)| and thus |F | ≥ |G|, which completes the proof. �

Clearly, the optimality statements concerning the greedy algorithm proved in [1,5] follow from Theorem 1.
If w′

= (w1, . . . , wn) is an admissible word and g = (g1, . . . , gn) is its greedy coloring, then inserting (xi, xi) between
every two consecutive letters wi and wi+1 of w′ with gi ≠ gi+1 where the xi’s are new and distinct letters from the alphabet,
results in an admissible word w that contains w′ as a subword and is optimally colored by the greedy algorithm. This
construction implies our final claim.

Claim 7. It is impossible to characterize the admissible words that are optimally colored by the greedy algorithm using forbidden
subwords. �
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