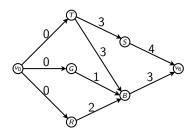
Recherche Opérationnelle 1A Théorie des graphes Ordonnancement

Zoltán Szigeti


Ensimag, G-SCOP

Méthode potentiel-tâches

Définition

réseau potentiel-tâches (G = (V, A), c) d'un problème d'ordonnancement:

- **1** $V = \{v_0, v_1, \dots, v_n, v_{n+1}\}$ où
 - v_1, \ldots, v_n correspondent aux tâches A_1, \ldots, A_n
 - v_0 et v_{n+1} correspondent au début et à la fin du projet et,
- ② $A = \{v_i v_j : \text{ si contrainte } A_j \text{ doit commencer après la fin de } A_i \text{ existe}\}$

Tâches	T	G	R	В	S
Durée	3	1	2	3	4
Prédécesseurs	_	_	_	T, G, R	T

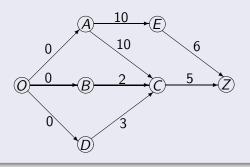
Méthode potentiel-tâches

Théorème

Soit (G, c) le réseau potentiel-tâches d'un problème d'ordonnancement simple. Soient

- **1** π_i la date au plus tôt quand on peut commencer la tâche A_i ,
- $\mathbf{Q} \quad \mathbf{\eta}_i$ la date au plus tard quand il faut commencer la tâche A_i pour finir tout le projet en temps optimal,
- t'_i le coût maximum d'un (v_i, v_{n+1}) -chemin dans (G, c).
- (a) G est sans circuit, v_0 est une racine de G et v_{n+1} est atteignable à partir de chaque sommet v_i .
- (b) $\pi_i = t_i \ \forall i$.
- (c) $\eta_i = t_{n+1} t'_i \ \forall i$.

Énoncé

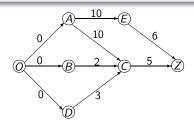

On considère un problème d'ordonnancement simple comportant 5 tâches A, B, C, D, E. Pour chacune des tâches on donne sa durée et la liste des tâches qui doivent la précéder.

Tâches
$$A$$
 B C D E Durée 10 2 5 3 6 Prédécesseurs A , B , D A

- (a) Donner la formulation potentiel-tâches de ce problème.
- (b) Quelle est la durée minimale de réalisation de ce projet?
- (c) Donner la liste de tâches critiques et celle de chemins critiques.

Solution de (a)

La formulation potentiel-tâches :

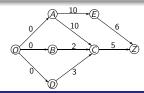


Solution de (b)

En appliquant l'algorithme de Bellman on trouve que

$$\pi(O) = t(O) = 0,$$
 $\pi(E) = t(E) = 10,$ $\pi(A) = t(A) = 0,$ $\pi(C) = t(C) = 10,$ $\pi(B) = t(B) = 0,$ $\pi(C) = t(C) = 16,$ $\pi(D) = t(D) = 0,$

c'est-à-dire le coût maximum d'un chemin de O à Z est 16, donc la durée minimale de la réalisation de ce projet est 16.



Solution de (c)

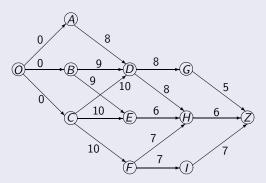
En appliquant l'algorithme de Bellman on trouve que

$$t'(Z) = 0,$$

 $t'(C) = 5,$ $\eta(C) = \pi(Z) - t'(C) = 16 - 5 = 11,$
 $t'(E) = 6,$ $\eta(E) = \pi(Z) - t'(E) = 16 - 6 = 10,$
 $t'(D) = 8,$ $\eta(D) = \pi(Z) - t'(D) = 16 - 8 = 8,$
 $t'(B) = 7,$ $\eta(B) = \pi(Z) - t'(B) = 16 - 7 = 9,$
 $t'(A) = 16,$ $\eta(A) = \pi(Z) - t'(A) = 16 - 16 = 0.$

Les tâches critiques sont eux pour lesquelles $\pi = \eta$, donc les tâches A, E. Il y a un seul chemin critique O, A, E, Z.

Énoncé

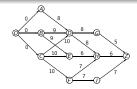

On considère un problème d'ordonnancement simple comportant 9 tâches A, B, \ldots, H et I. Pour chacune des tâches on donne sa durée et la liste des tâches qui doivent la précéder.

Tâches	Α	В	C	D	Ε	F	G	Н	1
Durée	8	9	10	8	6	7	5	6	7
Prédécesseurs	_	_	_	A, B, C	B, C	C	D	D, E, F	F

- (a) Donner la formulation potentiels-tâches de ce problème.
- (b) Quelle est la durée minimale de réalisation de ce projet?
- (c) Donner la liste des tâches critiques et celle des chemins critiques.
- (d) Si on pouvait diminuer la durée d'une tâche, laquelle faudrait-il choisir pour diminuer la durée totale du projet ?

Solution de (a)

La formulation potentiel-tâches :

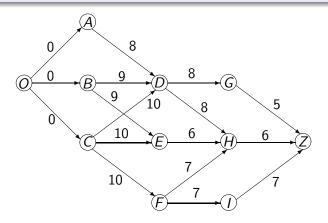


Solution de (b)

En appliquant l'algorithme de Bellman on trouve que

$$\pi(O) = t(O) = 0,$$
 $\pi(F) = t(F) = 10,$ $\pi(A) = t(A) = 0,$ $\pi(G) = t(G) = 18,$ $\pi(B) = t(B) = 0,$ $\pi(H) = t(H) = 18,$ $\pi(C) = t(C) = 0,$ $\pi(I) = t(I) = 17,$ $\pi(D) = t(D) = 10,$ $\pi(Z) = t(Z) = 24,$ $\pi(E) = t(E) = 10,$

c'est-à-dire le coût maximum d'un chemin de O à Z est 24, donc la durée minimale de la réalisation de ce projet est 24.

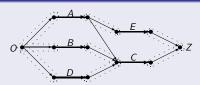

Solution de (c)

En appliquant l'algorithme de Bellman on trouve que

Les tâches critiques sont eux pour lesquelles $\pi=\eta$, donc les tâches C,D,F,H,I. Il y a deux chemins critiques O,C,D,H,Z et O,C,F,I,Z. Notons que le chemin O,C,F,H,Z n'est pas critique bien que tous ces sommets soient critiques.

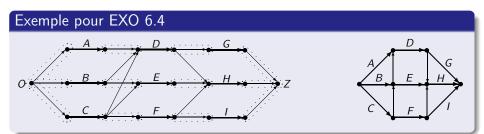
Solution de (d)

Il faut choisir la tâche C car c'est elle qui se trouve sur les deux chemins critiques O, C, D, H, Z et O, C, F, I, Z.


PERT: Project Evaluation and Review Technique

Définition : réseau potentiel-événements :

- Première étape : (G' = (V', A'), c') où
 - - $\mathbf{0}$ v_i' et v_i'' correspondent au début et à la fin de tâche A_i ,
 - \mathbf{Q} \mathbf{v}_0' et \mathbf{v}_{n+1}' correspondent au début et à la fin du projet et


 - $c'(v_i'v_i'') =$ durée de la tâche A_i , et $c'(v_i''v_i') = 0$ si $v_i''v_i' \in A'$.
- 2 Deuxième étape : Contraction des arcs fictifs
 - si l'on ne crée pas de nouveau (v'_0, v'_{n+1}) -chemin.

Exemple pour EXO 6.3

PERT : Project Evaluation and Review Technique

