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Abstract

We show that every triangle-free graph on the double torus is 4-colorable.
This settles a problem raised by Gimbel and Thomassen [Trans. Amer.
Math. Soc. 349 (1997), 4555–4564].

1 Introduction

Colorings of graphs on surfaces permanently attract attention of researchers in
graph theory. The most classical result is the Four Color Theorem [1, 13] which as-
serts that every planar graph is 4-colorable. Another classical result is Grötzsch’s
theorem [8] which states that every planar graph with no triangles is 3-colorable;
also see [15, 16] for short proofs of this result.

Gimbel and Thomassen [7] generalized Grötzsch’s theorem to surfaces of
higher genera. While the chromatic number of a graph embedded on a surface of
genus g is bounded by O(g1/2) [9], the chromatic number of a triangle-free graph
that can be embedded on a surface of genus g is bounded by O

(
(g/ log g)1/3

)
[7].

On the other hand, there exist triangle-free graphs embeddable on a surface of
genus g that have chromatic number Ω

(
g1/3/ log g

)
[7].

Let us focus on triangle-free graphs on surfaces of small genera. As we have
already mentioned, triangle-free plane graphs are 3-colorable. Every triangle-free
graph in the projective plane is 3-degenerate and thus 4-colorable. On the other
hand, there are non-bipartite triangle-free projective planar quadrangulations and
each such quadrangulation is 4-chromatic [18]. Kronk and White [11] established
that every triangle-free graph on the torus is 4-colorable; as in the case of the
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projective plane, the bound cannot be improved since there exist triangle-free
graphs on the torus that are not 3-colorable (one example is the Cayley graph
for the group Z13 with generators 1 and 5 [2]). Gimbel and Thomassen [7] asked
whether the result of Kronk and White can be extended to the double torus S2:

Problem 1 ([7], Problem 9). Is every graph on S2 of girth four 4-colorable?

In the present paper, we answer this question in the affirmative way (see Corol-
lary 23). As there are triangle-free graphs on the torus that are not 3-colorable,
the bound cannot be improved.

2 Preliminary observations

In this section, we recall standard graph theory notation related to graph colorings
and critical graphs. However, we do not provide any detailed introduction to
topological graph theory. We refer the reader to a recent monograph [12] if
interested. The only fact that we will need in our further considerations is the
following corollary of Euler’s formula: the number of edges of a simple triangle-
free graph that can be embedded on the surface Sg is at most 2n − 4 + 4g. In
particular, the following holds:

Lemma 1. The number of edges of an n-vertex triangle-free graph that can be
embedded on the double torus is at most 2n + 4.

We also assume that the reader is familiar with basic graph theory concepts
such as k-colorability or the chromatic number of graphs. In our investigations,
the structure of “extremal” non-(k − 1)-colorable graphs will play a crucial role:
a graph G is k-critical if it is not (k − 1)-colorable but each proper subgraph of
G is (k − 1)-colorable. Clearly, the minimum degree of a k-critical graph is at
least k− 1. The vertices of a k-critical graph can be partitioned into two groups:
low-degree vertices of degree k − 1 and high-degree vertices of degree k or more.
The subgraph induced by the low-degree vertices of G is denoted by Lk−1(G) and
that induced by the high-degree vertices by Hk−1(G). One of the first results
on critical graphs is the following theorem of Gallai that restricts the possible
structure of the components of the low-degree subgraph. Recall that a Gallai
tree is a graph such that each block (maximal 2-connected subgraph) is an odd
cycle or a complete graph.

Theorem 2 (Gallai [6]). If G is a k-critical graph, then each component of
Lk−1(G) is a Gallai tree.

Gallai [6] also studied which colorings of the high-degree subgraph cannot be
extended to the components of low-degree subgraphs. In particular, he showed
that if each component of Lk−1(G) contains a vertex adjacent to two vertices
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of Hk−1(G) of the same color, then the coloring of Hk−1(G) can be extended to
all the components of Lk−1(G). This is in fact a special case of a more general
phenomenon studied in the area of list colorings [3, 5, 17]. Results obtained in
this area allow us to replace the original condition of Gallai by several others. In
particular, the following lemma is true:

Lemma 3. Let G be a graph. Any precoloring of H4(G) with 4 colors can be
extended to any component of L4(G) that has

• a vertex adjacent to two vertices of H4(G) of the same color, or

• two adjacent vertices v1 and v2 of degree two in L4(G) such that their neigh-
bors in H4(G) have at least three distinct colors.

We will also use the following result of Stiebitz [14] that allows us to bound the
number of components of the high-degree subgraph by the number of components
of the low-degree subgraph:

Theorem 4 (Stiebitz [14]). If G is a k-critical graph that contains a vertex of
degree k − 1, then the number of components of Hk−1(G) does not exceed the
number of components of Lk−1(G).

Our goal is to show that every triangle-free graph on the double torus is 4-
colorable. In order to do so, we show that there are no 5-critical triangle-free
graphs that can be embedded on the double torus (Theorem 22). As we have
already observed, the minimum degree of a 5-critical graph is four. On the other
hand, Lemma 1 implies that the average degree of each triangle-free graph on
the double torus is at most slightly above four. Hence the high-degree subgraph
of a triangle-free 5-critical graph on the double torus cannot contain too many
vertices.

Lemma 5. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. Let � be the number of vertices of H4(G) and d1, . . . , d� their degrees
in G. The sum

∑�
i=1(di−4) is at most eight. In particular, the number of vertices

of H4(G) is at most eight.

Lemma 5 easily follows from Lemma 1 and the fact that the minimum degree of
a 5-critical graph is four, and we leave its detailed proof to the reader.

We finish this section with two results on the minimum number of vertices of
a triangle-free graph that is not 3- or 4-colorable. Let us remark that the bounds
given in the following two theorems are best possible.

Theorem 6 (Chvátal [4]). Every triangle-free graph on at most 10 vertices is
3-colorable.

Theorem 7 (Jensen and Royle [10]). Every triangle-free graph on at most 21
vertices is 4-colorable.
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3 Structure of the low-degree subgraph

In this section, we focus on the possible structure of the low-degree subgraph
of triangle-free 5-critical graphs on the double torus. We define the weight of a
component G0 of L4(G) to be the number of edges between G0 and H4(G). Note
that the weight of each component of L4(G) is even. The next lemma provides
us with a simple bound on the total weight of the components of L4(G) in terms
of the number of high-degree vertices and the number of edges of H4(G).

Lemma 8. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. If H4(G) has � vertices and m edges, then the total weight of the
components of L4(G) is at most 4� + 8 − 2m.

Proof. Let d1, . . . , d� be the degrees of the vertices of H4(G). By Lemma 5, the
sum of the degrees

∑�
i=1 di of the vertices of H4(G) is at most 4� + 8. If the

number of edges of H4(G) is m, the number of edges between H4(G) and L4(G)
is at most 4� + 8− 2m. Hence the total weight of the components of L4(G) is at
most 4� + 8 − 2m.

By Theorem 2, each component of L4(G) is a Gallai tree. Let us call a
component G0 of L4(G) that has no vertices of degree one and that is not an odd
cycle a grunter. Since each end-block of a grunter must be an odd cycle of length
at least five (recall that we are considering triangle-free graphs), the next lemma
readily follows from Theorem 2:

Lemma 9. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus and let G0 be a component of L4(G). If G0 does not contain a vertex
of degree one, then either G0 is an odd cycle or it is a grunter. In particular, if
G0 does not contain a vertex of degree one, it contains two adjacent vertices of
degree two.

The simplest components of L4(G) are trees. A weight of such an n-vertex
component is 2n+2. In the next lemma, we show that if the weight of an n-vertex
component is significantly smaller than 2n + 2, then n must be quite large. This
will allow us to efficiently analyze the structure of components of L4(G) based
on their weights in our further considerations.

Lemma 10. Let G be a triangle-free 5-critical graph that can be embedded on
the double torus. If G′ is an n-vertex component of L4(G), then the weight of G′

is equal to 2n + 2 if and only if G′ is a tree, and equal to 2n if and only if G′

is a cycle or a unicyclic graph. Moreover, if the weight of G′ is 2n − 2�, then
n ≥ 5 + 4�. In particular, if the weight of G′ is less than 2n, then weight of G′ is
at least 16, and if it is less than 2n − 2, then it is at least 22.

Specifically, if G′ has no vertex of degree one, then its weight is at least 2n ≥
10, and if G′ is a grunter, then its weight is at least 16.
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Proof. Observe first that the blocks of G′ are odd cycles and edges only since G′

is triangle-free. If G′ has k blocks that are odd cycles, then the weight of G′ is
2n + 2 − 2k. Moreover, if G′ has k blocks that are odd cycles, the number of
vertices of G′ is at least 4k + 1. Hence if the weight of G′ is 2n + 2, then k = 0
and G′ is a tree. If the weight of G′ is 2n, then k = 1 and G′ is a cycle or a
unicyclic graph.

Assume now that the weight of G′ is 2n − 2�. We conclude that G′ contains
k = � + 1 blocks that are odd cycles and thus it contains at least 4k + 1 = 4� + 5
vertices. In particular, if the weight of G′ is less than 2n, i.e., � ≥ 1, then G′ has
weight at least

2 · (4� + 5) − 2� = 6� + 10 ≥ 16 .

It remains to prove the last part of the lemma. If G′ has no vertex of degree
one, then k ≥ 1 and the weight of G′ is at least

2n + 2 − 2k ≥ 2(4k + 1) + 2 − 2k = 6k + 4 ≥ 10 .

If G′ is a grunter, then k ≥ 2 and consequently its weight is at least 6k + 4 ≥ 16.
The whole lemma has now been established.

We now aim to utilize our observations on the structure of the low-degree
subgraph of a triangle-free 5-critical graph on the double torus. Let us start by
showing that the number of components of L4(G) must be at least two.

Lemma 11. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. The subgraph L4(G) contains at least two components.

Proof. By Lemma 5 and Theorem 6, L4(G) contains at least one component.
Assume for the sake of contradiction that L4(G) has a single component G′.
Since G′ is a Gallai tree it contains a vertex v of degree at most two. Let w1 and
w2 be two neighbors of v in H4(G). Note that the vertices w1 and w2 are not
adjacent since G is triangle-free. Consider a coloring of H4(G) with three colors,
which exists by Lemma 5 and Theorem 6, and recolor the vertices w1 and w2

with the fourth (unused) color. By Lemma 3, the precoloring of the vertices of
H4(G) can be extended to a coloring of G with four colors—a contradiction.

We finish this section with three lemmas which bound the number of com-
ponents of L4(G) under certain assumptions on the total number of vertices and
the total weight of the components of L4(G).

Lemma 12. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. If the total weight of the components of L4(G) is at most 26 and
L4(G) has at least 15 vertices, then the number of components of L4(G) does not
exceed one.
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Proof. Assume for the sake of contradiction that L4(G) has at least two com-
ponents. Since 26 < 2 · 15, L4(G) must contain an n1-vertex component G1 of
weight at most 2n1 − 2.

If the weight of G1 is exactly 2n1 − 2, L4(G) must contain another n2-vertex
component G2 of weight less than 2n2. By Lemma 10, the weight of each of G1

and G2 is at least 16. Since the total weight of the components of L4(G) is at
most 26, the component G2 could not exist. We conclude that the weight of G1

is at most 2n1 − 4.
By Lemma 10, the weight of G1 is at least 22. Since the total weight of the

components of L4(G) is at most 26, the weight of G1 is 22 and the weight of
the other component of L4(G) is four. We conclude that G1 has 13 vertices and
the other component of L4(G) is comprised of a single vertex. Hence L4(G) has
n1 + 1 = 13 + 1 = 14 vertices which contradicts our assumption that the number
of vertices of L4(G) is at least 15.

In the next lemma, we show that the number of components of L4(G) does
not exceed two under some weaker assumptions.

Lemma 13. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. If the total weight of the components of L4(G) is at most 28 and
L4(G) has at least 14 vertices, then the number of components of L4(G) does not
exceed two.

Proof. Assume for the sake of contradiction that L4(G) is comprised of three or
more components. Since 28/3 < 10, L4(G) contains a component that is a tree
by Lemma 10. Let G1 be such a component and n1 its number of vertices. By
Lemma 10, the weight of G1 is 2n1 + 2.

Since the number of vertices of L4(G) is at least 14 and the total weight of its
components is 28, L4(G) must contain an n2-vertex component G2 of weight at
most 2n2 − 2. Since the weight of G2 is at most 28− 2 · 4 = 20, the weight of G2

is 2n2 − 2 by Lemma 10. On the other hand, since the sum of the weights of G1

and G2 is at least 4 + 16 = 20, any component of L4(G) distinct from G1 and G2

is a tree by Lemma 10. Hence G2 is the only component of L4(G) which is not a
tree. We infer from Lemma 10 that the total weight of the components of L4(G)
is at least 2 · 14 + 2 = 30 which is impossible. This completes the proof.

Finally, under even weaker assumptions, the number of components of L4(G)
is at most three.

Lemma 14. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. If the total weight of the components of L4(G) is at most 30 and
L4(G) has at least 14 vertices, then the number of components of L4(G) does not
exceed three.
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Proof. Assume for the sake of contradiction that L4(G) contains four or more
components. Since the average weight of the components of L4(G) is also at most
30/4 < 10, one of the components of L4(G) is a tree, say G1. Since the average
weight of the components of L4(G) distinct from G1 is at most (30 − 4)/3 < 10,
L4(G) contains another component G2 that is a tree. Let n1 and n2 be the number
of vertices of G1 and G2, respectively. By Lemma 10, the sum of the weights of
G1 and G2 is 2(n1 + n2) + 4.

Since L4(G) has 14 vertices and the total sum of the weights of the components
of L4(G) is 30, G must contain an n3-vertex component G3 of weight at most
2n3−2. Since the weight of G3 is at most 30−3·4 = 18, the weight of G3 is 2n3−2
by Lemma 10. Note that the weight of G3 must also be at least 16. Because the
total weight of G1, G2 and G3 is at least 24, L4(G) contains four components
and the component G4 is a tree. Let n4 be the number of vertices of G4. By
Lemma 10, the total weight of the components of L4(G) is 2(n1+n2+n3+n4)+4.
Since n1 + n2 + n3 + n4 ≥ 14, the total weight of the components of L4(G) must
be at least 32 which is impossible.

4 Number of edges in the high-degree subgraph

In this section we focus on estimates on the number of edges that could be
contained in the high-degree subgraph of a triangle-free 5-critical graph on the
double torus. We start by showing a lower bound on the number of such edges.

Lemma 15. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. The subgraph H4(G) contains at least three edges.

Proof. Assume to the contrary that there exists a graph G in which H4(G) con-
tains at most two edges. If H4(G) has at most one edge or two edges sharing a
vertex, we can color the vertices of H4(G) in such a way that all the vertices of
H4(G) have the same color except for a single vertex with a different color. Let
G′ be a component of L4(G). If G′ contains a vertex v of degree one, then v is
adjacent to two vertices of H4(G) of the same color. If G′ contains no vertices
of degree one, then G′ contains two adjacent vertices v1 and v2 of degree two by
Lemma 9. Since G is triangle-free, the vertices v1 and v2 are adjacent to four
different vertices of H4(G). Hence one of them is adjacent to two vertices of the
same color. We conclude that each component of L4(G) has a vertex adjacent to
two vertices of H4(G) of the same color. Lemma 3 implies that G is 4-colorable
which contradicts our assumption that G is 5-critical.

It remains to consider the case when H4(G) is formed by two disjoint edges,
say x1x2 and y1y2, and � isolated vertices, 0 ≤ � ≤ 4. Let cij, i, j = 1, 2, be
the coloring of H4(G) that assigns the vertices xi and yj the same color and all
the remaining vertices of H4(G) another color. Let us consider a component G′

of L4(G). Assume that G′ has no vertices of degree one and each vertex of G′
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is adjacent to vertices of H4(G) with mutually distinct colors. Since H4(G) is
colored with only two colors, G′ has no vertices of degree one. Moreover, each
vertex of G′ of degree two is adjacent to either xi or yj. Since two vertices
adjacent in G′ cannot both be neighbors of xi or of yj, G′ is not an odd cycle.
Hence Lemma 9 yields that G′ is a grunter. Moreover, each vertex of degree two
contained in an end-block of the grunter is adjacent to either xi or yj (note that
the vertices of degree two in an end-block must be adjacent alternately to xi and
yj).

Let us now distinguish two cases based on the number of grunter components
of L4(G). The number of grunter components of L4(G) is at most two since each
grunter has weight at least 16 and the total weight of the components of L4(G)
is at most 40 − 4 = 36 by Lemma 8.

We first consider the case that L4(G) has a single grunter component G1.
If G1 contains a vertex of degree two adjacent to two vertices in H4(G) with
the same color in the coloring c11 or in c12, then the coloring of H4(G) can be
extended to G1 by Lemma 3. Otherwise, each vertex of degree two is adjacent
to two vertices of distinct colors both in the coloring c11 and the coloring c12.
Hence, the vertices of degree two in the end-blocks of G1 are adjacent to x1 and
y1 alternately (because of the coloring c11) and to x1 and y2 alternately (because
of the coloring c12). Consequently, there is a vertex z of G1 adjacent to both y1

and y2. We conclude that G contains a triangle y1y2z.
It remains to analyze the case that L4(G) has two grunter components. Let

G1 and G2 be these two components. Assume that for each of the four colorings
cij , all the vertices of G1 or all the vertices G2 of degree two are adjacent to
vertices of H4(G) with two different colors. In the previous paragraph, we have
shown that G1 contains a vertex of degree two adjacent to two vertices of H4(G)
with the same color in c11 or c12. By symmetry, assume that G1 contains a vertex
of degree two adjacent to two vertices of the same color in c12. Similarly, observe
that G2 contains a vertex of degree adjacent to two vertices of the same color in
c12 or c22. Since all vertices of G2 of degree two must be adjacent to two vertices
of distinct colors in c12 (otherwise, c12 could be extended to both G1 and G2), G2

contains a vertex of degree two adjacent to two vertices of the same color in c22.
Along these lines, we conclude that G1 contains vertices of degree two adjacent
to two vertices of H4(G) of the same color both in c12 and c21 and G2 contains
vertices of degree two adjacent to two vertices of the same color both in c11 and
c22.

Since neither of these four colorings cij can be extended to both G1 and G2,
all vertices of degree two of G1 are adjacent to two vertices of different colors both
in c11 and c22, and all vertices of degree two of G2 are adjacent to two vertices of
different colors both in c12 and c21. In particular, each vertex of degree two lying
in an end-block of G1 is either adjacent to x1 and y2 or to x2 and y1 (the other
cases are excluded by our assumption that G is triangle-free). Observe that G1

has at least four vertices of the former kind and at least four vertices of the latter
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kind. Similarly, each vertex of degree two lying in an end-block of G2 is either
adjacent to x1 and y1 or to x2 and y2, and the number of vertices of each of the
two kinds is at least four. We conclude that all the vertices x1, x2, y1 and y2 have
at least eight neighbors in G1 and G2. Hence the degree of each of them in G is
at least nine which is impossible by Lemma 5.

We infer from our discussion that for at least one of the colorings c11, c12,
c21, c22 each component of L4(G) has a vertex adjacent to two vertices of H4(G)
of the same color: indeed, we have established this for the components G1 and
G2, and for other components, which are not grunters, this follows from the facts
that each other component contain a vertex of degree one and the vertices of
H4(G) are 2-colored. We can now infer from Lemma 3 that G is 4-colorable
which contradicts our assumption that G is 5-critical.

We have just established a lower bound on the number of edges of H4(G).
Our next aim is to find an upper bound.

Lemma 16. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. The subgraph H4(G) contains at most six edges.

Proof. Assume for the sake of contradiction that H4(G) has seven or more edges.
By Lemma 5 and Theorem 7, L4(G) has at least 14 vertices, and, by Lemma 11,
L4(G) is comprised of at least two components. By Lemma 8, the total weight
of the components of L4(G) cannot exceed 40 − 14 = 26. Since 26 < 2 · 14,
L4(G) has an n1-vertex component G1 of weight less than 2n1. On the other
hand, the weight of G1 is at least 16 by Lemma 10. Hence the weight of any
other component G2 of L4(G) is at most 10. If G2 were a tree, then L4(G) would
have to contain another component of weight less than twice the number of its
vertices which is impossible. We conclude that G2 is a cycle of length 5 and its
weight is exactly 10. Consequently, the weight of G1 is 16 and G1 is a double-5-
cycle, i.e., two 5-cycles sharing a vertex. Since the total weight of G1 and G2 is
26, the number of vertices of H4(G) is eight and it contains exactly seven edges.
Moreover, the degree of each vertex of H4(G) in G is five.

Since H4(G) has eight vertices and seven edges, H4(G) contains at least four
vertices v of degree at most two. Since G is triangle-free, the vertices of G2 are
adjacent to at least five different vertices of H4(G) and thus there is a vertex v
of H4(G) of degree at most two adjacent to a vertex of G2. Since each vertex of
H4(G) can be adjacent to at most two vertices of G2 (otherwise G would contain
a triangle) and the degree of every vertex of H4(G) in G is five, there exists a
vertex v0 of H4(G) adjacent to both a vertex of G1 and a vertex of G2. Let vi be
any of the neighbors of v0 in Gi, i = 1, 2. Note that the degree of vi in Gi is two.
Since G1 is a double-5-cycle, the vertex v1 has a neighbor v′

1 of degree two in G1.
Similarly, v2 has a neighbor v′

2 of degree two in G2.
Now color the vertices of H4(G) with three colors (this is possible by Theo-

rem 6) and recolor the vertex v0 with the fourth (unused) color. If the vertex v′
1
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is not adjacent to two vertices of H4(G) of the same color, then the neighbors of
v1 and v′

1 in H4(G) must have at least three distinct colors (two colors appear
because of the neighbors of v′

1 and the third color appears because of the vertex
v0; note that v0 is not a neighbor of v′

1 since G is triangle-free). Similarly, if v′
2

is not adjacent to two vertices of H4(G) of the same color, then the neighbors
of v2 and v′

2 have at least three distinct colors. We infer from Lemma 3 that
the precoloring of the vertices of H4(G) can be extended to a coloring of all the
vertices of G with four colors—a contradiction.

Lemmas 15 and 16 now imply the following:

Lemma 17. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. The number of edges of H4(G) is between three and six.

5 Structure of the high-degree subgraph

In this section, we further refine our knowledge about the possible structure of
high-degree subgraphs of triangle-free 5-critical graphs G on the double torus.
Let us start by showing that the number of vertices of H4(G) must be eight for
every such graph G.

Lemma 18. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. The number of vertices of H4(G) is eight. In particular, the degree
of each vertex of H4(G) is five.

Proof. Assume first that H4(G) has at most six vertices. By Lemma 17, H4(G)
contains at least three edges. Hence the total weight of the components of L4(G)
is at most 32 − 6 = 26 by Lemma 8. By Lemma 11, L4(G) is comprised of at
least two components, and by Theorem 7, L4(G) has at least 22−6 = 16 vertices
which is impossible by Lemma 12.

It remains to exclude the case when the number of vertices of H4(G) is seven.
By Lemma 17, the number of edges of H4(G) is between three and six. We
first exclude the case when H4(G) has only three edges. Since H4(G) has seven
vertices, H4(G) is comprised of at least four components. Hence the number of
components of L4(G) is at least four by Theorem 4. By Lemma 8, the total
weight of the components of L4(G) is 36 − 6 = 30, and by Theorem 7, the
number of vertices of L4(G) is at least 15. However, such a graph G cannot exist
by Lemma 14.

We conclude that H4(G) has at least four edges. Recall that the number of
vertices of L4(G) is at least 15 by Theorem 7. If H4(G) has four edges, then
Lemma 8 yields that the total weight of the components of L4(G) is at most
36 − 8 = 28 and Theorem 4 yields that the number of components of L4(G) is
at least three. Such a graph G cannot exist by Lemma 13. If H4(G) has five
or more edges, then by Lemma 8 the total weight of the components of L4(G)
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is at most 36 − 10 = 26 and Theorem 4 yields that the number of components
of L4(G) is at least two. However, Lemma 12 excludes the existence of such a
graph G. We conclude that H4(G) must have eight vertices. The rest follows
from Lemma 5.

Another fact that we establish in this section is that H4(G) must be bipartite.

Lemma 19. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. The subgraph H4(G) is bipartite.

Proof. Assume for the sake of contradiction that H4(G) is not bipartite. By
Lemma 18, the number of vertices of H4(G) is eight. Since the number of edges
of H4(G) does not exceed six by Lemma 17 and G is triangle-free, H4(G) contains
five or six edges. In particular, H4(G) contains a cycle of length five and possibly
one more edge. In the rest, we distinguish two cases based on the number of
edges of H4(G) and eventually obtain contradiction in each of them.

Assume first that H4(G) contains exactly five edges, i.e., H4(G) is comprised
of a cycle of length five and three isolated vertices. In particular, the number
of components of L4(G) is at least four by Theorem 4. By Lemma 8, the total
weight of the components of L4(G) is at most 40− 2 · 5 = 30, and by Theorem 7,
the number of vertices of L4(G) is at least 14. Consequently, Lemma 14 excludes
the existence of G.

We have shown that H4(G) must contain six edges. Consequently, the number
of components of H4(G) is three. By Lemma 8, the total weight of the components
of L4(G) is 40− 2 · 6 = 28, and by Theorem 7, the number of vertices of L4(G) is
at least 14. Theorem 4 and Lemma 13 now exclude the existence of such a graph
G.

6 Bipartite high-degree subgraph with eight ver-

tices

In this section, we utilize our observations to exclude the existence of a 5-
chromatic triangle-free graph that can be embedded on the double torus. Let
us start by observing that if the high-degree subgraph is bipartite, then at least
one of the components of the low-degree subgraph is an odd cycle or a grunter.

Lemma 20. Let G be a triangle-free 5-critical graph that can be embedded on the
double torus. If H4(G) is bipartite, then L4(G) has a component that is either an
odd cycle or a grunter.

Proof. Assume the contrary, i.e., that each component of L4(G) has a vertex of
degree one by Theorem 4, and consider any 2-coloring of the vertices of H4(G).
Since each component of L4(G) has a vertex of degree one (which must be adjacent
to two vertices of the same colora), G is 4-colorable by Lemma 3 contrary to our
assumption that G is 5-critical.
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In the proof of the main theorem, we consider 3-colorings of H4(G) such that
one of the colors is assigned to a single vertex. We claim that all such colorings
can be extended to all components of L4(G) of weight at most eight.

Lemma 21. Let G be a triangle-free 5-critical graph that can be embedded on
the double torus. If the vertices of H4(G) are precolored with three colors in such
a way that one of the three colors is assigned to a single vertex of G, then the
precoloring of H4(G) can be extended to any component of L4(G) of weight at
most 8.

Proof. Let G′ be a component of L4(G) of weight at most 8. By Lemma 10, G′

is a tree. Hence G′ is either a single vertex, an edge, or a path comprised of two
edges. If G′ contains a vertex adjacent to two vertices of H4(G) of the same color,
then the precoloring can be extended to G′ by Lemma 3. Hence if the precoloring
of H4(G) cannot be extended to G′, then G′ is a path v1v2v3 and the vertices v1

and v3 are adjacent to vertices of three distinct colors. Since H4(G) is precolored
with three distinct colors, the vertices v1 and v3 can be colored with the fourth
color. Since the vertex v2 has degree four, it is adjacent to vertices of at most
three distinct colors (its neighbors v1 and v3 have the same color) and thus the
coloring can also be extended to v2 as desired.

We are now ready to prove our main result.

Theorem 22. There is no triangle-free 5-critical graph G that can be embedded
on the double torus.

Proof. By Lemmas 18 and 19, H4(G) is a bipartite graph with eight vertices. By
Lemma 17, the number of edges of H4(G) is between three and six. Hence the
total weight of the components of L4(G) is at most 34 by Lemma 8.

In the rest of the proof, we establish a series of claims that eventually combine
to the proof of the theorem.

Claim 1. If L4(G) contains a component G1 whose weight is less than twice the
number of the vertices of G1, then L4(G) contains another component of weight
ten or more.

Assume the opposite. Let n1 be the number of vertices of G1. Since G1 is
the only component of L4(G) of weight ten or more, the remaining components
of L4(G) are trees of weight at most eight by Lemma 10. By Lemmas 10 and 20,
G1 is a grunter (G1 cannot be a cycle since its weight is less than n1). Consider
any 2-coloring c of H4(G). If the precoloring c cannot be extended to L4(G),
then each vertex of G1 of degree two is adjacent to two vertices of H4(G) of two
distinct colors. Let v1 and v2 be any two adjacent vertices of degree two in G1.
Now recolor any vertex of H4(G) adjacent to v1 with the third (unused) color.
G1 now contains two adjacent vertices of degree two, namely v1 and v2, such that
their neighbors in H4(G) are colored with three distinct colors. In particular, the
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precoloring of H4(G) can be extended to G1 by Lemma 3. Since the precoloring
of H4(G) can be extended to the remaining component(s) of L4(G) by Lemma 21,
G is 4-colorable which is impossible.

Claim 2. The subgraph L4(G) contains no component of weight less than twice
the number of its vertices.

Assume the contrary, i.e., that L4(G) contains a component G1 with n1 ver-
tices of weight at most 2n1 − 2. Claim 1 yields that L4(G) contains another
component of weight ten or more. Let G2 be this component of L4(G) and n2

the number of its vertices. Since the weight of G1 is at most 2n1 − 2, its weight
is at least 16 by Lemma 10. Since the total weight of G1 and G2 is at least
16 + 10 = 26, the weight of any component of L4(G) distinct from G1 and G2 is
at most eight. Assume that G1 contains a vertex w of degree one. Hence G2 is a
grunter or a cycle by Lemma 20. In particular, G2 contains two adjacent vertices
of degree two, say v1 and v2. Since G is triangle-free, v1 and v2 have four distinct
neighbors in H4, say u1, . . . , u4. By symmetry, we can assume that u1 is not a
neighbor of w.

Now consider a coloring of the vertices of H4(G) with two colors. If G2

contains a vertex of degree two adjacent to two vertices of H4(G) of the same
color, then the precoloring of the vertices of H4(G) can be extended to all the
components of L4(G) by Lemma 3 since each component of L4(G) has a vertex
adjacent to two vertices of H4(G) of the same color. Otherwise, each vertex of
G2 of degree two is adjacent to two vertices of H4(G) of distinct colors. Now
recolor the vertex u1 with the third (unused) color. The precoloring of H4(G)
can be extended to G1 by Lemma 3 since the vertex w is adjacent to two vertices
of H4(G) of the same color, to G2 since the vertices v1 and v2 are adjacent to
vertices of H4(G) of three distinct colors, and to the remaining components of
L4(G) by Lemma 21.

We conclude that G1 has no vertex of degree one. An analogous argument
yields that G2 also has no vertex of degree one. Since the weight of G1 is at most
2n1 − 2, G1 is a grunter. If G2 were also a grunter, then the sum of the weights
of G1 and G2 would be at least 2 · 16 = 32 and G1 and G2 would be the only
components of L4(G). By Lemma 8, the number of edges of H4(G) would be at
most four and thus the number of components of H4(G) would be at least four
which is impossible by Theorem 4. Hence G2 is an odd cycle.

Let v1 and v2 be two adjacent vertices of degree two in G1 and let A1 be the
set of their four neighbors in H4(G). Let A2 be the set of the neighbors of the
vertices of G2 in H4(G). Since G is triangle-free, A2 contains at least five distinct
vertices. Hence there is a vertex u contained in both A1 and A2. By symmetry,
we can assume that u is a neighbor of v1. Let w1 be a neighbor of u in G2 and
w2 a vertex of G2 adjacent to w1.

Now consider a coloring of H4(G) with three distinct colors such that all the
vertices except u are colored with only two colors and u is colored with the third
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color. By Lemma 21, the coloring can be extended to all the components of
L4(G) with a possible exception of G1 and G2. If the vertex v2 is adjacent to
two vertices of H4(G) of the same color, the precoloring can be extended to G1

by Lemma 3. Otherwise, the vertices v1 and v2 are adjacent to vertices of H4(G)
with three distinct colors and the precoloring can be extended to G1 again by
Lemma 3. An analogous argument yields that the precoloring can be extended to
G2. Hence the graph G is 4-colorable which is impossible. The proof of Claim 2
is now complete.

We have established that the weight of each component of L4(G) is at least
twice the number of its vertices. In particular, all the components of L4(G) are
trees, cycles and unicyclic graphs. By Lemma 20, at least one of the components
is an odd cycle. Let G1 be this component and n1 the number of its vertices. In
addition, let A1 be the neighbors of G1 in H4(G). Note that |A1| ≥ 5.

Claim 3. The subgraph L4(G) has at least three components of weight ten or
more.

First assume that G1 is the only component of L4(G) of weight ten or more.
Now choose a vertex w ∈ A1 and color the vertices of H4(G) with three colors in
such a way that all the vertices of H4(G) except w are assigned only two colors.
Then, the precoloring can be extended to L4(G) by Lemmas 3 and 21 which is
impossible.

Assume next that L4(G) has two components of weight ten or more; let G2

be such a component distinct from G1 and let n2 be the number of its vertices.
If G2 has a vertex v of degree one, choose w ∈ A1 that is not a neighbor of v
and proceed as in the previous paragraph. Otherwise, G2 must be an odd cycle.
Since the vertices of G2 have at least five neighbors in H4(G), there exists a vertex
w ∈ A1 adjacent to both G1 and G2. Analogously to the preceding cases, the
precoloring assigning the vertices of H4(G) except w two colors and w the third
color can be extended to each component of L4(G).

Claim 4. There is no triangle-free 5-critical graph that can be embedded on the
double torus.

Claim 3 implies that there are at least three components, say G1, G2 and
G3, that have weight ten or more. If L4(G) had four components, their total
weight would be at least 3 · 10 + 4 = 34. Hence H4(G) would have only three
edges by Lemma 8. On the other hand, H4(G) would have five components
which is impossible by Theorem 4. We conclude that G1, G2 and G3 are the only
components of L4(G).

Since L4(G) is comprised of only three components, H4(G) has at least five
edges by Theorem 4. Hence the total weight of the components of L4(G) is at
most 40−5 ·2 = 30 by Lemma 8. Consequently, the weight of each Gi, i = 1, 2, 3,
is 10 and H4(G) is a forest with exactly five edges.
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By Lemma 20 and symmetry, we can assume that G1 is a cycle of length
five. If both G2 and G3 were trees, the number of vertices of L4(G) would be
5 + 4 + 4 = 13 which is impossible by Theorem 7. We conclude that G2 is also
a cycle of length five. Let Ai, i = 1, 2, be the set of vertices of H4(G) that are
adjacent to a vertex of Gi. Note that |Ai| ≥ 5 for i = 1, 2. Moreover, if |Ai| = 5,
then each vertex of Ai is adjacent to exactly two vertices of Gi.

Now assume that G3 is a tree and let v1 and v2 be two of its leaves. If |A1| > 5
or |A2| > 5, there exist three vertices u1, u2 and u3 of H4(G) adjacent to vertices
of both G1 and G2. Now consider a 2-coloring of the vertices of H4(G). If there
is a vertex ui, i = 1, 2, 3, not adjacent to v1, recolor ui with the third (unused)
color. The coloring of the vertices of H4(G) can now be extended to G1, G2

and G3 by Lemma 3. Hence the vertices u1, u2 and u3 are neighbors of v1. By
symmetry, we can assume that the colors of u1 and u2 are the same. Let us now
recolor the vertex u3 with the third (unused) color. Again, Lemma 3 yields that
the precoloring can be extended to the vertices of L4(G) which is impossible since
G is not 4-colorable.

It remains to consider the case when |A1| = |A2| = 5. Note that each vertex of
Ai is adjacent to exactly two vertices of Gi since G is triangle-free. Since H4(G)
has eight vertices, there exist two vertices u1 and u2 adjacent to vertices of both
G1 and G2. If ui is not adjacent to v1 or v2, we consider a coloring of the vertices
of H4(G) with three colors that assigns the vertex ui a color different from all the
other vertices of H4(G), and proceed as in the previous paragraph. Hence both
u1 and u2 are adjacent to v1 and v2. However, this implies that the degree of
u1 is six which contradicts our previous deduction that all the vertices of H4(G)
have degree five (see Lemma 18).

We can now conclude that all the three components G1, G2 and G3 are cycles
of length five. As in the previous cases, let Ai be the set of neighbors of Gi in
H4(G). If there exists a vertex u ∈ A1 ∩ A2 ∩ A3, then we color the vertices of
H4(G) with two colors and recolor u with the third (unused) color. We infer from
Lemma 3 that the precoloring can be extended to L4(G) which contradicts our
assumption that G is not 4-colorable.

It remains to consider the case when A1 ∩A2 ∩A3 = ∅. Let u12 be a vertex of
A1 ∩A2 and u23 a vertex of A2 ∩A3. Note that such vertices exist since |Ai| ≥ 5
for every i = 1, 2, 3. Now color the vertices of H4(G) with two colors, recolor
u12 with the third (unused) color and u23 with the fourth (unused) color. It is
straightforward to check that each of the cycles G1, G2 and G3 either contains a
vertex adjacent to two vertices of the same color or its vertices are adjacent to
vertices with at least three distinct colors and thus it has two adjacent vertices
of degree two adjacent to vertices of at least three distinct colors in H4(G).
Lemma 3 now yields that the precoloring can be extended to L4(G) which is
impossible since G is not 4-colorable.

As a corollary of Theorem 22, we can now settle Problem 1:
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Corollary 23. Every graph on S2 of girth four is 4-colorable.

References

[1] K. Appel, W. Haken: Every planar map is four colorable, Bull. Am. Math.
Soc. 82 (1976), 449–456.

[2] D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami, K. Ota: Chromatic
numbers of quadrangulations on closed surfaces, J. Graph Theory 37 (2001),
100–114.

[3] O. V. Borodin: Criterion of chromaticity of a degree prescription (in Rus-
sian), in: Abstracts of IV All-Union Conf. on Theoretical Cybernetics,
Novosibirsk, 1977, 127–128.
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