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Abstract-we survey well known problems from statistical mechanics involving optimal cuts of 
graphs. These problems include finding the ground states for the spin glass problem or for the 
random field Ising model, as well as finding the lowest energy barrier between the two ground states 
of a ferromagnet. The relations between the results in graph theory and in physics are outlined. In 
particular, the solvability of a special max cut problem which arises in statistical mechanics is an 
easy consequence of a gauge invariance. Throughout the paper, we review some useful algorithms 
and results. We also give a simple solution of the cutwidth problem in the case of a regular tree 
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1. INTRODUCTION 

In statistical mechanics, one is often interested in describing nature at an intermediate level. 

Models are introduced which are then ‘solved’ and the comparison with experiments serves as a 

validation of the model itself. But solving the model is sometimes extremely difficult, and the 

study of models became itself a field of research. The paradigm of this kind of model is the 

Ising model [l] introduced to describe the properties of a ferromagnet. But this model turns 

out to describe also a variety of physical situations. Many generalizations were introduced to 

describe more realistic situations. For example, the Potts model proves itself to be of considerable 

interest [2]. Also, to take into account the many ‘defaults’ always present in a real sample, 

disordered models have been introduced. For example, the spin glass model has been very popular 

in the eighties [3]. Disorder leads to much more difficult problems, and even at the mean field 

level, the spin glass problem can only be solved using an Ansatz. Whereas the low temperature 

physics of ordered models is usually well understood, the low temperature physics of disordered 

models leads to very difficult optimization problems as will be discussed at length in this paper. 

This draws a link between statistical physics and discrete optimization. The connection works 

in both directions. Using methods of statistical physics in optimization is very useful 1.41. In 

this paper, we will present mainly the opposite direction, i.e., how to use optimization methods 

for finding ground states. Nevertheless, a simple gauge transformation will be shown to have a 

nontrivial counterpart in cut-problems. 
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The paper is organized as follows: in Section 2, we recall some basic results in graph theory 

and more precisely in cut-problems. In Section 3, we present known transformations of different 

statistical mechanics models into discrete optimization problems, the complexity of which are 

discussed. Different cases are considered: the Random Field Ising Model is investigated in Sec- 

tion 3.2 and the spin glass problem is investigated in Section 3.3. In Section 3.4, a known result 

of combinatorial optimization is presented as a very simple consequence of a statistical mechanics 

model. We present in Section 3.5 a generalization to the Potts model. Finally, in Section 4, the 

problem of finding the lowest energy barrier between two degenerate ground-states of a ferromag- 

net is shown to be also a known problem in optimization. The case of the Cayley tree is analyzed 

and solved. We provide a simple proof of a known result of combinatorial optimization. 

2. DEFINITIONS AND WELL-KNOWN RESULTS 
ABOUT CUTS IN GRAPH THEORY 

We will first give some definitions and present related problems and classical results, From 

now on, we will consider a graph G with vertex set V and edge set E. 

A k-cut of G (k 2 2) is a set C of edges such that there exists a partition of the set of vertices 

into k disjoint subsets AI, As, , . . , Ak with the property that C is equal to the set of edges having 

their extremities in different sets of the partition. C will be said to be generated by the partition 

and this will be denoted by C = R(AI,A~,. . . ,Ak_l). Th e most usual and well-known case is 

the one where k = 2. In the following we will use the word cut instead of 2-cut. 

Given a specified set of k vertices tl, . . . , tk called terminals, a (tl, . . . , tk)-sepamting cut or 

for short a k-separating cut is a k-cut such that no two terminals are in the same component of 

G - C. 

A weight-finction of G is a function w which associates to each edge e a weight w(e) which is 

a real number. The weight w(F) of a set F of edges is the sum of the weights of the edges. 

All along this paper we will be concerned with the complexity of combinatorial problems. We 

refer the reader to [5] and for an introduction to the theory of complexity. We will just give a 

very quick intuitive explanation of the basic notions. An algorithm is a step-by-step procedure 

for solving a problem. A polynomial time algorithm is an algorithm which always generates a 

solution in a running time bounded by a polynomial in the size of the input. The class of problems 

for which such an algorithm does exist is called P. The class NP is the class of problems for 

which what is claimed to be the answer can be checked to be the right answer in polynomial time. 

Of course, P is included in NP. A problem is NP-hard if it has the property that a polynomial 

algorithm solving it would imply that there is such an algorithm for each problem in NP. A 

problem in NP which is NP-hard is called NP-complete. So the NP-complete problems are the 

hardest problems in NP. It is commonly believed that there exists no polynomial algorithm to 

solve these problems, although there is no proof of this fact. 

Now we are able to state the more general version of the problems we will be interested with 

in most parts of this paper. 

THE MAX k-CUT PROBLEM. Given a graph G, an integer weight function w, and an integer k, 

find a k-cut in G of maximum weight. 

With the preceding assumptions, it is clear that this problem is equivalent to the one of finding 

a k-cut of minimum weight by replacing each weight w(e) by -w(e). It is NP-complete since, as 

will be seen later, subproblems of it are, but there are also subproblems known to be in P. All 

these subproblems depend on the following four criteria. 

l The value of k. The case when k is fixed can be easier. Also as will be seen later, the case 

k = 2 is sometimes easier. 

l The values of the weights. One can consider the case where all weights are positive 

(respectively, negative). Note that the max k-cut problem and the mink-cut problems are 
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then not anymore equivalent. A special case is the one where all weights are equal to one: 

this means that for fixed k we are interested by the cardinality of the k-cuts. 

Must the k-cut be a k-separating cut? Notice that one can transform a minimum (re- 

spectively, maximum) k-separating cut problem into a minimum (respectively, maximum) 

k-cut problem by adding an edge of sufficiently small (respectively, large) weight between 

each pair of terminals. Of course this cannot be done keeping the property that all the 

weights are positive (respectively, negative). Conversely, any k-cut problem can be solved 

by solving (i) k-separating cut problems. This means that for fixed k, the k-separating 

cut problem is at least as difficult as the k-cut problem even in the case of positive weights. 

Does the partition Al,. . . , Ak have to be proper? Note, that in the case of the search 

for a mink-cut in a graph with positive weights, allowing empty Ai’s would give rise to 

a trivial solution of zero weight. But if the weights are not restricted it is not anymore 

trivial to find a solution. Note that if empty Ai’s are allowed, then any optimal k-cut 

problem can be transformed into an optimal k-separating cut problem by adding k new 

vertices tl, . . . , tk to G. 

We will now give some well-known results. First we will see how different the max k-cut and 
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the mink-cut problems are in terms of complexity in the simple case where k = 2 and all weights 

are positive. 

THEOREM 1. [6]. The max cut problem is NP-hard in the case where all weights are positive. 

In fact the max cut problem is NP-hard even in the case where all weights are equal to 1 [7] 

and if in addition, no vertex has degree exceeding 3 (see [S]). But we have the following. 

THEOREM E!. [9,10]. The max cut problem is solvable in polynomial time in the case of a planar 

graph for any weight function. 

This result can be extended to graphs not contractible to K:, [ll] or weakly bipartite [12]. We 

will see in the next section other tractable cases. In the case of the min cut, the well-known “Max 

flow-Min cut” theorem of Ford and Fulkerson gives the following. 

THEOREM 3. [ 131. The min cut problem is solvable in polynomial time if all weights are positive. 

Indeed a min cut separating two given vertices s and t can be found in such a graph by using a 

max flow algorithm. One replaces each edge xy of the graph by two directed edges z and ‘z of 

capacities equal to w(xy). By the theorem due to Ford and Fulkerson [13], the maximum value 

of a flow from s to t is equal to the minimum value of a cut separating s from t in the original 

graph. Moreover, given a maximum flow, such a cut is easy to find. There are a lot of polynomial 

algorithms to solve this problem (see (141). N ow, a min cut can be found by applying (;) max 

flow as noticed above. Even n - 1 are sufficient: from one arbitrarily fixed vertex to each other 

vertex. Recently new algorithms [15,16] were discovered which compute a min cut without using 

maximum flows. So the min cut problem is easy to solve in the case of positive weights; this 

remains true for a k-cut, k 2 3 [17,18]. 

THEOREM 4. [18]. For any fixed k, the min k-cut problem is solvable in po&omial time if all 
weights are positive. 

If k is nalt fixed but part of the input, the problem becomes NP-hard [18]. Also, we have the 

following. 

THEOREM 5. [19]. For any k > 3, the min k-separating cut problem is NP-hard. This is true 
even if all weights are equal to 1. 

3. CUTS IN STATISTICAL PHYSICS 

We will now see how k-cuts occur in statistical physics. 

The Ising model was initially devised to describe the magnetic properties of matter. 1.n this 

model the spins responsible for magnetism are supposed to be localized on the atoms of a regular 
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crystal. In appropriate 
the number of spins) is 

energy unit the energy of a spin configuration {cr} = {ui, . . . , CT,,} (n is 

where oi = f 1 and Jij, the coupling constant between spins i and j, is a real number. The spins 
can also interact with an external uniform magnetic field and with local fields. The energy takes 
the most general form: 

‘H({gi}) = - C Jijaioj - C HU~ - C hiui. 
ij i i 

We are here interested in the zero temperature behavior of the system, where only the configu- 
rations of lowest energy contribute. The connection between zero temperature statistical physics 
and discrete optimization is now clear since we look, among the 2N configurations, for those of 
minimum energy. In most physical situations the coupling constants Jij and the local fields hi 
are random variables and the model is said to be disordered. Moreover, it is often not possible 
to satisfy all the coupling constants Jijs (A positive Jij is said to be satisfied if ui = aj; in 
case Jij is negative it is satisfied if ui # oj; a Jij which is not satisfied is said to be frustrated.) 
Take for example a triangle with one negative and two positive coupling constants. Disorder 

and frustration have a lot of experimental consequences [20]. If we believe that real samples 
are at equilibrium, it means that nature somehow manages to actually find the configurations of 
minimum energy. This idea has been exploited in the so-called simulated annealing methods [21] 

to solve complex optimization problems. 
Let us now state the problem in terms of graph theory. Consider a graph R = (VU{s, t}, EUF) 

with weight w in the following way: 

l to each spin is associated a vertex; so let V = { 1,2, . . . , n}; 

l to each two spins i and j which interact, associate an edge ij in E of weight w(ij) = Jij; 
l to each spin i such that hi + H > 0, associate an edge si in F of positive weight w(si) = 

hi+H; 
l to each spin i such that hi + H < 0, associate an edge it in F of positive weight w(it) = 

-hi - H. 

The goal is to minimize the following expression among all possible {g} = ((~1, . . . , cn} where 

ui = fl 
3_I({U}) = - C W(ij)UiUj - C W(Si)Ui - C -W(it)Oi. (1) 

ijEE 8iEF itEF 

Note, that there is a one-to-one correspondence between the configurations u and the bipartitions 
P,N of the vertices of R such that s E P and t E N: P = {i;ui = +l} U {s} and N = {i;cri = 
-1) U {t}. Let us also remark that in order to minimize the function H in case where Jij is 
positive (respectively, negative), ui and uj will tend to take the same (respectively, different) 
value in an optimal solution. Similarly, if hi is positive (respectively, negative), ui will tend to 
be positive (respectively, negative). 

Furthermore we have 

3_I({u}) = - c w(ij) - c w(si) - c w(it) 
ijEE siEF itEF 

(2) 

c w(ij) + c w(si) + c 
ijEE,o,#aj siEF,oi=-1 itEF,oi=+l 

The first part of this equation is a constant and the second part that we would like to minimize 
is nothing else than the weight of the (s, t)-separating cut generated by the bipartition P, IV 
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associated to (0). By Theorem 1, the general problem is NP-complete since it contains the 

min-cut problem with negative weights on the edges (in csse there are negative interactions and 

no magnetic fields). Nevertheless depending on physics hypothesis, the weights can take values 

in different sets, the graph can have special properties, and depending on it we will see that the 

problem can be sometimes tractable. 

3.1. The Pure Ferromagnetic Case 

Here the interactions are all ferromagnetic, that is, all the Jij are positive. There is no magnetic 

field hi, but possibly an external field H. This case is trivial. Indeed, it is clear that in that 

case all gi will take the same value whose sign will be the same as the sign of H. If we add local 

magnetic fields, the problem is still tractable, as explained in the next section. 

3.2. The Ferromagnetic Random Field Ising Model (RFIM) 

Now again the interactions are all ferromagnetic, that is, all the Jij are positive but local 

magnetic fields are allowed. In that case R is a graph where all edges have a positive weight 

in which we want to find a minimum (s,t)-separating cut. As noticed in the previous chapter, 

this is an easy problem which can be solved by computing a maximum flow from s to t. An 

efficient algorithm for solving this problem is the one of Goldberg and Tarjan [22]. It has been 

used to study the RFIM on a cubic lattice [23,24]. In general, this algorithm runs in O(n3), 

but it is empirically found that on a cubic graph it runs in O(n4i3) [24]. On a workstation for 

a 90 x 90 x 90 cubic lattice, it is possible to find one configuration of lowest energy among the 
2729000 N 10218700 configurations in one hour of cpu time. 

There are also algorithms to study all minimum cuts [25-281. 

3.3. The Spin Glass Model 

In that particular case there are no magnetic fields, which means that in R the vertices s and t 

are isolated. So we are led to the problem of finding a minimum cut in a graph with arbitrary 

weight function, and we have seen that this problem is NP-hard (Theorem 1). But now the 

structure of the graph can help. For example, the case of a planar grid (square lattice) is of 

particular interest, and there is a polynomial algorithm [9,10] for computing a minimum cut in 

a planar graph. It is based on the idea of a matching between some faces of the graph. This 

idea was introduced for the first time in the context of statistical mechanics by Toulouse [20]. 

In fact, the problem turns out to be a Chinese Postman problem in a planar graph [29]. It 

can be solved using the matching algorithm of Edmonds [30]. The search for configurations of 

minimum energy for the spin glasses has been carried out by several authors [31-331. To be more 

realistic some generalizations of the previous problem are possible: adding an external magnetic 

field to a square lattice or considering a tridimensional grid (cubic lattice) makes the problem 

N&complete [ 111. 

As noticed in the previous section, there are other particular kinds of graphs than the planar 

ones for which one knows how to compute a minimum cut for arbitrary weights, but these are not 

classical models for the physicists. Nevertheless, we will see in the next section another tractable 

case. 

3.4. Gauge Transformation and Consequences 

As already noticed, the problem is that one does not know how to compute a minimum cut 

in the case of negative weights. This occurs each time we have negative Jij. Nevertheless, as 

noticed long ago by the physicists, there is sometimes a possibility to transform a case with anti- 

ferromagnetic interactions (negative .Jij) into a completely ferromagnetic case (all Jij positive). 

This can be done by the well-known gauge trunsfonnation explained below 1341. Let us suppose 
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that there is a bipartition A, B of the vertices of V (the spins) such that all weights of edges 

inside A or B are positive and all weights of edges with one extremity in A and the other in B 
are negative. This is equivalent to saying that one can associate to each vertex i a value pi in the 

set (3-1, -1) in such a way that Jij = (Jijleiej. In this case we have 

Let Ti = Ei’Zli for i = 1,. . . , n, we have Ti E {+l, -1) and the function to be minimized is 

1-1’(~) = - CijEE I JijlTiTj - CiEv(hi~i)~i. Th is is the Hamiltonian of a ferromagnetic Random 

Field Ising Model, and as seen before we know how to solve it. Furthermore, from any optimal 

configuration r, one obtains an optimal configuration for the original case u = ET. 

It is interesting to see to which min cut algorithm the gauge transformation leads. 

GAUGE ALGORITHM. 

l Input: a graph R = (AU BU{s, t}, E) with a weight function w on the edges such that-no 

vertex in A u B is adjacent to both s and t-an edge is of negative weight if and only if 

it has one extremity in A and the other in B. 
l Output: a bipartition P, N inducing a min (s, t)-separating cut of R. 
l 1. Build from R a graph R’ = (AU B U {s, t}, E’) with weight function w’ by-keeping all 

edges e with one extremity in A or both extremities in B with a weight equal to Iw(e)I- 

replacing each edge sb with b f B by an edge bt of weight w(sb)-replacing each 

edge bt with b E B by an edge sb of weight w(bt). 
l 2. Find a bipartition P’, N’ generating a min (s, t)-separating cut in R’ by any polynomial 

algorithm. Set P = (P’ f- A) u (N’ n B) U {s} and N is the complement of P. 

From what precedes it is clear that R corresponds to the expression X(a) and that R’ cor- 

responds to the expression R’(T). So any bipartition P, N obtained from P’, N’ as in Step 2 

in the algorithm corresponds to the transformation of T into g, where u and T correspond, re- 

spectively, to P, N and P’, N’. Furthermore, we have that 2w(R(P)) = ‘H(a) + CeEE w(e) 

and 2w’(R(P’)) = n’(T) + i&E iw(e& s ince X’(T) = l-l(a), we obtain that w(R(P)) = 

w’@(P)) + CeEE;ur(e)<O w(e)- 
By simple arguments we can even enlarge a little bit the class of graphs for which the min cut 

problem is polynomially solvable despite some negative weights. Let us call a gauge graph any 

graph R = (VU {s, t}, E) which has the property that: there is a bipartition A, B of V such that 

the set of edges with negative weights in the subgraph G induced by V is exactly equal to the 

cut generated by A, B. (There is no restriction for the edges with one extremity equal to s or t.) 

THEOREM 6. The min cut problem is polynomialiy solvable for gauge graphs. 

PROOF. We use two claims. 

CLAIM 1. It is sufficient to show that one is able to find in polynomial time a min (s, t)-separating 

cut in gauge graphs. 

Indeed, suppose this is true and we want to find a min cut in a gauge graph G = (VU{s, t}, E). 
We need to know the weight of a cut which does not separate s and t. This can be done by 

computing a min (s’, t/)-separating cut in the graph R’ obtained from R by identifying vertices s 

and t in s’, and creating a new vertex t’ joined by edges of weight zero to all other vertices. Such 

a min cut in R’ may correspond to a nonproper bipartition of the vertices of G, but as noticed 

above, this is not absurd in the case of edges with negative weights. By our hypothesis, such a 

cut can be found, since G’ is gauge too. 
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CLAIM 2. It is sufficient to show that one is able to find in polynomial time an (s, t)-separating 
cut in gauge graphs where edges incident to s or t are of positive weights and no vertex in V is 
adjacent to both s and t. 

Indeed, suppose this is true and we want to find a min (s, t)-separating cut in a gauge graph 
R = (V n {s: t},E). F or each vertex ‘u E V let w(s’u) and w(wt) be the weights of, respectively, 
the edges sv and ut (a nonedge is considered as an edge of weight zero). We construct from R a 
new graph R’ with weights w’ by the following procedure: 

- for each vertex w such that w(sw) - w(vt) is positive, delete vt and set w’(sw) = ‘w(sv) - 

w(vt), 
- for each vertex TJ such that 2u(.sz1) - w(d) is negative, delete sv and set w’(vt) = ul(vt) - 

w(su). 

(All other edges and weights remain the same as in R.) It is clear that R’ has the required 
properties. Furthermore, let P, N be a bipartition of the vertices of R separating s and t, and 
let C and C’ be the weights of the corresponding cuts in, respectively, G and G’. We have: 

C’ = C - Cv;w(slJ)-w(vt)>0 w(vt) - Cu;w(vt)-w(st)>O W(SZI). So to minimize C is the same as to 

minimize C’ ,. 
Prom the preceding two claims we obtain the proof of our theorem since a graph with the 

properties indicated in Claim 2 corresponds exactly to the case solvable by the Gauge Algorithm. 

Note that the class of gauge graphs is related to other classes of graphs for which the min cut 
problem is known to be polynomially solvable [35,36]. 

3.5. Generalization of the Ferromagnetic RFIM to the Potts Model 

Here we want to minimize: 

where cri is a Potts spin variable which can attain q different values (ui = 1,2, . . . , q), t&j == 1 if 
i = j and 0 otherwise; Jij 2 0; hi 2 0. The random field variables ci favour the state CT~ = e,i. As 
in the case of the RFIM one can associate a graph R = (VU{sr, sp, . . . , sp},E) to this model [37]: 

l to each spin is associated a vertex; so let V = { 1,2,. . . , n}, 

l to each two spins i and j which interact, associate an edge ij in E of weight w(ij) = Jij > 0, 

l to each spin i such that ci = j, associate an edge sji in E of weight ur(sji) = hi 2 0. 

A configuration {a} corresponds to an (si, ~2,. . . , +)-separating cut C in R and 

Wd) = -(!I - 1) c w(ij) + qw(C). 
ijEE 

So from Theorem 5 the problem of finding a configuration of minimum energy is NP-hard 

4. CUTWIDTH AND LOWEST ENERGY BARRIERS 

It is well known that the low temperature behavior of a spin glass is closely related to the 
topology of the configuration space. In particular, the existence of many free energy valleys 

has many consequences, such as, for example, a critical slowing down of the dynamics. Loosely 
speaking it means the system is trapped in some free energy valley, and that configurations of the 
same energy will not be reached in a finite time. The time needed to go from one ground-state 
to another ground-state is the ergodic time and is always finite on a finite lattice (even though it 
can be extremely large) but can diverge in the thermodynamical limit. The behavior of this time 
in the thermodynamical limit is controlled by the divergence of energy barrier between ground 
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states. We show in this section that, in a special case, the determination of the energy barrier is 

a combinatorial optimization problem which has already been solved. 

Disorder and frustration usually induce complicated configuration space with high energy bar- 

riers. Nevertheless, it has been suggested that glassy behavior could also be found in ordered 

systems [38,39]. The main ingredient for spin glass behaviour could be the existence of a very 

large number of local minima of free energy, separated by high energy barriers. To test this idea, 

it has also been suggested to study the Ising model on a regular lattice of a surface of positive 

curvature. The simplest case of such lattice is the Cayley tree (also called Bethe tree) where all 

coupling constants Jij have the same value. It is shown in [38] that in this case the barriers are 

not high enough to ensure a real spin glass behaviour, and this relies on the formula in Theorem 8 

demonstrated below. Nevertheless a spin-glass-like behaviour is seen as a finite size effect. In this 

context it was important to know the largest value of the energy of a configuration between the 

two ferromagnetic ground states of a Cayley tree (we remind the reader that these two ground 

states are ui = +1 for all i and (pi = -1 for all i). Two spin configurations are neighbors in 

the space configuration if they differ by exactly one spin. This definition is somewhat arbitrary 

but it corresponds to the single spin flip and is commonly used. We consider then all the paths 

of neighbor configurations from one ferromagnetic ground state to the other, and we look for 

the highest energy of a configuration along this path, that we call the barrier of the path. The 

problem is to find the lowest barrier among all the possible paths. In other terms, we look for a 

linear order on the spins such that starting from one of the ground states and flipping the spins 

in this order, the largest energy we get during the process is minimized. This problem turns out 

to be known in the context of discrete optimization as the cutwidth problem. We switch now to 

the graph theory language to solve the question. A labeling of a graph G = (V, E) is a one to one 

mapping L of the vertices of the graph to the first n = [VI positive integers {1,2,. . . , n}. The 

cutwidth CL(G) of a labeling L is then defined to be 

CL(G) = mtp (P({v : L(v) I i))l), 

and the cutwidth of G is C(G) = min{cL(G) : L is a labeling of G}. We will equivalently consider 

a labeling as a sequential process of marking the vertices of the graph: at time t the vertex v of 

label L(v) = t is marked; the cutwidth of the labeling is the maximum size of a cut induced by the 

marked vertices during this process. A labeling L such that CL(G) = c(G) is called optimal. The 

problem of computing the cutwidth (also called minimum cut linear arrangement problem) [40] is 

NP-complete for general graphs [5]. Yannakakis has defined an O(n log n) algorithm to determine 

the cutwidth of a tree [41] and Lengauer [42] determined an explicit formula of the value of the 

cutwidth of complete k-ary trees. The algorithms proposed by Yannakakis and Lengauer are 

quite complicated and we will give here a simple method for the case of Cayley trees. These are 

regular trees defined below. 

- Th,d is a tree with a root at level 0 and each vertex of level i has d sons of level i + 1, for 

i=O,l,..., h - 1: the vertices of level h have no sons. 

- T{,d is a tree with a root at level 0, this root has d + 1 sons of level 1 and each vertex of 

levelianddsonsofleveli+l,fori=1,2,..., h - 1: the vertices of level h have no sons. 

We give now some useful definitions and properties. 

A labeling L of a tree T rooted in r will be called strong if it is optimal and ]n({v : 

L(v) 5 i))l < c(T) f or i < L(r). (The cutwidth is not reached before r is marked.) 

A labeling L of a tree T rooted in T will be called minzls if it is optimal and ]a((~ : 

L(v) I L(r)})1 < c(T). (Th e cutwidth is not reached at the time T is marked.) 

The reflected labeling RL of a labeling L is such that RL(u) = n - L(w) + 1. A labeling L will 

be called reflected strong if RL is strong. It is clear that 

l CL(G) = cRL(G); consequently, if L is optimal then RL is optimal too, 
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l if L is strong then RL is minus, 

a RRL=L. 

Given a labeling L of a tree T with root r and a vertex w not in T, we denote by Lw the labeling 

of T IJ {w} such that: 

o L’“(w) = L(w) for c E T such that L(V) _< L(r); 
l LW(W) = L(r) + 1; 

l LW(v) = L(w) + 1 for v E T such that L(V) > L(r). 

(The vertices of T are marked in the same order as in L, w is marked just after the root of T.) 
To determine the cutwidth of Ti,d we first determine the cutwidth of Th,d and some properties 

of the optimal labelings of Th,d. 

CLAIM 3. For h > 1, a! >_ 2, we have: 

c(Th+l,d) 2 c(Th,d) + 

Moreover, if d is even and the equality holds in (61, then there exists a strong labeling for Th,d 

and no strong labeling for Th+l,d. 

PROOF OF THE CLAIM. Let T = Th+l,d, L be any labeling of T, and r be the root of T. This 

root is adjacent to the root of d subtrees isomorphic to Th,d. When the vertices of T are marked 

with respect to L, the vertices of each of these subtrees are marked. So, by the definition of the 

cutwidth, each of these subtrees will once reach or surpass the value of its cutwidth, and since 

they are disjoint this time will be different for each. We number them Tl, T2, . . . , Td in the order 

each of them reaches or surpasses the value C(Th,d) when using the labeling L on T, and denote 

bytl , . . . ,td the time when they reach it. Now consider Tl(d_1)/2]+1 at the time t* = t~(&_1),12J+l. 

If r is already marked then since Tl(d-1)/21+2,. . . , Td did not reach yet their cutwidth, they will 

count for at least 1, and ISt({w : L(v) 5 t*})l > C(Th,d) + [(d - 1)/21. If r is not yet marked, 

then each Tl, . . . , Tl(d-1)/2] will contribute for at least 1 since they must have marked vertices by 

hypothesis and so Ifl({w : L(w) < t*})l 2 C(Th,d) + [(d - 1)/21. From what precedes we obtain 

that if d is even then equality holds in (6) only if: 

-- r is not marked at time t* and so L cannot be strong, and 

-- the root of T and the root Tp1)/2J+2 are already marked at time t[(&-1)/2J + 2 and so 

a Strong labeling for Th,d mUSt exist. 

CLAIM 4. If there exists a strong labeling for Th,d (h 2 l,d 2 2) then c(Thfl,d) = c(Th,d) + 

[(d -- l)/ZJ. M oreover, if d is odd there exists a strong labeling of Th+l,d; if d is even there is no 

strong labeling for Th,d but there exists a minus labeling, c(Th+z,d) = c(Th+l) + d/2 and there 

exists a strong labeling for Th+a,d. 

PROOF OF THE CLAIM. Let L be a strong labeling for Th,d and let TI, . . . , Td be the d trees to 

which the root T of Th+l is adjacent. 

If d is odd, then use sequentially RL for TI, Tz, . . . ,T(d-l)+l, then use (RL)’ for T(d-l)p UT, 
then sequentially use L for !f(d+1)/2,. . . , Td. One verifies that thus we obtain a labeling Lh+l 

such that c~,,+~(Th+l) = c(Th,d) + L(d - 1)/2j and Lh+l is Strong. 

If d is even, then use RL sequentially for Tl, . . . , T+!, then mark r, then use L sequentially 

for Td/2+1,, . . . , Td. It is easy to verify that thus we obtain a labeling Lh+l such that ~(LI,+I) = 

c(T& + [,(d - 1)/21 and &+I is minus. 

From Claim 3 we know that there is no labeling for Th+l,d, so by Claim 3 again C(Tt,+z,d) 2 

c(Th+l,d) + L(d - 1)/2] + 1 = @h+l,d) + d/2. 

Now, let Lh+l be any minus labeling of Th+l,d and let Ti, . . . ,Tj be the d isomorphic trees 

adjacent to the root T’ of a tree Th+z,d. By using sequentially &+I on T[, . . . , T&2_1, then using 

Li+,,, to Tdi2, and using sequentially &+I, we obtain a labeling Lh+l,d of Th+P,d such that 

C(Lh+l) = C(Th+l,d) + d/2 and Lh+2,d is Strong. 
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To determine c(Th,d), it remains to study the case of small values of h. If d is odd there is a 

strong labeling for Tl,d and c(Tl,d) = [(d - 1)/2J + 1. For an even d it is easy to see that: 

- there is no strong and no minus labeling for Tl,d and c(Tl,d) = d/2, 
- there is a minus labeling but no strong labeling for Tz,d and C(TZ,d) 

- there is a strong labeling for Ts,d and c(Ts,d) = 3d/2. 

So from the previous claims we obtain the following theorem. 

THEOREM 7. The cutwidth of the tree Th,d is given by 

, (h, d 2 2). 

If d and h are even, then there is a minus labeling but no strong labeling 

cases a strong labeling for Th,d exists. 

Now it remains to determine the cutwidth of T;,d. 

THEOREM 8. The cutwidth of the tree T;,d is given by 

= d, 

for Th,d. In all other 

dTh*,d) = 

(h-l)(d-1) 
2 1 LJ + i +1 

2 ’ 
(h d 2 2). 

PROOF OF THEOREM. We just have to show that c(T;,~) = c(Th-l,d) + [d/2], (h 2 2, d 2 2). 

Let T” = TL,d and r be the root of T*. This root is adjacent to the root of d + 1 subtrees 

isomorphic to Th_l,d. The same proof as the one of Claim 3 gives that c(T*) 2 c(Th-l,d) + [d/2], 
(h 2 2, d 2 2). If d is odd, there exists by Theorem 7 a strong labeling for Th-l,d and as in proof 

of Claim 4 we get a labeling L* of T* such that cp(T*) = c(Th-l,d) + [d/2], (h 2 2, d 2 2). If d 

is even, there exists by Theorem 7 a minus labeling Lh-1 for Th-l,d. Let Tl, . . . , Td+l be the d+ 1 

trees to which r is adjacent. Use sequentially L for Tl, T2, . . . , T+, then use L’ for Td,2+1 U {r}, 

then sequentially use L for Td/2+2, . . . , T&l. One verifies easily that thus we obtain a labeling L* 

such that CL* (T*) = c(Th_l,d) + [d/2]. Note that from our proofs we obtain recursive algorithms 

to produce optimal labelings for Th,d and Ti,d. 

We summarize this section noting that the number of sites of a tree is an exponential func- 

tion of the variable h, and consequently, the energy barrier between the two ground-states of a 

ferromagnet on a regular tree diverges like the logarithm of the number of sites. 
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