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a b s t r a c t

Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling
salesman paths is a convex combination of more and more restrictive ‘‘generalized Gao-trees’’. We give a
short proof of this fact, as a layered convex combination of bases of a sequence of increasingly restrictive
matroids. A strongly polynomial, combinatorial algorithm follows for finding this convex combination,
which is a new tool offering polyhedral insight, already instrumental in recent results for the s − t path
TSP.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Gottschalk andVygen [6] proved that every solution of thewell-
known subtour elimination linear program for traveling salesman
paths is a convex combination of a set of more andmore restrictive
‘‘generalized Gao trees’’ of the underlying graph, where a Gao-tree
is a spanning tree that meets certain cuts in exactly one edge.

In this paper we provide layered convex combinations of bases
of a sequence of more and more restrictive matroids for a larger
set of points, which we call chain-points, generalizing the subtour
elimination feasible solutions. This leads to a new connection of
the TSP to matroids (observed in [8]), offering also a polyhedral
insight, with specific algorithmic consequences, such as a strongly-
polynomial combinatorial algorithm for finding this convex com-
bination via the matroid partition theorem. In this paper we show
how the technical difficulties for proving the existence of such a
particular convex combination and of turning it into an algorithm
can be avoided, and a simple proof follows.

The existence of such a convex combination has been used by
Sebő and Van Zuylen [8] to prove the so far best upper bound on
the integrality gap for the s − t path traveling salesman problem.
(We note that a recent result by Traub and Vygen [9] gives an
approximation ratio of 3/2 + ε for any constant ε > 0, but this
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result does not imply an improved bound on the integrality gap.)
This convex combination and the method we exhibit now to prove
this result may possibly be adapted for proving further results on
versions of the traveling salesman problem. The statement itself
and its connection to matroids is one more link of the TSP to
matroid partition or intersection, a connection interesting for its
own sake.

In Section 2 we introduce chain-points, a key notion of our
proof, and layered convex combinations, the related matroids,
some preliminaries about these and some simple assertions that
enable us to ‘‘peel off’’ layers one by one. In Section 3 we execute
the induction step of peeling off a layer.We finish this introduction
by introducing some notation and terminology.

We assume throughout that we are given a graph G = (V , E),
and s, t ∈ V . For S1, S2 ⊆ V , we denote by δ(S1, S2) :=

{
{i, j} ∈ E :

i ∈ S1, j ∈ S2
}
. If S1 = S2 we use E(S1) = δ(S1, S1); if S1 = V \ S2 we

use δ(S1) = δ(S2) = δ(S1, V \ S1). For v ∈ V , we let δ(v) = δ({v}).
We denote by G(S) = (S, E(S)) the subgraph induced by S ⊆ V .
For F ⊆ E and x ∈ RE , we denote x(F ) :=

∑
e∈Fxe. With an abuse

of notation and terminology, sets and their incidence vectors will
not be distinguished. We denote by Sp(G) = {x ∈ RE

: x ≥

0, x(E(U)) ≤ |U | − 1 for all U ⊆ V , U ̸= ∅, and x(E) = |V | − 1}
the spanning tree polytope (convex hull of spanning trees) of G,
and by cone.Sp(G) their cone (vectors that are their non-negative
combinations); Sp(G) ⊆ cone.Sp(G).

We say that x ∈ RE is a solution to the (s − t-path TSP) subtour
elimination LP if x ∈ Sp(G), and x satisfies the degree constraints
x(δ(v)) = 2 for all v ∈ V \ {s, t} and x(δ(s)) = x(δ(t)) = 1. This is
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equivalent to the ‘‘standard definition’’ of the subtour elimination
linear program: for ∅ ⊂ U ⊆ V \ {s, t}, the constraints x(δ(U)) ≥ 2
and x(E(U)) ≤ |U | − 1 are equivalent if x satisfies the degree
constraints, and for {s} ⊆ U ⊆ V \ {t} similarly, x(δ(U)) ≥ 1 and
x(E(U)) ≤ |U |−1 are equivalent if x satisfies the degree constraints.

2. Chain-points, layers and matroids

Let ∅ ̸= V0 ⊊ V1 ⊊ . . . ⊊ Vk ⊊ V , and C := {δ(V0),
δ(V1), . . . , δ(Vk)}. We call spanning trees of G that meet each C ∈ C
in exactly one edge Gao-trees for the chain V0 ⊊ V1 ⊊ . . . ⊊ Vk. The
Gao-edges of a cut Q ∈ C are the edges e ∈ Q for which e ̸∈ C for
all C ∈ C \ {Q }.

We say that x ∈ RE is a chain-point for the chain of sets V0 ⊊
V1 ⊊ . . . ⊊ Vk, if

(i) x ∈ Sp(G),
(ii) x(δ(V0)) = x(δ(Vk)) = 1, x(δ(Vi)) < 2 (i = 1, . . . , k − 1),
(iii)

∑
v∈Li

x(δ(v)) = 2|Li| (i = 1, . . . , k),

where Li := Vi \ Vi−1 ̸= ∅ (i = 0, . . . , k + 1) are the level-sets
(where V−1 := ∅ and Vk+1 := V ). Note that levels L0 and Lk+1 are
not present in (iii).

Gao-edges can then be equivalently defined as those joining
two consecutive level-sets.

When V0 ⊊ V1 ⊊ . . . ⊊ Vk are clear from the context, we
use the terms chain-point and Gao-tree without mention of the
chain. Gao [4] proved that there exists a Gao-tree in the support
of a subtour elimination LP solution x. It is not hard to adapt Gao’s
proof to chain-points; it also follows from Lemma 5 in this work
(with U = V and E the support of x). Observe that Gao-trees are
the bases of the matroid that is formed as the direct sum of the
cycle matroids for the level sets L0, . . . , Lk, whose bases are the
spanning trees for the levels sets, and the uniformmatroids on the
Gao-edges for each of the cuts Q ∈ C, whose bases are the one
element subsets.

As An, Kleinberg and Shmoys [1] noted, if x is a solution to the
s − t path TSP subtour elimination LP, then {V0, V1, . . . , Vk} :=

{A ⊆ V \ {t} : x(δ(A)) < 2 and s ∈ A} form a chain, i.e., V0 ⊊
V1 ⊊ . . . ⊊ Vk ⊊ V , where V0 = {s} and Vk = V \ {t}. To check
this for the sake of self-containedness, let A, B ∈ {V0, V1, . . . , Vk},
and suppose for a contradiction that A \ B ̸= ∅ and B \ A ̸= ∅.
It will be convenient to consider A and C := V \ B. Observe that
x(δ(A)) + x(δ(C)) = x(δ(A)) + x(δ(B)) < 2 + 2 = 4, so we have

4 > x(δ(A)) + x(δ(C)) = x(δ(A ∩ C)) + x(δ(A ∪ C))
+ 2x(δ(A \ C, C \ A)) (SUBMOD)

by awell-known identity. Our assumption thatA\B ̸= ∅ and B\A ̸=

∅ is equivalent to A ∩ C ̸= ∅ and A ∪ C ̸= V , where A ∩ C contains
neither s nor t and A∪ C contains both. Using that x is a solution of
the s − t-path subtour elimination LP, x(δ(A ∩ C)) + x(δ(A ∪ C)) ≥

2 + 2 = 4, a contradiction.
A solution x to the s− t path TSP subtour elimination LP is a chain-

point for the chain {A ⊆ V \ {t} : x(δ(A)) < 2 and s ∈ A}, since in
this case V0 = {s}, Vk = V \ {t} and thus the conditions (ii) and (iii)
are implied by the degree constraints.

Gottschalk and Vygen [6] showed that it is possible to write a
solution x to the s − t path TSP subtour elimination LP as a convex
combination of spanning trees such that for every λ ∈ [0, 1] the
coefficients of Gao-trees for the chain {A ⊆ V \ {t} : x(δ(A)) ≤ 2 −

λ and s ∈ A} sum to at least λ. We call such a convex combination
layered (see below for details).

The advantage of the notion of chain-points rather than sub-
tour elimination LP solutions is that chain-points are closed under
‘‘subtracting Gao-trees’’ (while the set of feasible solutions to the
subtour elimination linear program does not have this property

due to the degree constraints). This allows ‘‘peeling off layers’’ one
by one and proving the existence of a layered convex combination
by induction (Lemma 2 and Theorem 3).

We now define layered convex combinations somewhat more
generally for chain-points, and in termsof the introducedmatroids,
in more detail, and state our main result, the existence of such a
convex combination. Then we state the lemma that allows to peel
off layers one by one, that is, to deal with only two layers at a time.

Fix a chain ∅ ̸= V0 ⊊ V1 ⊊ . . . ⊊ Vk ⊊ V . For a chain-point
x, we call the values of x(δ(Vi)) for i = 0, 1, . . . , k the narrow cut
sizes. Let the different values of the narrow cut sizes be 2 − λ1 >

2− λ1 − λ2 > · · · > 2− λ1 − · · · − λℓ = 1, where ℓ is the number
of different sizes.

We consider ℓ different matroids (E,Bj) whose set of bases
Bj are the Gao-trees for the chain of sets {Vi : x(δ(Vi)) ≤ 2 −

λ1 − · · · − λj}, (j = 1, . . . , ℓ). We say that
∑ℓ

j=1λjxj is a layered
convex combination for x if xj is in the convex hull of bases in Bj for
j = 1, . . . , ℓ and x =

∑ℓ

j=1λjxj.

Theorem 1. If x is a chain-point, then there exists a layered convex
combination for x.

The following lemma enables us to ‘‘peel off’’ layers of chain-
points one by one, and concentrate on the casewhen there are only
two distinct narrow cut sizes.

Denote the convex hull of Gao-trees of G for the chain C by
SpC(G).

Lemma 2. Let x be a chain-point, and x = εy + (1 − ε)x′ with
y ∈ SpC(G), x′

∈ Sp(G), ε ∈ [0, 1). Then x′ is a chain-point for the
chain (Vi : x(δ(Vi)) < 2 − ε, i ∈ {0, 1, . . . , k}).

Proof. Since y ∈ SpC(G), for all i = 1, . . . , k we have y(δ(Li)) = 2
and y(E(Li)) = |Li|−1; hence,

∑
v∈Li

y(δ(v)) = 2(|Li|−1)+2 = 2|Li|.
Since x is a chain-point,

∑
v∈Li

x(δ(v)) = 2|Li| by (iii). Now (i) holds
for x′ by assumption; to check (ii) note x′(δ(Vi)) =

x(δ(Vi))−ε

1−ε
, whence

x′(δ(V0)) = x′(δ(Vk)) = 1 and x′(δ(Vi)) < 2 if x(δ(Vi)) < 2 − ε (i =

0, . . . , k). Finally,
∑

v∈Li
x′(δ(v)) =

2|Li|−ε2|Li|
1−ε

= 2|Li| (i = 1, . . . , k),
so (iii) also holds for x′. □

Theorem 3. Let x be a chain-point, and let λ = 2 − maxi=0,...,kx
(δ(Vi)). Then there exist y ∈ SpC(G), x′

∈ Sp(G) such that

x = λy + (1 − λ)x′.

By Lemma 2 applied to ε := λ, the point x′ provided by this
theorem is a chain-point for (Vi : x(δ(Vi)) < 2 − λ, i ∈ {0, . . . , k}),
so by repeatedly applying Theorem 3 we get Theorem 1:

Weprove this by induction on ℓ, the number of different narrow
cut sizes. Let the different values of the narrow cut sizes be 2 −∑h

j=1λj for h = 1, . . . , ℓ. If ℓ = 1, then λ1 = 1 by condition (ii),
and thus x ∈ SpC(G), so x is itself a layered convex combination for
x. If ℓ > 1, by Theorem 3 there exist y ∈ SpC(G), x′

∈ Sp(G) such
that x = λ1y+ (1−λ1)x′. Observe that if x(δ(Vi)) = 2−

∑h
j=1λj for

some h ∈ {1, . . . , ℓ}, then x′(δ(Vi)) = (2−
∑h

j=1λj−λ1)/(1−λ1) =

(2−
∑h

j=2λj)/(1−λ1) (i = 0, . . . , k). By Lemma2, x′ is a chain-point
for the chain (Vi : x(δ(Vi)) < 2 − λ1, i ∈ {0, 1, . . . , l}), which thus
has narrow cut sizes (2 −

∑h
j=2λj)/(1 − λ1) for h = 2, . . . , ℓ.

Let λ′

j = λj+1/(1 − λ1) for j = 1, . . . , ℓ − 1, then by the
inductive hypothesis, there exists a layered convex combination
for x′, i.e., x′

=
∑ℓ−1

j=1 λ′

jx
′

j , where x′

j is in the convex hull of bases in
Bj+1.We thus have x = λ1y+(1−λ1)

∑ℓ−1
j=1 λ′

jx
′

j = λ1y+
∑ℓ

j=2λjx′

j−1
where y is in the convex hull of bases in B1 and x′

1, . . . , x
′

ℓ−1 are in
the convex hull of bases in B2, . . . ,Bℓ respectively. Hence, there
exists a layered convex combination for x.



62 F. Schalekamp et al. / Operations Research Letters 46 (2018) 60–63

We prove Theorem 3 using the following fractional version of
Edmonds’matroid partition theorem [3],which canbe easily stated
and proved for rational input from the well-known integer version
by multiplying with the denominators of the occurring numbers.
We include here a reduction to an explicitly stated version in the
literature, a theorem on fractional polymatroids, pointed out to us
by András Frank.

Lemma 4. Let M1 and M2 be matroids on the same element set E,
and denote by ri the rank function of the matroid Mi (i = 1, 2).
Let w ∈ RE

≥0, λ1, λ2 ∈ R≥0 and let Pi be the convex hull of the
independent sets of Mi (i = 1, 2). There exist x1 ∈ P1, x2 ∈ P2 such
that λ1x1 + λ2x2 = w if and only if λ1r1(X) + λ2r2(X) ≥ w(X) for
all X ⊆ E.

Proof. If xi ∈ Pi then xi(X) ≤ ri(X), hencew = λ1x1+λ2x2 with x1 ∈

P1, x2 ∈ P2 impliesw(X) = λ1x1(X)+λ2x2(X) ≤ λ1r1(X)+λ2r2(X).
To prove the reverse direction, apply [7, Theorem 44.6] to the

submodular set-functions on E, fi := λiri for which the conditions
are satisfied, and let wi ∈ Pfi = λiPi (i = 1, 2), where Pf is the
polymatroid associated with f .

Our conditions λ1r1(X) + λ2r2(X) ≥ w(X) for all X ⊆ E and
w ≥ 0 express exactly that w ∈ Pf1+f2 . So, by [7, Theorem 44.6]
w = w1 + w2, where wi ∈ Pfi = λiPi (i = 1, 2). □

3. Peeling off a layer

Our only debt now is to show that one layer can be peeled off,
that is, to prove Theorem 3.

We use Lemma 4 with w := x,M1 the matroid whose bases are
the Gao-trees and M2 the cycle matroid of G, i.e., the matroid on E
whose independent sets are forests in G. We denote by p the rank
function of M1 and by r the rank function of M2. Clearly, p ≤ r .
In the remainder of this section, we show that the condition of
Lemma 4 is satisfied for λ1 = λ, λ2 = 1 − λ, i.e. that λp(X) +

(1 − λ)r(X) ≥ x(X) for all X ⊆ E. Lemma 4 then implies the
existence of y and x′ in the convex hull of independent sets of M1
andM2 respectively, and x(E) = |V |−1 implies that they are in fact
in the convex hull of bases of M1 and M2, i.e., in SpC(G) and Sp(G)
respectively, and Theorem 3 follows.

To prove that the condition of Lemma 4 is satisfied we need the
following lemma.

Lemma 5. Let x be a chain-point and U ⊆ V such that x(E(U)) =

|U | − 1. Then

p(E(U)) = r(E(U)) = |U | − 1.

Proof. We need to show that there exists a spanning tree F in
G(U) that is an independent set of M1, i.e., there exists a Gao-tree
containing F . We begin by proving two claims.

Claim 1. The set I(U) := {i ∈ [0, k+ 1] : Li ∩U ̸= ∅} is the set of all
integers of an interval.

Indeed, suppose for a contradiction that there exists j ∈ [0, k],
Lj ∩ U = ∅ such that Lj′ ∩ U ̸= ∅ for some j′ < j and also for some
j′ > j; in other words, U is partitioned by U ∩ Vj−1 and U \ Vj.

By (ii), and applying (SUBMOD) for A := Vj, C := V \ Vj−1, we
get that:

4 > x(δ(Vj)) + x(δ(V \ Vj−1)) = x(δ(Lj)) + x(δ(V ))
+ 2x(δ(Vj−1, V \ Vj)).

To derive the desired contradiction, we will show that the right
hand side is at least 4. First, x(δ(V )) = 0, and (iii) implies that

x(δ(Lj)) = 2|Lj|−2x(E(Lj)) which is at least 2 since x(E(Lj)) ≤ |Lj|−1
for x ∈ Sp(G). Further, observe that

x(δ(Vj−1, V \ Vj)) ≥ x(E(U)) − x(E(U ∩ Vj−1)) − x(E(U ∩ (V \ Vj)))
≥ |U | − 1 − (|U ∩ Vj−1| − 1) − (|U \ Vj| − 1)
= 1,

where the second inequality uses the fact that x(E(U)) = |U | − 1
and x(E(A)) ≤ |A| − 1 for any A, and the equality uses the fact that
{U ∩ Vj−1,U \ Vj} is a partition of U . The claim is proved.

The key claimweneed now to prove the lemma is the following.

Claim 2. Let a, b ∈ N, 0 ≤ a ≤ b ≤ k + 1, and S :=
⋃b

i=aLi. Then
E(S ∩ U) is connected.

Note that this was shown by Gao [4] for U := V and is the key
for the existence of a Gao-tree.

To prove Claim 2, we first show that

|S| − 2 < x(E(S)) (≤ |S| − 1). (STRICT)

If a = 0, b = k + 1, then S = V and by (i), x(E(V )) = |V | − 1 >
|V | − 2; if exactly one of a = 0 or b = k + 1 holds, then,
slightly more generally, subtracting from x(E(V )) = |V | − 1 the
inequality x(E(V \ S)) ≤ |V \ S| − 1 we get x(E(S)) + x(δ(S)) ≥ |S|
(again from (i)), and then by (ii) x(δ(S)) < 2, and we are done
again. Finally, suppose 1 ≤ a ≤ b ≤ k, and add up (iii) for
i = a, a + 1, . . . , b. We get x(E(S)) +

1
2x(δ(S)) = |S|, where

1
2x(δ(S)) ≤

1
2x(δ(Va−1)) +

1
2x(δ(Vb)) < 2 by (ii), finishing the proof

of (STRICT).
Now, by (i), x is a convex combination of spanning trees, and by

(STRICT), at least one of these, denote it F , contains a spanning tree
of S; F , as all the spanning trees in the convex combination, also
contains a spanning tree of U , because of x(E(U)) = |U | − 1. So F
contains a spanning tree of S ∩ U , and the claim is proved.

To finish the proof of the lemma, choose a spanning tree in
G(Li ∩ U) for each i ∈ I(U), which is possible by Claim 2 applied
to S := Li; then add a Gao-edge between Li ∩ U and Li+1 ∩ U for
each index i such that i, i+ 1 ∈ I(U), which is possible by applying
Claim 2 to S := Li ∪ Li+1. In this way we get a spanning tree F of
G(U), which is an independent set ofM1, since it can be completed
to a Gao-tree of G by applying Claim 2 to U := V and S := Li for
i = 0, . . . , k + 1 and then for S := Li ∪ Li+1 for i = 0, . . . , k, if
{i, i + 1} \ I(U) ̸= ∅. □

Proof of Theorem 3. First, observe that it suffices to prove the
following claim.

Claim 3. There exist 0 < ε ≤ λ and y ∈ SpC(G), x′
∈ Sp(G), such

that x = εy + (1 − ε)x′.

Indeed, if this is true, then x − εy ∈ cone.Sp(G), and let εmax
be the largest ε ≤ λ such that there exists y ∈ SpC(G) such that
x − εy ∈ cone.Sp(G). Note that the ε is well-defined, because
{(ε, y) : y ∈ SpC(G), x − εy ∈ cone.Sp(G), 0 ≤ ε ≤ λ} is a polytope.

Defining x′
:=

x−εmaxy
1−εmax

, we see that x′
∈ Sp(G). So to prove

Theorem 3 from Claim 3 we have to prove εmax = λ.
Suppose for a contradiction that εmax < λ, then by Lemma 2

applied to ε := εmax, x′ is also a chain-point (for the same chain
of sets). So then applying Claim 3 to x′, there exist ε′ > 0 and
y′

∈ SpC(G) such that x′
− ε′y′

∈ cone.Sp(G). However, then with
ε′′

:= (1 − εmax)ε′ we have

cone.Sp(G) ∋ (1 − εmax)(x′
− ε′y′) = x − εmaxy − ε′′y′

= x − (εmax + ε′′)z,

where z :=
εmaxy+ε′′y′
εmax+ε′′ ∈ SpC(G). This contradicts that εmax is

the largest ε ≤ λ such that there exists y ∈ SpC(G) such that
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x′
= x − εy ∈ cone.Sp(G), finishing the proof of the theorem,

provided that Claim 3 is true.
We prove nowClaim 3 by checking the condition of thematroid

partition theorem in the form of Lemma 4. Let us say that ε ≥ 0 is
suitable for X ⊆ E, if ε > 0 and

εp(X) + (1 − ε)r(X) ≥ x(X).

By Lemma 4, Claim 3 is equivalent to proving that there exists ε > 0
suitable for all X ⊆ E.

If p(X) = r(X) then by (i) any ε ∈ [0, 1] is suitable for X; so
assume p(X) < r(X). If in addition x(X) < r(X), then ε is suitable if
and only if 0 < ε ≤ εX :=

r(X)−x(X)
r(X)−p(X) (> 0). Since the number of such

sets is finite, εmax := min{εX : X ⊆ E, x(X) < r(X), p(X) < r(X)} >

0 is suitable for all of them.
It remains to show that there is no other case, that is, x(X) = r(X)

implies p(X) = r(X). Denote VX the set of vertices of (‘‘covered
by’’) edges in X . We consider the components of (VX , X). If VX is
empty, X = ∅ and hence r(X) = 0 = p(X). If (VX , X) has only one
component, then r(X) = |VX | − 1. Apply Lemma 5 to the graph
whose edge-set is the support of x, and U := VX ; then X = E(U)
and by the lemma, p(X) = r(X) follows.

If (VX , X) has multiple components, then r(X) sums up over the
components. The same holds for p(X) as long as there are no two
components that both contain edges in the same cut in C. (This
can be easily seen from the definition in Section 2 of the matroid
in terms of a direct sum of cycle matroids on the level sets and
uniform matroids on the Gao-edges of each cut.) Hence, the proof
of the claim is completed by showing that it is not possible for two
components A and B of (VX , X) that both E(A) ∩ δ(Vi) ̸= ∅ and
E(B) ∩ δ(Vi) ̸= ∅.

Indeed, if E(A) ∩ δ(Vi) ̸= ∅, then x(E(A) ∩ δ(Vi)) = x(E(A)) −

x(E(A ∩ Vi)) − x(E(A \ Vi)) ≥ 1, since x(E(A)) = |A| − 1 because
of x(X) = r(X), and x(E(A′)) ≤ |A′

| − 1 for any ∅ ̸= A′
⊆ A,

because x ∈ Sp(G). By applying the same argument to B, if both
E(A) ∩ δ(Vi) ̸= ∅ and E(B) ∩ δ(Vi) ̸= ∅, then x(δ(Vi)) ≥ 2,
contradicting (ii). □

Our proof implies that a layered convex combination can be
found in strongly polynomial timewith a combinatorial algorithm.
One way of achieving this is through Edmonds’ matroid partition
algorithm. The best-known fractionally weighted implementation
of this is by Cunningham [2], which can be modified for different
matroids. Note that for rational weights the multiplication with a
commondenominator allows a direct application ofmatroid union,
that can be implemented in strongly polynomial time. The rank
oracle of the occurring matroids is at hand from the above proofs.

Another way of achieving this is by using the algorithm for
writing a point x in Sp(G) as a convex combination of spanning
trees in the proof of Theorem 51.5 of [7]. At every iteration of this

algorithm, a spanning tree T is chosen that has maximum weight
for a certainweight function. Theweight function is determined by
the algorithm; it satisfies the property that a tree T is a maximum
weight tree if and only if it satisfies T (U) = |U |−1 for certain setsU
for which x(E(U)) = |U |−1. Given T , a value λ ≥ 0 is computed so
that x′

= (x−λT )/(1−λ) ∈ Sp(G). The algorithm then recurses on
x′. Now, instead of choosing T to be an arbitrary maximumweight
spanning tree, we choose a maximum weight spanning tree that
is a Gao-tree for the chain (Vi : x(δ(Vi)) < 2, i ∈ {1, . . . , k}). It
follows from the results above that a Gao-tree with this property
indeed exists.

It then follows from [7] that there exists a layered convex
combination for x for which the number of spanning trees is at
most linear in the size of the support of x, which is the same
as for an arbitrary decomposition into spanning trees. If x is an
extreme point solution of the subtour elimination linear program
the support of x has size O(|V |) (see [5]); so only O(|V |) different
trees are needed for a layered convex combination.
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