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Complements of nearly perfect graphs

András Gyárfás∗, Zhentao Li†, Raphael Machado‡, András
Sebő§, Stéphan Thomassé§, Nicolas Trotignon§,

A class of graphs closed under taking induced subgraphs is χ-
bounded if there exists a function f such that for all graphs G
in the class, χ(G) ≤ f(ω(G)). We consider the following ques-
tion initially studied in [A. Gyárfás, Problems from the world
surrounding perfect graphs, Zastowania Matematyki Applicationes
Mathematicae, 19:413–441, 1987]. For a χ-bounded class C, is the
class C χ-bounded (where C is the class of graphs formed by the
complements of graphs from C)?

We show that if C is χ-bounded by the constant function f(x) =
3, then C is χ-bounded by g(x) = b 85xc and this is best possible. We
show that for every constant c > 0, if C is χ-bounded by a function
f such that f(x) = x for x ≥ c, then C is χ-bounded. For every j,
we construct a class of graphs χ-bounded by f(x) = x+x/ logj(x)
whose complement is not χ-bounded.

1. Introduction

In the present paper, we consider simple and finite graphs. We denote by
χ(G) (resp. θ(G)) the minumum number of stable sets (resp. cliques) needed
to cover the vertices of G. We denote by ω(G) (resp. α(G)) the maximum size
of a clique (resp. stable set) of G. A graph G is χ-bounded (resp. θ-bounded)
by a function f if χ(H) ≤ f(ω(H)) (resp. θ(H) ≤ f(α(H))) for every in-
duced subgraph H of G. Observe that a graph G is χ-bounded by f if an only
if its complement G is θ-bounded by f . A class of graphs is χ-bounded (resp.
θ-bounded) if for some function f , every graph of the class is χ-bounded
(resp. θ-bounded) by f . The class of perfect graphs is the class of graph
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χ-bounded by the identity function. For every χ-bounded (resp. θ-bounded)
class, there exists a smallest χ-bounding (resp. θ-bounding) function that
we refer as the optimal χ-bounding (resp. θ-bounding) function for the class.

We address a general question asked by Gyárfás [4]: for which functions f
is the class of graphs χ-bounded by f also θ-bounded (by a possibly different
function g)? Such functions are called complementary-bounded functions and
g is a complementary bounding function for f . If f is a complementary
bounding function, we denote by f∗ the optimal θ-bounding function of the
class of graphs χ-bounded by f .

Theorem 1.1 (Kőnig [9]) If G is bipartite, then θ(G) = α(G).

The classical theorem above can be rephrased as “the identity is the
optimal complementary bounding function for the constant function f =
2”, or by 2∗ = id. In Section 2, we push further this line of research by
computing the optimal complementary bounding function of the constant
function f = 3. To do so, we prove that 3-colourable graphs are θ-bounded
by f∗(x) =

⌊
8
5x
⌋

or equivalently 3∗ = b85 idc (Theorem 2.1). Our proof uses a
well-known result of Gallai [3] on color critical graphs (Theorem 2.3 below).

The following remarks on the constant function fm = m are from [4].
On one hand, f∗m(x) ≤ bm+1

2 cx because the vertex set of any m-chromatic
graph can be covered by the vertices of at most bm+1

2 c bipartite graphs.
On the other hand, f∗m(x) ≥ mx

2 for x > x0(m) from a nice probabilistic
construction of Erdős [1]: for arbitrary m, there exists t and an m-partite
triangle-free graph G with t vertices in each partite class, such that α(G) = t.
In fact, our construction on Fig. 1 showing f∗3 (x) ≥

⌊
8
5x
⌋

is such a graph
with m = 3, t = 5. Thus we have the asymptotic of f∗m for even m’s, but not
for odd m’s, apart from m = 3. It seems hard to make an intelligent guess
even on the asymptotic f∗5 (x).

Kőnig’s theorem was generalized by Lovász in the Perfect Graph Theo-
rem [10], stating that the identity is its own optimal complementary bound-
ing function. A function f is eventually identity if there exist a constant
c such that for all x ≥ c, f(x) = x. In Section 3, we prove eventually
identity functions are complementary-bounded (Theorem 3.1). This theo-
rem was stated without proof in [4]. Our proof is an induction that reduces
the problem to Lovász’s theorem.

In Section 4, we deal with functions that are not complementary-
bounded. Gyárfás [4] proved that for every real number ε > 0, the func-
tion f(x) = x + εx (and thus any function greater than f) is not com-
plementary bounded. We improve this result by proving that the function
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Figure 1: Graphs R3,5 and G5,8

f(x) = x + x/ logj(x) is not-complementary-bounded for any j (Theo-

rem 4.8). The methods we use to prove χ-boundedness in this section rely

again on a theorem of Gallai [2] on factor-critical graphs, graphs where re-

moving any vertex yields a graph with a perfect matching.

It was conjectured in [4] that f(x) = x+c is complementary-bounded for

any constant c. This conjecture remains open even for c = 1. Our tools from

Sections 2 and 3 are not strong enough to prove that f is complementary-

bounded, and our tools from Section 4 are not strong enough to prove that

it is not.

2. Complementary bounding function of 3-chromatic graphs

In this section, we find the smallest θ-bounding function for the class of

3-colourable graphs. We work on a more general class C: graphs G such that

for every induced subgraph H of G, α(H) ≥ |V (H)|/3. Graphs satisfying

this property are more general than 3-colourable graphs as the 5-wheel has

this property but is not 3-colourable.

Theorem 2.1 Every graph G in C satisfies θ(G) ≤ b85α(G)c. This is best

possible, in the sense that for every integer x ≥ 0, there exists a graph G in

C with α(G) = x and θ(G) = b85α(G)c.
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Our result improves on the previous upper bound of 5
3x from [4]. The

rest of the section is devoted to proving Theorem 2.1. It is best possible
because of the graph G5,8 represented in Fig. 1 satisfies

|V (G5,8)| = 15, ω(G5,8) = 2, χ(G5,8) = 3, α(G5,8) = 5, θ(G5,8) = 8.

Other graphs with the same parameters can also be found as induced sub-
graphs in some of the seven graphs with parameters |V (G)| = 17, ω(G) =
2, α(G) = 5 (one is given in [7], all seven in [6]). However, G5,8 is much sim-
pler for our purposes. Checking |V (G5,8)| = 15, χ(G5,8) = 3 and θ(G5,8) ≤ 8
is immediate from the figure (cycles of length 5 are easy to find, a 3-colouring
is shown and a clique cover of size 8 is obtained by taking every second
edge on the obvious hamiltonian cycle and an isolated vertex). Note that
χ(G5,8) = 3 implies that G ∈ C. To compute α and ω, it is convenient to
consider the graph R3,5, also represented in Fig. 1, that is well known in
Ramsey Theory as the unique graph G on at least 13 vertices such that
ω(G) = 2 and α(G) = 4. Interestingly, R3,5 is also the smallest graph G
such that θ(G) − α(G) ≥ 3 (see [5]), but we do not use this fact here. Ob-
serve that G5,8 is obtained from R3,5 by subdividing one edge twice, so that
ω(G5,8) = 2, and θ(G) ≥ d|V (G5,8)|/ω(G5,8)e = 8. A colour class in G5,8

is a stable set of size 5 and it is easy to check that a stable set of size at
least 6 in G5,8 would contain a stable set of size 5 of R3,5, a contradiction,
so α(G5,8) = 5.

We now show how to construct a graph G with α(G) = x and θ(G) =
b85α(G)c for each integer x ≥ 0. Define a graph G consisting of k = bx5 c
disjoint copies of G5,8. Thus, θ(G) = 8k, α(G) = 5k. If x is a multiple
of 5, then θ(G) = b85α(G)c since α(G) = x and θ(G) = 8

5x. If x ≡ 1
mod 5, then add an isolated vertex to G, so that x = α(G) = 5k + 1 and
θ(G) = 8k + 1 = b8x5 c. If x ≡ 2 mod 5, then add to G a pentagon, so that
x = α(G) = 5k + 2 and θ(G) = 8k + 3 = b8x5 c. If x ≡ 3 mod 5, then add
to G a pentagon and an isolated vertex, so that x = α(G) = 5k + 3 and
θ(G) = 8k + 4 = b8x5 c. If x ≡ 4 mod 5, then add to G two pentagons, so
that x = α(G) = 5k + 4 and θ(G) = 8k + 6 = b8x5 c.

To prove the upper bound on θ, we need the next results. The following
avoids checking small cases.

Lemma 2.2 (Gyárfás, Sebő and Trotignon [5]) If G is a graph on at
most 9 vertices, then θ(G)−α(G) ≤ 1. If G is a graph on at most 12 vertices,
then θ(G)− α(G) ≤ 2.
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A graph G is θ-critical if for every vertex v of G, θ(G− v) < θ(G). The
following is a basic result of Gallai (a short proof can be found in [13]).

Theorem 2.3 (Gallai [3]) If G is connected and θ-critical, then

θ(G) ≤ |V (G)|+ 1

2
.

It remains to prove that every graph G in C satisfies θ(G) ≤ 8
5α(G). We

prove this by induction on |V (G)|. For graphs on at most one vertex, the
outcome clearly holds. If G is not θ-critical, then for some vertex v, by the
induction hypothesis, we have

θ(G) = θ(G− v) ≤ 8

5
α(G− v) ≤ 8

5
α(G).

If G is disconnected, then G is the disjoint union of two non-empty graphs
H1 and H2, so by the induction hypothesis

θ(G) = θ(H1) + θ(H2) ≤
8

5
(α(H1) + α(H2)) =

8

5
α(G).

Thus we may assume that G is θ-critical and connected. By Theorem 2.3,

θ(G) ≤ |V (G)|+ 1

2
.

If α(G) ≥ 5, then

θ(G) ≤ |V (G)|+ 1

2
≤ 3α(G) + 1

2
≤ 3α(G) + 1

2
+
α(G)− 5

10
=

8

5
α(G).

If α(G) = 4, then |V (G)| ≤ 12, so by Lemma 2.2, θ(G) ≤ α(G) + 2 = 6, and
θ(G) ≤ 6 < 8 × 4/5 = 8

5α(G) is clear. If α(G) = 3, then |V (G)| ≤ 9, so by
Lemma 2.2, θ(G) ≤ α(G) + 1 = 4, and θ(G) ≤ 4 < 8×3/5 = 8

5α(G) is clear.
If α(G) = 2, then |V (G)| ≤ 6, so by Lemma 2.2, θ(G) ≤ α(G) + 1 = 3, and
θ(G) ≤ 3 < 8× 2/5 = 8

5α(G) is clear. If α(G) ≤ 1, then G is a clique, so the
outcomes holds.

3. A complementary bounding function for eventually
identity functions

Let Fc denote the class of those N → N functions such that f(x) = x for
x ≥ c. The following was stated without proof in [4].
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Theorem 3.1 For all c and g ∈ Fc, g is complementary-bounded.

Proof. We prove by induction on c. For c = 1 only g(x) = x is in Fc and
the Perfect Graph Theorem [10] implies that g(x) = x is a complementary
bounding function.

Suppose that for some c ≥ 1 every f ∈ Fc has a complementary bound-
ing function f∗c and let G be a graph with χ-bounding function g ∈ Fc+1.
Consider a subgraph H ⊆ G with α(H) = k. Let S = {s1, s2, . . . , sk} be a
stable set in H. Partition V (H) \ S into A1 = N(s1) and for i = 2, . . . , k,
Ai = N(si) \ (∪i−1j=1Aj).

We claim that for 1 ≤ i ≤ k, each Ai induces a graph Hi ⊂ H such that
Hi has a χ-bounding function in Fc. Indeed, if Hi has a subgraph Gi with
p = ω(Gi) < χ(Gi) for p > c then c + 1 < p + 1 = ω(Gi ∪ si) < χ(Gi ∪ si)
contradicting the assumption that G is χ-bounded by g. Thus the claim is
true so using α(Hi) ≤ k − i+ 1 and the induction hypothesis, θ(Hi ∪ si) =
θ(Hi) ≤ f∗c (k− i+ 1), G has a clique cover with

∑k
j=1 f

∗
c (k− j + 1) cliques.

Thus
∑k

j=1 f
∗
c (k − j + 1) is a complementary bounding function for g.

For c = 2, this proof provides the following.

Theorem 3.2 f∗(x) =
(
x+1
2

)
is a complementary bounding function for any

f ∈ F2.

In fact, the bound provided by Theorem 3.2 is at most a logarithmic
factor apart from best possible, since there are triangle-free graphs G with

at least cα(G)2

logα(G) vertices, see [8]. For such G, θ(G) ≥ cα(G)2

2 logα(G) .

Theorem 3.1 invites another question, that of finding f∗ for f ∈ Ft (with
better bounds than Theorem 3.1). The first case beyond the Perfect Graph
Theorem (Problem 6.6 in [4]) is not even known.

Problem 3.3 Find g∗ for the almost identity function

g(x) =

{
3 for x = 2
x for x > 2

From Theorem 3.2, g∗(x) ≤
(
x+1
2

)
but it is possible that g∗ is linear. In

([4] p. 439), the conjecture ‘perhaps g∗(x) = b3x2 c is the truth’ was raised,
based on the example of disjoint circuits of length 5. This is in fact disproved
by the graph G5,8 represented in Fig. 1. From Theorem 3.2 and G5,8 we have
g∗(2) = 3. While g∗(3) ≥ 4 is obvious (from the pentagon and an isolated
vertex), it is not clear whether g∗(3) = 4. Theorem 3.2 suggests the following.

Conjecture 3.4 g∗(x) = b85xc.
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4. Functions that are not complementary-bounded

In this section, we show that f(x) = x+x/polylog(x) is not complementary-
bounded. We prove this by exhibiting a class of graphs χ-bounded by f but
not θ-bounded. This family consists of Schrijver graphs which we define
below (in fact, for convenience we work in the complement, so our graphs
will be θ-bounded and not χ-bounded, but this is clearly equivalent up to a
complementation).

We provide in Lemma 4.2 a tool to determine a θ-bounding function of
any graph with “high” stability ratio (ratio between the stability number
and number of vertices) and such that this property is closed under taking
induced subgraphs. It relies on the following theorem due to Gallai. We
denote by ν(G) the size of a maximum matching in G.

Theorem 4.1 (Gallai [2]) If G is a connected graph such that for all ver-
tices v, ν(G \ v) = ν(G), then G is factor-critical.

Lemma 4.2 For every graph G

θ(G) ≤ α(G) + max
H⊆G

(|V (H)| − 2α(H)).

Proof. We prove the result by induction on |V (G)|. It clearly holds when
|V (G)| ≤ 1. Note that maxH⊆G(|V (H)| − 2α(H)) ≥ 0 as we can choose H
to be the empty graph.
Case 1: G contains a triangle T .

θ(G) ≤ 1 + θ(G \ T )

≤ 1 + α(G \ T ) + max
H⊆G\T

(|V (H)| − 2α(H))

≤ α(G) + (1 + max
H⊆G\T

(|V (H)| − 2α(H)))

≤ α(G) + max
H⊆G

(|V (H)| − 2α(H)).

Case 2: There exists a vertex v ∈ V (G) such that θ(G \ v) = θ(G). By the
induction hypothesis,

θ(G) = θ(G \ v) ≤ α(G \ v) + max
H⊆G\v

(|V (H)| − 2α(H))

≤ α(G) + max
H⊆G

(|V (H)| − 2α(H)).
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Case 3: G is triangle-free and for every vertex v ∈ V (G), θ(G \ v) < θ(G).

We suppose that G is connected for otherwise, we obtain the result by the

induction hypothesis on the connected components of G. Observe that for

every vertex v ∈ V (G), θ(G \ v) = θ(G)− 1. Since G is triangle-free,

θ(G) + ν(G) = |V (G)| and θ(G \ v) + ν(G \ v) = |V (G \ v)|.

Thus, for every vertex v ∈ V (G), ν(G \ v) = ν(G). By Theorem 4.1, G

is factor-critical and thus θ(G) = (|V (G)|+ 1)/2.

Also, if G is bipartite, then the result holds by Theorem 1.1. Thus, from

here on, we suppose that G is not bipartite. An odd cycle H of minimum

length in G is chordless, because a chord would allow us to construct a

smaller odd cycle. It follows that maxH⊆G(|V (H)| − 2α(H)) ≥ 1. Now,

θ(G) =
|V (G)|+ 1

2

≤ 2α(G) + maxH⊆G(|V (H)| − 2α(H)) + 1

2

= α(G) + max
H⊆G

(|V (H)| − 2α(H)) +
−maxH⊆G(|V (H)| − 2α(H)) + 1

2

≤ α(G) + max
H⊆G

(|V (H)| − 2α(H)).

We now describe subgraphs of Kneser graphs that are not χ-bounded.

When n, k are integers, the Kneser graph KGn,k is the graph whose vertices

are the subsets of {1, 2, . . . , 2n + k} that have size n, and such that two

vertices are adjacent if they are disjoint sets. We need several properties of

Kneser graphs.

Lemma 4.3 If H is an induced subgraph of KGn,k, then

α(H) ≥ n

2n+ k
|V (H)|.

Proof. Let N = |{(i, v) : v ∈ V (H) and i ∈ v}| = n|V (H)|. Suppose that

each integer of {1, . . . , 2n + k} is contained in less than (n/2n+ k)|V (H)|
vertices of H. Then N =

∑
1≤i≤2n+k |{v : i ∈ v}| < (2n + k)n/(2n +

k)|V (H)| = n|V (H)| = N , a contradiction. Therefore, at least one integer
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of {1, . . . , 2n + k} is contained in at least n
2n+k |V (H)| vertices of H, that

form a stable set of H.

Lemma 4.4 If G is an induced subgraph of KGn,k then

θ(G) ≤
(

1 +
k

n

)
α(G).

Proof. By Lemma 4.2,

θ(G) ≤ α(G) + max
H⊆G

(|V (H)| − 2α(H)).

Since by Lemma 4.3, |V (H)| ≤ (2 + k
n)α(H), we have:

θ(G) ≤ α(G) + max
H⊆G

k

n
α(H) ≤ α(G) +

k

n
α(G).

An n-element subset S of {1, . . . , 2n+ k} is sparse if it does not contain
two consecutive numbers in the circular ordering of {1, . . . , 2n + k}. The
Schrijver graph SGn,k is the subgraph of KGn,k induced by the sparse sets.

Lemma 4.5 |V (SGn,k)| =
(
n+k
n

)
+
(
n+k−1
n−1

)
=
(
n+k
k

)
+
(
n+k−1

k

)
.

Proof. By increasing n-tuples of {1, . . . , a}, we mean an n-tuple (i1, . . . , in)
such that for all 1 ≤ j ≤ n, we have 1 ≤ ij ≤ a and such that i1 < · · · < in.

Let us fisrt count the sparse subsets of {1, . . . , 2n+k} that do not contain
2n+ k. They are in one to one correspondence with the increasing n-tuples
of {1, . . . , n+ k}. This is clear by considering the map (i1, . . . in) 7→ (i1, i2 +
1, . . . , in+n−1). Therefore there are

(
n+k
n

)
sparse subsets of {1, . . . , 2n+k}

that do not contain 2n+ k.
Let us now count the sparse subsets of {1, . . . , 2n + k} that do con-

tain 2n + k. They are in one to one correspondence with the increasing
(n − 1)-tuples of {1, . . . , n + k − 1}. This is clear by considering the map
(i1, . . . in−1) 7→ (i1 + 1, i2 + 2, . . . , in−1 + n− 1, 2n+ k). Therefore, there are(
n+k−1
n−1

)
sparse subsets of {1, . . . , 2n+ k} that do contain 2n+ k.

The conclusions of the two paragraphs above sum up to the first equality,
and the second follows from

(
a+b
a

)
=
(
a+b
b

)
.

The following is the key property of Kneser and Schrijver graphs.
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Theorem 4.6 (Lovász [11], Schrijver [12]) χ(KGn,k) = χ(SGn,k) =
k + 2.

We are now ready to exhibit functions that are not complementary-
bounded.

Theorem 4.7 Let h be a non-decreasing function such that for all k,
h(nk) ≤ n/k for sufficiently large n. Then x+x/h(x) is not complementary-
bounded.

Proof. It is easy to show that for all k, h(2(n+k)k) ≤ n
k for sufficiently large

n (say for n ≥ N(k)). We can show this by simply choosing the N(k) =
N ′(2k+1) where N ′ is the threshold needed for h(Nk) ≤ N/k and using the
monotonicity of h. Now, for all n ≥ N(k), h(2(n + k)k) ≤ h(n(n + n)k) =
h(n2k+1) ≤ n/k.

By Lemma 4.5, for any k, n and any subgraph H of SG2n+k,n, we have

α(H) ≤ |V (H)| ≤ |V (SG2n+k,n)| =
(
n+ k

k

)
+

(
n+ k − 1

k

)
≤ 2(n+ k)k.

We claim the graphs S = {SG∈N (‖)+‖|‖ ∈ N} are θ-bounded by f (they
are not χ-bounded as they are Schrijver graphs).

Since h is non-decreasing, for a subgraph H of SG2n+k ∈ S,

1

h(α(H))
≥ 1

h(2(n+ k)k)
≥ k

n
.

Thus

f(α(H)) = α(H)

(
1 +

1

h(α(H))

)
≥ α(H)

(
1 +

k

n

)
≥ θ(H)

by Lemma 4.3. Thus, S is θ-bounded by f but not χ-bounded, as required.

Theorem 4.8 The function f(x) = x + x/ logj(x) is not complementary-
bounded for any j ∈ R.

Proof. We only need to verify that for all k, logj(nk) ≤ n/k for sufficiently
large n (and apply Theorem 4.7).

Given k, choose N large enough so N ≥ log2j+1(N) and log(N) ≥ k.
Then for any n ≥ N ,

k logj(nk) = kj+1 logj(n) ≤ logj+1(n) logj(n) = log2j+1(n) ≤ n
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as required.
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