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Analogous pairs of theorems are investigated concerning coverings of directed and odd cuts. 
One such pair of results is the Lucchesi-Younger theorem on directed cuts and Seymour's theorem 
on odd cuts. Here we strengthen these results (incidently providing a simple proof of Seymour's 
theorem). For example, the minimum cardinality of a T-join in a graph G = (V, E) is proved to 
equal the maximum of~ qr(V,)/2 over all partitions of V where qr(X) is the number of T-odd 
components of V-X.  Moreover, if G is bipartite, there is an optimal partition arising from a 
partition of the two parts. Secondly some orientation problems of undirected graphs are 
discussed. The results also emphasize the analogy between strong connectivity and parity 
conditions. 
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I. Introduction 

In this p a p e r  we invest igate  ana logous  pai rs  of  theorems conce rn ing  d i rec ted  cuts 

of  d ig raphs  and  o d d  cuts (or T-cuts) o f  und i rec ted  graphs .  Fo r  example ,  the 

L u c c h e s i - Y o u n g e r  t heo rem asserts that  the  m i n i m u m  card ina l i ty  o f  a cover ing of  

d i rec ted  cuts (i.e. a set o f  edges meet ing  all d i rec ted  cuts) is equal  to the m a x i m u m  

number  o f  pa i rwise  d is jo in t  d i rec ted  cuts. Seymour ' s  theorem states  the same for 

odd cuts o f  b ipar t i t e  graphs .  Here we shall  s t rengthen these results.  

For  a fixed d i rec ted  cut F = 8(X) ,  a m i n i m a x  formula  is p roved  for c ' (X) ,  the 

min imum of  ICc~ F I over  all coverings C o f  d i rec ted  cuts. Mak ing  use o f  the 

supe rmodu la r i t y  o f  c'  we prove a var iant  o f  the L u c c h e s i - Y o u n g e r  theorem in which 

the op t ima l  pack ing  o f  d i rec ted  cuts forms a chain.  

An ana logous  m i n i m a x  formula  is p roved  for the min imum o f  ]C c~ F] over  all 

T-joins C (from which,  incident ly ,  a s imple  p r o o f  for  Seymour ' s  theorem follows).  

Here the main  resul t  is" the min imum ca rd ina l i ty  of  a T-join in a b ipar t i t e  graph 

G =(V~, V2; E)  is equal  to the m a x i m u m  o f ~  q r (Xi )  over  all pa r t i t ions  of  V~ where 

q T ( X )  denotes  the n u m b e r  of  T-odd  c o m p o n e n t s  o f  G -  X. 

This theorem eas i ly  impl ies  Seymour ' s  t heo rem as well as the Berge -Tu t t e  formula .  

It a lso provides  a fo rmula  for the m i n i m u m  number  o f  edges in a graph G such 
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that G becomes Eulerian by doubling these edges (i.e. for the minimum cardinality 

of  a Chinese postman tour). This minimum is equal to the maximum of ~ q0(V~)/2 

over all partitions of V where qo(X) is the number of components in G - X of odd 

degree. 
We also deal with several problems concerning orientations of  undirected graphs. 

Frank and Gyfirffis [4] gave good characterizations for the existence of strongly 

connected orientations with certain side-conditions. Here analogous results are 

proved when strong connectivity is replaced by certain parity restrictions. 

We shall use the terms graph and digraph for undirected and directed graph, 

respectively. By an edge we mean an undirected edge while directed edges are called 

arrows. Throughout we work with connected graphs and weakly connected digraphs. 

A mixed graph may contain both directed and undirected edges. 

For a mixed graph G = (V, E) the coboundary ~(X)  of X _~ V is the set of edges 

and arrows entering X, S (X)  is the set of edges and arrows incident with at least 

one node of X, E ( X )  is the set of edges and arrows induced by X. We denote by 

d(X,  Y) the number of  edges and arrows with one end node in X - Y and the other 

one in Y - X  and we set d ( X ) =  d(X,  V - X ) .  The number of (weak) components 

of V - X  is denoted by c(X). 
Let G = (V, E) be a digraph. The in-degree p ( X )  is the number of arrows entering 

X. A kernel X is a subset of nodes with no arrows leaving X. The coboundary 
?](X) (~0) of a kernel X is called a directed cut (or dicut) determined by X. A 

covering C (of directed cuts) is a subset of  arrows meeting all the directed cuts. 

Let G = ( V ,  E) be a graph and T ~  V a subset of even cardinality. A set Xc_ V 

is T-odd if IX c~ TI is odd. qr (X)  denotes the number of T-odd components in 

G - X. In particular qv (X)  is the number of components in G - X of odd cardinality. 

For a T-odd set X the coboundary 6(X) is called an odd cut or T-cut. (We shall 

prefer the latter.) A subset C of edges is called a T-join if the number of edges in 
C incident with v is odd exactly when v c T. Obviously a T-join and a T-cut have 

an odd number of edges in common. 

An orientation of undirected graph G is a digraph arising from G by orienting 

its edges. 

A family ,~ of subsets is called half-disjoint if every element of  the ground set is 
in at most two members of 2. For a vector u e ~  v set u ( X ) = ~ ( u ( x ) :  x e X ) .  

2. Orientations I 

Our starting point is a result of Frank and Gyfirffis [4] concerning orientations 

of graphs which satisfy lower and upper bound restrictions on the in-degree. Given 

a graph G =(V, E), let I and u be two integral functions on V such that 0<~ l<~ u. 

Theorem 1. a. There is an orientation of G with p( v ) ~ u( v ) for v e V iff ] E ( X )] <~ u ( X ) 
for X c V. 
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b. There is an orientation o f  G with p(v)  >1 l(v) for  v �9 V iff iS(X)l  ~ l (X )  for  X c_ V. 

c. There is an orientation o f  G with l(v)<~ p(v)<~ u(v) for  v �9 V iff  there is one with 

p(v)  >! l(v) fo r  v �9 V and there is one with p(v)  <<- u(v)  for  v �9 V. 

An earlier orientat ion result is due to H. Robbins [I0]. 

Theorem 2. A graph has a strongly connected orientation iff there is no isthmus. 

A slight s t rengthening of  this theorem is 

Theorem 2a [2]. In a mixed graph G there is an orientation o f  the undirected edges 

which results in a strongly connected digraph iff there is no isthmus and G contains 

no directed cuts. 

Theorem 2a can be interpreted so that any partial orientation o f  an isthmus-free 

graph can be cont inued  in order to get a strongly connected orientat ion provided 

that there is either an undirected edge or an already oriented edge leaving X for 

every subset X ( r  V). 

The following characterization for the existence of  a strongly connected  orientation 

satisfying lower and upper  bound  condi t ions  on the in-degrees was presented in [4]. 

Theorem 3. Suppose G is an undirected graph with no isthmus, a. There is a strongly 

connected orientation o f  G with p ( v ) ~  u(v)  for  v � 9  V iff IE(X)I  + c ( X ) ~  u ( X )  for  
X c _ V .  

b. There is a strongly connected orientation o f  G with p(v) ~> l(v) for  v �9 V iff 

IS(X)l- c(X) >1 l(X) for x v. 
c. There is a strongly connected orientation o f  G with I( v ) <~ p( v ) <~ u( v ) for  v �9 V iff 

there is one with p ( v ) ~  u(v) for  v �9 V and there is one with l(v)<~ p(v) . for  v �9 V. 

In this paper  we shall prove some analogous  theorems in which the property of  

strong connectivity is replaced by a certain parity cond i t i on - -name ly ,  given a subset 

T o f  nodes, find an orientation for which p(v)  is odd exactly if v �9 T and p satisfies 

lower and upper  b o u n d  conditions. Without  loss of  generality one can suppose that 

l(v) and u(v) are odd  exactly when v e T. Thus we assume that l(v)=- u(v)  (rood 2) 

for v �9 V. Call an orientat ion u-congruent if p(v)  =- u(v) (rood 2) for v �9 V. Obviously 

u-congruent  and / -congruent  mean the same. The following simple observation is 
analogous to Robbins '  theorem. 

Theorem 4. A connected graph G = ( V, E)  has a u-congruent orientation iff 

I E( v)l -= u ( v )  (rood 2). (1) 

Proof. Orient the edges so that the number  of  nodes v with p ( v ) ~  u(v)  (mod 2) is 

as small as possible. I f  there are no such nodes, we are done. Otherwise, there are 
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at least two, say u and  w. Choose  a path  f rom u to w (in the undirected graph), 

and reverse the or ientat ion on the edges o f  this path. This increases the number  of  

nodes v with p(v)=- u(v) (mod 2). [ ]  

Next let us deal with u-congruent  orientat ions satisfying an upper  bound  restric- 

tion for the indegrees. Before the reader thinks this problem too artificial we remark 

that the l-factor problem in a graph can be formulated in this way, as follows. 

Given a graph H = (V, E), place a new node  on every edge. Let u(v) = 1 for original 
nodes and u(v)= 2 for  new nodes. There is a l-to-i  cor respondence  between the 

l-factors o f  H and the u-congruent  or ientat ions of  the enlarged graph G satisfying 

p~< u. Namely,  an edge ab of  H is in the l - factor  if and only if the in-degree of  

the middle node of  ab is 0. Actually, Tut te 's  l -factor theorem easily follows from 

the following theorem which can be cons idered  as a counterpar t  to Theorem 3a. 

On the other hand,  in the p roof  we rely on Tutte 's  theorem. 

Theorem 5a. There exists a u-congruent orientation of  G for which p(v)<~ u(v) if  and 

only if 

IE(X)[+o(X)<~u(X) for Xc_ V (2) 

where o(X)  denotes the number of components C (called u-odd) of  G - X  for which 

u(C)~lS(C)l (mod 2). 

ProoL (Necessity.) In any u-congruent  orientat ion,  any u-odd  set is left by an odd 

number  of  arrows. Thus at least o (X)  arrows enter X and we have 

IE(X)I +o(X)~ E (p(v): ve x)~< u(X). 

(Sufficiency.) We deduce  sufficiency from Tutte 's  l -factor theorem by means of  

an elementary construct ion.  First place a new node v e on every edge e, then blow 

up every original node  v to a complete graph  of  u(v) nodes. More  exactly, define 
G ' =  (V',  E')  as follows. 

V'={vi: v c  V and 1 <~ i<~ u(v)}L){ve: ec  E}, 

E'={vivj: for v e  V and 1 ~< i<j<~ u(v)} 

u{(v%, :  e e  E, v e  V, e incident with v}. 

Claim. G has a u-congruent orientation for which p(v)<~ u(v) (v6  V) iff G' has a 
1 -factor. 

Proof. If  G '  has a l - factor  F and an edge o f  F incident to v e is vevi, orient e in 

G toward v. The orientat ion of  G defined this way clearly satisfies the upper  bound  

requirement. Furthermore,  an even number  o f  nodes is paired by F in the set of  

nodes in G '  cor responding  to a node v c  V therefore the in-degree o f  v in the 

orientat ion is congruen t  to u(v) (mod 2). 



A. Frank, A. Seb6 and F:. Tardos / Covering directed and odd cuts 103 

Conversely, the same correspondence shows that a u-congruent orientation with 
p(v)<~ u(v) ( v~  V) determines a l-factor of  G'. �9 

By Tutte's theorem, a graph has a l-factor iff for every subset S _~ V', the number 
qv,(S) of components  of  G ' -  S with an odd number of nodes is at most IS[. Let S 
be a minimal subset of  V' violating the Tutte condition. 

Claim. For every v ~ V, S either contains all the copies in G' corresponding to v or 

none o f  them. 

Proof. To the contrary, let v c V and I ~  < i,j<~ u(v) be such that v,e S, vj~ S. Set 

S~ = S -  v,. Since v~ and vi are adjacent and the neighbors of  vi and vi are the same, 
the components of  G ' - S ~  are the components  of  G ' - S  with the only exception 

that the component  containing vj will also contain vi. Thus qv,(S~)>~ q v . ( S ) - 1 >  
ISl- 1 = Is, I contradicting the minimal choice of  S. �9 

Claim. S does not contain any new node v e. 

Proof. For otherwise, set S ~ - - - S - v  ~. Since every node of G was replaced by a 

complete graph, v" can be connected with at most two components ,  say CI, Cz, of  

G ' - S .  I f  both of  them are odd, C ~ u C 2 ~ { v  ~} is odd, as well, whence we have 
qv,(SO >~ qv . (S ) -  l > ISI -  ! = IS~[ contradicting the minimal choice of  S. �9 

Using these claims one can easily check that X = { v :  v i e S }  violates (2). E 

An analogous result for/-congruent  orientations with lower bounds simply follows 

from the preceding theorem. 

Theorem 5b. A graph G = (V, E) has an I-congruent orientation for  which p ( v ) ~  l(v) 
(v c V) /ff IS(X)[ - o(X)/> l (X)  for X c V where o(X)  denotes the number of  l-odd 

components o f  G - X. 

Somewhat surprisingly, the counterpart  of  Theorem 3c is not true. The graph 
following in Fig. 1 has a u-congruent orientation with upper  bound u and an 

/-congruent orientation with lower bound l but no u-congruent orientation exists 
satisfying the upper  bound and the lower bound condition at the same time. (At 
the nodes the first number  denotes the lower bound I and the second number  denotes 

the upper bound u.) However we have the following more complicated characteriz- 
ation. Suppose again that u ( v ) ~  I(v) (mod 2) (v~ V). 

Theorem 6. A graph G =(V, E) has a u-congruent 

l(v)<~p(v)<~ u(v) for  v e  V iff 

u(A) - I(B) >~ p(A,  B) +IE(A)I- [S(B)I 

orientation for which 

(3) 
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(0,2) (0,2) 

(0,0) ~ (0,2) 

Fig. I. 

for disjoint subsets A, B c V, where p(A, B) denotes the number of those components 
C of V - ( A u  B) for which ]E(C)I +d(C, A ) ~  I(C) (mod 2). 

The graph in the figure does not satisfy (3): let A consist of the two lower nodes 

and B of  the upper most node. 

Proof. The proof is similar to that of Theorem 5a so we outline only the sufficiency. 
Place a new node v e on every edge e and blow up every original node v to a graph 

consisting of l(v) isolated nodes and a complete graph of u(v)-I (v)  nodes. One 

can see that G has a u-congruent orientation p for which l(v)<~p(v) < - u(v) (v~ V) 
iff G'  has a l-factor. 

If  there is no l-factor of G', there exists a subset S c  V' violating the Tutte 

condition. Let S be minimal. A simple argument shows that, for every v c V, S either 

contains all the nodes in G'  corresponding to v or none of them. Set A = {v c V: vi ~ S} 
and B = { v e  V: there is no edge e~ E incident with v such that Ve~s}. The proof 

is completed by showing that A n B = 0 and A, B violate condition (3). [] 

3. Orientations II 

Let G = (V, E) be an isthmus-free graph and X (~  0, V) a specified subset of  
nodes. In this section we describe a min-max formula for the minimum number 

c'(X) of arrows entering X in strongly connected orientations of  G. 

First of all observe that the components of  X and V - X  can be shrunken into 

singletons without changing c'(X). This is so because shrinking does not destroy 

the strong connectivity, on the other hand Theoreom 2.2a shows that a strongly 

connected orientation of the shrunken graph can be extended to a strongly connected 

orientation of G. Thus we can suppose that G is a bipartite graph with parts V~, 
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V2 where Vt denotes the set formed by shrinking the components  of  X. Recall the 
definition of c(X).  The next lemma occurs in [3, 7]. 

Lemma 1. c(A) +c(B) <~ c(A u B) +c(A n B) +d(A, B). 

Theorem 2. I f  G = (I/1, V2; E) is a bipartite graph, the minimum number o f  arrows 

entering V~ among all strongly connected orientations of  G is equal to 

max(Y~ c(X~): {X~} partitions V~, X~ # •). 

Proof. (max~<min.) For a strongly connected orientation p, p ( X ) ~  > c(X)  ( X  SO) 

therefore p(VI)  ---~ p ( X ~ ) > ~  c(X,). 
(max = min.) We describe an algorithm that, given a strongly connected orientation 

with in-degree function p, either finds a better orientation p '  (i.e. p ' (Vi )<  p(VO) or 

else finds a partition {X~} of V~ for which p ( V  0 = ~  c(X~). 

Call a set tight (with respect to p) if p ( X ) =  c(X).  (Note that V is always tight.) 

Lemma 3. I f  A, B are intersecting tight sets, A c~ B, A u B are also tight. 

Proof. Using Lemma 1 we get 

p(A) + p(B)  = c(A) + c(B) ~ c(A n B) + c(A w B) + d(A,  B) ~ p(A n B) 

+ p(A u B) + d(A,  B) = p(A) + p(B) 

from which we have c ( A n  B) = p ( A ~  B) and c ( A u  B) = p ( A u  B). �9 

An easy consequence is 

Lemma 4. I f  a family of  tight sets forms a connected hypergraph the union is tight. 

The intersection P(v)  o f  all tight sets containing a node v is tight. 

Let p be a strongly connected orientation of G. There may be two cases. 
Case 1 : For every x ~ V~, P(x) ~_ VI. Let X~, X2,. �9 �9 X, denote the components 

of  the hypergraph {P(x): x c  V~}. Then {Xi} forms a partition of V~ and, by Lemma 
4, each X~ is tight. Thus p ( V t ) = ~  p (X i )=  c(X~), i.e. for the given orientation we 

have the required equality. 
Case 2: There are nodes x ~ V] and y e V2 such that y ~ P(x). Let P be a directed 

path from y to x. Reverse the orientation of the arrows of P. We get another 
orientation for which p ' ( V ~ ) = p ( V t ) - 1 .  Furthermore the new orientation is still 

strongly connected, for otherwise there would have been a set A with p(A)=  1, 

x ~ A, y ~ A contradicting the assumption that y c P(x). [] 

Corollary 5. The minimum over all strongly connected orientations of  a graph G = 
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(V, E) of  the number of arrows entering a specified subset X is equal to max(~ c(Xi): 

{X,} partitions X and no edges lead between distinct X~'s, Xi ~ 0). 

The next corollary concerns only c and not the orientation but we do not see any 

direct proof.  

Corollary 6. In a bipartite graph G =(Vi ,  Vz; E), max(~ c(X~): X~ ~ 0, {X~} partitions 
V 0 = max(~ c ( ~ ) :  Y~ ~ 0, { Yj} partitions V2). 

We conclude this section by showing that Lemma 1 is also true for c'. 

Theorem 7. e'(A) + c'(B) <~ c'(A r~ B) ~- c'(A ~ B) + d(A, B). 

Proof. It suffices to prove the theorem when d(A, B ) = 0 .  If  d(A, B ) > 0 ,  place a 

new node on the middle  o f  every edge between A - B  and B - A .  The new nodes 

do not belong to A and B. Obviously this t ransformat ion increases c'(A ~ B) by 

d(A, B) but it does not affect c'(A), c'(B), and c'(A c~ B). Furthermore  there is no 

edge between A - B and B - A any more. Thus the theorem follows from the special 

case when d(A, B ) =  0 and henceforth we assume this. 

The next lemma is due to Dunstan and Lovdsz [2, 7]. 

Lemma 8. Let ,~ be a family of subsets with 0 ~ ~ and let f be a function on ~ such 
that X, Y~I~, X n Y ~ O  imply that X ~ Y ,  X u Y c ~  and f ( X ) + f ( Y ) < ~  
f ( X  n Y ) + f ( X u  Y). Then the family 

~ '  :: {UF/ :  and Fi ~ ~, Fi's are disjoint}u{O} 

is closed under taking union and intersection. Moreover, let f '  be the function on 

~ '  defined by 

f ' (F)  = max(~ f(F~): {F,} partitions F, Fi~ ~ )  if F6  ~ ' - { 0 } ,  f ' ( 0 ) -  0. 

Then, for X, Y e ~ ' ,  

f ' ( X )  + f ' (Y )  ~<f'(X w Y) +f ' (X  n Y). 0 

Let us orient the edges o f  G so that no arrow enters A and B and set ,~ = {X: X ~ I~, 

p(X)  = 0}. By Corol lary  5, it is obvious for X e ,.~ that c ' (X)= max(~ c(X~): {X~} 

partit ions X, X~ ~ ~---). By Lemma 1, Lemma 8 applies to ~ with f =  c and we are 

done. []  

4. Directed cuts, T-cuts 

A fundamental theorem on directed cuts is due to Lucchesi and Younger [8]. 
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Theorem 1. In a digraph the minimum cardinality o f  a covering o f  directed cuts is 

equal to the m a x i m u m  number o f  pairwise disjoint directed cuts. 

For a covering C and a dicut F by definition we have [C c~ F]/> 1. We are going 

to determine the minimum of ]Cc~ FI over all coverings C. 
An answer can be read out from Theorem 1, namely, the minimum in question 

is equal to the maximum number of  pairwise disjoint directed cuts in F. The main 

content of Theorem 2 is that the maximum is determined by certain disjoint kernels. 

Theorem 2. In a digraph, given a specified directed cut F =  ~(X), min(ICc~ FI: C 

covering) = max(~ c( Xi): U x i  = x ,  x i ' s  are disjoint kernels). 

Proof. We can suppose that G does not contain isthmuses. 

Lemma. I f  C is a covering minimal with respect to inclusion, reorienting the elements 

o f  C results in a strongly connected digraph. 

Proof. Delete the orientation of the elements of  C. We get a mixed graph to which 

Theorem 2.2a applies. In the resulting strongly connected reorientation of G each 
element of C must have direction reversed. For C is minimal and so for each e ~ C 

there is a directed cut T of G such that T n C = { e }  for each e ~ C  and in the 
strongly connected reorientation of G, T is no longer a directed cut. 

This lemma and Corollary 3.5 proves the theorem. [] 

Notice that in Theorem 2, if G does not contain isthmuses, the minimum is exactly 
c'(X).  Thus we can use the notation c ' ( X )  for the minimum in Theorem 2 when G 
may contain isthmuses. With the help of  c', the Lucchesi-Younger theorem can be 
formulated in a more compact form. 

Theorem 3. In a digraph the minimum cardinality o f  a covering o f  directed cuts is 

equal to max(~ c'(X~): Xi 's  are kernels, Xi  c X2 ~ �9 �9 �9 c Xk and no arrow enters more 

than one X~). 

Proof. Theorem i provides a covering C and a family ~: of  disjoint directed cuts 

8(Xi) such that IcI = I~1 <-Y. c'(X,)~ Icl, i.e. IcI =)2 c'(X,). Making use of Theorem 
3.7 we can apply a well-known trick [11] to 'uncross '  {Xi}. Namely, let us choose 

{X~} in such a way that [ C [ = ~  c'(Xi), 8(X~) are pairwise disjoint, and Y. [X~[ 2 is 
maximal. We claim for each i, j that X~ c Xj or Xj c Xi. If  this were not true for X~ 

and X2, say, in the directed cut family replace X~ and X2 by X~ ~ )(2 and X~ u X2. 

Applying Theorem 3.7 we get ICI ~ c'(Xl)~> Y c'(X,)= ICI, i.e.Y, c'(X'~)= Ifl  and 
ElXll-'>Ylx, I 2, a contradiction. [] 
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Next, let us consider a T-cut theorem of Lovfisz analogous to Theorem I. 

Theorem 4 [5]. In a graph the minimum cardinalitv of a T-join is equal to the one-half 
of  the maximum number of half-disjoint T-cuts. 

Unfortunately the analogy is not quite perfect. K4 shows that the minimum 
cardinality of a T-join may be strictly bigger than the maximum number  ofpairwise 

disjoint T-cuts. As we shall see, however, this nicer rain-max form is true for bipartite 
graphs. 

As in the directed case, set up the following problem. Given a fixed coboundary 

F = ~(X), determine minlC c~ F] over all T-joins C. Parallel to Theorem 2 we have 

Theorem 5. min]C c~ F] over T-joins C is equal to max ~ qr(Xi) over all partitions 
{X~} of X such that no edge connects distinct X~'s. 

Like in the digraph case, first we reduce the problem to bipartite graphs, as follows. 
Form a bipartite graph G ' = ( V , ,  V2; E) by shrinking the components  of X and 

V -  X into singletons. Let T' consist of those new nodes which came from a T-odd 
component.  After the shrinking, a T-join of" G transforms to a T ' - jo in  of  G' and 
conversely, since a graph has a T-join iff its components  are T-even, a T-join of 
G '  can be extended in V~ and V, to a T-join of  G. Hence the minimum value for 

G '  is the same as the minimum value for G, and therefore what we need is to find 
in G '  a T- jo in  of  minimum cardinality. 

Theorem 4 of course gives an answer, the following result of Seymour, however, 
provides a better one. 

Theorem6[13]. In a bipartite graph G = ( V I ,  V2; E) the minimum cardinality of  a 
T-join is equal to the maximum number of  pairwise disjoint T-cuts. 

From this one can easily deduce Theorem 4 by placing a new node on the middle 
of  each edge and keeping T unchanged. 

Here we shall prove another formula, similar to that in Theorem 2, for the minimum 
cardinality of  a T-join in a bipartite graph. Incidently, we get a proof  for Theorem 
6 which looks much simpler than the earlier proofs. 

Theorem 7. In a bipartite graph G = (VI, V2; E) the minimum cardinality of  a T-join 
is equal to 

max ~ qT(Xi) 

taken over all partitions {Xi} of V I. 

This theorem is considered as the main result of this section. It immediately 

implies Theorem 5. The nontrivial max/> min part of  Theorem 6 also follows easily 
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since the T-odd componen t s  of  G - X~ define disjoint T-cuts. Two further  consequen- 

ces will be ment ioned  at the end of  this section. 

At this point  we can observe a difference between T-cuts and directed cuts. For 

T-cuts the bipartite case (Theorem 6) is s tronger than the non-bipart i te  one (Theorem 

2) while Theorem 3 does not seem to imply the Lucches i -Younger  theorem. 
Before proving Theorem 7 we point  out that the minimal T-join problem is 

equivalent to finding a negative circuit in a •  graph. To be more precise 

suppose the edges o f  G are assigned weights + l  or - l .  

By the length w(P)  of  a path or circuit P we mean the sum of  its edge weights. 

A circuit is called negative if its length is negative. The distance A (u, v) of  two nodes 

u, v is the min imum length o f  a (simple) path between u and v. 

Theorem 6'. In a • 1-weighted bipartite graph there is no negative circuit i f  and only 

i f  there is a set o f  disjoint cuts such that every negative edge occurs in one o f  them and 

each cut contains only one negative edge. 

Theorem 7'. In a +l-weighted  bipartite graph G =(V~, V2; E)  there is no negative 

circuit i f  and only i f  there is a partition X i ,  X2 . . . .  , Xk o f  V I such that no component 

o f  G -  Xi is entered by more than one negative edge. 

Observe that a T-join F is minimal iff there is no negative circuit with respect to 

w where w ( e ) = - l  if e~ F and w(e )=  + l  if e c  E - F .  Now Theorem 7' implies 

Theorem 7 since a set X is T-odd i f X  is entered by exactly one edge o f  F. Conversely, 

for a given + l -weigh t ing  w set F = { e :  w ( e ) = - l }  and define 

T = {v: an odd  number  of  negative edges is incident with v}. 

Since no negative circuit exists, F is a minimal T-join; therefore by Theorem 7 
there is a partit ion { X i , . . . ,  Xk} of  Vi for which IFI = ~  qT(X~). This partition will 

do for Theorem 7' as well. 

The equivalence between Theorems 6 and 6' is seen similarly. 

Proof of Theorem 7'. The if part is s traightforward.  To see the other  direction, the 

next lemma is crucial. 

Lemma. Let G = ( V ~ ,  V2; E)  (IV~w V21>~3) be a simple bipartite graph and w a 

•  on E such that no negative circuit exists and there is a negative path 

between every two nodes  in the same class V~. Then G is a tree and w is - 1 everywhere. 

Proof. Let Xo be an arbitrary node. Let m = min A(Xo, x) and choose  a path Po = (Xo, 

xl, �9 �9 xn) f rom Xo to xn such that w(P0) = m and A (xo, x~) > m for 0 <~ i < n. Obviously 

m < 0  and w ( x n _ i x , ) = - - l .  

By induct ion the next claim implies the lemma. 
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Claim. x,_~x, is the only edge incident with x,. 

Proof. Suppose x,,y is another  edge (y # x.  ~). Now w(x.y) cannot  be - 1  since then, 

i f y  i's on Po, Po[yXn]Ux~y is a negative circuit, i f y  is not on Po, Po-~x.y is a path 
o f  length m -  1. 

By hypothesis  there is a negative path P between x. ~ and .v. By parity, w(P)<~ -2.  
P goes through xn, for otherwise P and x~ x ~  would form a negative circuit. 
Moreover  P traverses the edge x. ~x.. For  otherwise the length o f  segment P[x._ ~x,,] 
is at least +1 therefore the length of  P[x~y] is at most  -3 .  Thus P[x.y] and x.y 
would form a negative circuit. 

We also see that w(P[x, , ,y])>--I  and w( P[x,,, y]) <~ - l ,  i.e. C = P[x, ,y]+x~y is 

a circuit of  length 0 and x,, ~ is not on C. 

We claim that x,  is the only c o m m o n  node  of  C and 1~ If  not, let x be the next 

one on P0 starting at x,. By the choice o f  Po, w(P[x,, x ] ) < 0 .  Hence  the length of  
both arcs between x and x. on C is positive contradict ing that w ( C ) =  0. 

Now Po and P[x,y] have one node in c om m on ,  namely x,,, therefore Po u P[x,, y] 
is a simple path from xo to y the length o f  which is m -  I, a contradict ion.  O 

Turning back to the p roof  of  Theorem 7', we can suppose that G is simple and 

IV1 u V:I/> 3. There are two cases. 

Case 1: There are two nodes x, y in the same class V~ with no negative path 

between them. 

Identify x and y into a single new node  z. The resulting bipartite graph has no 

negative circuit. By induct ion there is a parti t ion with the desired property.  After 

splitting up z the same partition of  V~ satisfies the requirements.  

Case 2: There is a negative path between any two nodes in the same class Vi. 

Apply  the lemma. The required parti t ion consists o f  the singletons o f  V~. [ ]  

Next we exhibit a consequence  o f  Theorem 7. 

Theorem 8. In a graph G = (V, E) the minimum cardinality of  a T-join is equal to 
I 2 max ~. qr(V,) over all partitions { Vi} of  V. 

Proof. Place a new node  on every edge, keep T the same and apply  Theorem 7 to 
the resulting bipartite graph. []  

If  T consists o f  the nodes of  odd degree, Theorem 8 provides 

Corollary.  The minimum number of  edges in a graph G such that G becomes Eulerian 
by doubling these edges, is equal to ~ max ~ qo( Vi) over all partitions of  V where qo(X) 
denotes the number of  components C in V - X  for which d(C)  is odd. 

It is interesting that the same function qo plays a central role in Mader ' s  famous 

A-path  theorem [9]: Given a subset A = {vl . . . . .  Vk} of  nodes in G = (V, E) ,  the 
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m a x i m u m  n u m b e r  o f  pairwise  edge-d i s jo in t  pa ths  jo in ing  d is t inc t  nodes  o f  S is 
I - equal  to 2 m t n ~  ( d ( V ~ ) - q o ( u  V,)) over  all  famil ies  of  d i s jo in t  subsets  V, with 

E ~ A = { v , } .  

Fo rmu la t i ng  T h e o r e m  8 in terms o f  negat ive  circuits we get 

Theorem 8'. In a + 1 -weighted graph G = (V, E) there is no negative circuit iff there 

is a partition { V~} o f  V such that each component o f  V -  V~ is entered by at most one 

negative edge, and, fo r  each i, no negative edge has both ends in V~. 

This easily impl ies  

Berge-Tutte formula .  In a graph G = ( V, U) the max imum cardinality o f  a matching 

is ~ m i n ( - q v ( X ) + ]  V -  XI) .  

Proof.  To prove  the nontr iv ia l  inequal i ty  max/>  min,  we have to show a match ing  

F and a subse t  X c_ V such that  each c o m p o n e n t  o f  V - X  conta ins  at most  one 

node  not  covered  by  F and  for every node  v in X there is an o d d  c o m p o n e n t  Cv 

o f  V - X  (with C o #  C ,  if  u # v) and  an edge  in F connec t ing  v and  C~. 

Let F be a max ima l  matching.  Adjo in  a new node  r to the g r a p h  and lead new 

edges from r to the nodes  exposed  by  F. Define w ( e ) = - I  if  e c  F or e is a new 

edge and w ( e ) =  +1 if  e e  E -  F. Since F is max imal  this g raph  does  not  conta in  a 

negat ive  circuit .  

Cons ide r  the pa r t i t ion  p rov ided  by T h e o r e m  8'. Suppose  V~ con ta ins  r. It is easy 

to see that  F and X = V ~ - r  satisfies the requirements .  []  

Remark.  Or ig ina l ly  this pape r  was wri t ten  by  A. F rank  and I~. Tardos .  Their  p r o o f  

for Theorem 7' m a d e  use of  the deep  resul t  o f  Seymour  (Theorem 6) and was ra ther  

compl ica ted .  Before the  p a p e r  was f inished,  A. Seb5 d i scovered  that  Theorem 7' 

can be proved  d i rec t ly  and this a p p r o a c h  is much bet ter  s ince it p rov ides  a s imple  

p r o o f  for Seymour ' s  theorem as well. The re fo re  we have chosen  to inc lude  his proof.  

He also es tab l i shed  some fundamen ta l  s t ruc tura l  p roper t ies  o f  T-joins.  See [12]. 
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