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We prove that any totally dual integral description of a full-dimensional polyhedron is locally
strongly unimodular in every vertex.
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1. Introduction

Total dual integrality and local strong unimodularity have been used in different
papers to investigate the integrality of polyhedra (see e.g. Edmonds and Giles [3],
Hoffman and Oppenheim [7]). We prove here that the latter notion contains the
former one.

We refer to Schrijver [9] for the terminology and basic facts about polyhedra [9,
Part 1117, and for the elements of linear diophantine equations and lattices [9, Part
11].

Let Z and Q denote the sets of integers and rationals respectively, and let A be
an integral m x n matrix and he Q™.

The system of inequalities Ax < b is called rorally dual integral (TDI) if for each
weZ" for which min{yb|yA=w, y=0} exists, there is a yveZ™ attaining the
minimum. (In general, total dual integrality is also defined for non-integral matrices
A, but here we are only interested in integral matrices.)

If x, is an element of P:={xc Q"| Ax < b}, denote by A(x,) the matrix consisting
of those rows a; of A for which a;x, = b,. The system of inequalities Ax =< b is called
locally strongly unimodular (LSU) in vertex x;, of P if A(x,) has an n X n submatrix
with determinant 1.
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Hoffman [5] proved for pointed polyhedra and Edmonds and Giles [3] proved
in general that if Ax<b is TDI and beZ", then P is integral, i.e. each face of P
contains an integral point. (Fulkerson [4] proved this earlier for 0-1 matrices.
Edmonds and Giles’ results motivated the study of lattices that led to fundamental
results in integer programming, see [9].) In the present note we sharpen this result
by proving the following theorem. For the sake of simplicity we state the theorem
for vertices only (for the general case see the remark below).

Theorem 1. Let Ax<b be a totally dual integral system of inequalities such that
P={xeQ"|Ax=<b} is full-dimensional. Then Ax<b is locally strongly unimodular
in every vertex of P.

The proof of Theorem 1 will be postponed to section 3. As a consequence,
theorems of Hoffman and Oppenheim, stating that some TDI descriptions of
matching and b-matching polyhedra are LSU, follow, and are even sharpened:
Theorem 1 states that every, in particular the minimal, TDI description of a
full-dimensional polyhedron is LSU in every vertex. (Full-dimensional polyhedra
have a unique minimal TDI description, see Schrijver [8] or [9, Theorem 22.6].
Cook and Pulleyblank [2] call such a minimal TDI description the Schrijver system
of the polyhedron.) New results follow from Theorem 1 by applying it to other TDI
systems: e.g. to any description of the clique or the stable set polytope of a perfect
graph, since the facets make up already a TDI system. Moreover the Schrijver
systems for (maybe capacitated) b-matching polyhedra and t-join polyhedra (Cook
and Pulleyblank [2], Sebs [10] respectively) are LSU.

Throughout this text r( V) and r(M) denote the linear rank of the set V< Q" and
of the matrix M respectively.

Remarks. For the sake of simplicity and in view of the applications cited above we
have chosen to define local strong unimodularity only with respect to a vertex of P
and we restricied ourselves in Theorem 1 to the case that P is full-dimensional.
Below we explain how to generalize the notion of local strong unimodularity to be
able to obtain more general results. It will turn out that the restrictions are not really
essential and are more of a technical nature.

Let ATx<b" denote the subsystem of Ax<b consisting of those inequalities
a;x < b, for which there exists an x, € P satisfying Axo< b and axo<b;,.Let ATx=<b~
denote the remaining inequalities in Ax<b (i.e., the so called implicit equalities).

Let x, be an arbitrary element of P:={xeQ"|Ax < b} and denote by A*(x,) the
matrix consisting of those rows a; of A™ for which a,x,= b,. Let r be the rank of
A" (x,). We say that Ax<b is LSU' in x, if r =0 (i.e., there exists no row a; of A"
with a;x,=b;) or there exists an r x n submatrix M of A™(x,) such that the g.c.d.
of all r x r subdeterminants of M is 1. (Since the faces of P can be defined as sets
of the form {x e P| A*(x) = A"(x,)}, LSU’ concerns faces of polyhedra.) LSU’ does
not depend on implicit equalities and if P is full-dimensional and x, is a vertex of
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it, then P is LSU’ in x, iff it is LSU in x,. If P is not full-dimensional and Ax<b
is LSU" in x,, then by choosing the description of the affine hull appropriately (i.e.,
assuming that A~ is a basis of the lattice generated by A7) it is also LSU in x,.
Thus LSU’-ness is essentially the extension of LSU-ness to arbitrary faces of an
arbitrary polyhedron.

The following can be proved similarly to the proof of Theorem 1 in Section 3.

If Ax<b is a TDI system, then Ax< b is LSU’ in every x< P,

In fact essentially this is the result which is proved in Section 3.

2. Hilbert bases

Giles and Pulleyblank [5], and Schrijver [8] (cf. [9, Theorem 22.5]) make clear
that total dual integrality is closely related to a more algebraic notion, the notion
of Hilbert bases.

If V={v,,...,v.}<=Z", then the conic hull of V is the set

k
cone(V)::{Z Aivi| A €Q, )\iBO(i=1,...,k)}.
i=1

We call cone (V) pointed it"Zf:, Av;=0,A,=0(i=1,..., k) implies that A,=+ - - =
A=0.H={h,,..., i }=Z" is called a Hilbert basis, if for every z e cone (H)n2Z"
there exist non-negative integers o, ..., a, such that z=ZL, a;h;. The following
statement has been used in Giles and Pulleyblank [5], and Schrijver [8] (cf. Schrijver
[9, Theorem 22.8], it can be proved easily).

(1) Ax<b is TDI if and only if for every face F of {x € Q"|Ax< b} the set of all
rows a; of A for which x € F implies ax = b;, forms a Hilbert basis.

This explains that any statement for Hilbert bases has an implication for TDI
systems. For example the simple property of a Hilbert basis H that every integral
vector in its linear hull is an integer combination of elements of H (cf. [1, Theorem
2.4b]) implies that if Ax=<2b is TDI then it is locally unimodular in every vertex
(Ax < b is locally unimodular in a vertex x, if the g.c.d. of the n x n subdeterminants
of A(x,) is 1; Hotfman and Oppenheim [7]). Local strong unimodularity will follow
from the following stronger but still easy statement:

(2) If H=Z"is a Hilbert basis, r = r(HY), and cone(H) is pointed, then there exist
vectors hy, ..., h in H such that {h,, ..., h} is linearly independent and is a Hilbert
basis.

We postpone the proof of (2) until Section 3. We finish this section with a trivial
statement characterizing linearly independent Hilbert bases.
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(3) The following statemenis about {h,, ..., h,}< Z" are equivalent:

(i) {hy, ..., h} is linearly independent, and it is a Hilbert basis.

(i) If Z,L. Ahyisintegral, A, eQ, 0= A, <1 (i=1,...,F), then A,=---=A,=0.
(iii) The g.c.d. of the rx r subdeterminants of the matrix formed by h,, ..., h, is 1.

(Each of (i)=(ii), (it)=>(iii), (iii)=(i) can be proved straightforwardly.)

3. Proof of Theorem 1

First we prove (2). We need the following lemma.

Lemma. Lei H be a Hilbert basis such that cone(H) is full dimensional. Moreover
let vx=0 be a facer inducing inequality for cone(H). If the components of v are
relatively prime integers, then there exists an he H with vh= 1.

Proof. Since g.c.d. {v;[j=1,..., n}=1 there exists an x,€ Z" with vx,= 1. First we
show that we may assume x,€ cone( H). Suppose x,Z cone(H). Let vx=0 (v, € Z",
i=1,...,1) be the complete list of those facet inducing inequalities for cone(H)
for which vx,<0. Since no two facets can contain one another, there exists for
each i=1,...,k an x;econe( H) such that vx; =0 and v;x; > 0. We may suppose
x,eZ"(i=1,...,1). Clearly, x:= -Y<)+Z:,.l (— vy} x; satisfies all the facet inequalities
for cone( H). Moreover vx = 1. Hence the assumption x, € cone{ H) was correct.
Since x, is integral, we have

k
Xo= ) a;h; withe, 20, 0,67 (i=1

=1

Soes K.

Now

A k
S a(vh) = u( Y a,h,) =px,=1.

ool i1
Since both «, and vh, are non-negative integers for each i=1,... k, there exists an
ie{l,..., k} with vh;=1.

Proof of (2). Let H be a Hilbert basis, and suppose cone(H) is pointed. We use
induction on r= r( H). We may assume that cone(H) is full dimensional, i.e. r=n.
(Indeed, if not take a basis for the lattice of all integral vectors in the linear hull
of H. One may use this basis to obtain a unimodular transformation mapping the
linear hull of H onto the linear space of vectors having the last n —r components
zero.) It follows that there exists a facet inducing inequality vx =0, v integral, and
a vector, h, say, in H such that vh, =1 (by the Lemma). The set H,={he H|vh =0}
1s a Hilbert basis, r(H,)=r—1, and cone( H,) is pointed. By induction there exist
vectors hry,..., h,_,in H, such that {h,,..., h,_,} is a linearly independent Hilbert
basis. Obviously {h,, ..., h,}is linearly independent. Tt is a Hilbert basis too. Indeed,
let w be an integral vector satisfying w =73 | A;h; for certain A, € @ with 0=, <1
for i=1,...,r. Then A, =Y , A;(vh)=vw is an integer, so A,=0. Since
{h,,..., h._\} is a linear independent Hilbert basis we get A, =---=A,_,=0 ((3)
(i)=(ii)). Now (3) (ii)=>(i) yields that {h,, ..., h,} is a Hilbert basis.
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Finally we prove Theorem 1.

Proof of Theorem 1. Let Ax < bbe TDI, and let x,be a vertex of P:={x € Q"| Ax =< b}.
Moreover let P be full-dimensional. Denote the set of rows of A(x,) by H. By (1)
H is a Hilbert basis. Since P is full-dimensional, cone(H) is pointed. Now using
(2), (3) (i)=>(iii), and the fact that r(H)=r(A(x,)) =n we get that A(x,) has an
n X n submatrix of determinant 1. So Ax<b is LSU in x,.
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