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We prove that any totally dual integral description of a full-dimensional polyhedron is locally 
strongly unimodular in every vertex. 
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1. Introduction 

Total  dual  in tegral i ty  and local s t rong un imodu la r i t y  have been used in different 

papers  to invest igate  the in tegra l i ty  o f  p o l y h e d r a  (see e.g. E dmonds  and  Gi les  [3], 

Hof fman  and  O p p e n h e i m  [7]). We prove here that  the lat ter  not ion conta ins  the 

former  one.  

We refer  to Schr i jver  [9] for the t e rmino logy  and  basic  facts about  po lyhed ra  [9, 

Part  I l l ] ,  and  for the e lements  o f  l inear  d i o p h a n t i n e  equat ions  and latt ices [9, Part 

1H. 
Let g and  Q deno te  the sets of  integers and ra t ionals  respect ively,  and  let A be 

an integral  m x n matr ix  and b c Q"'. 

The system of  inequal i t ies  A x  <~ b is cal led totally dual integral (TDI)  if for each 

wcTY ~ for  which m i n { y b [ y A =  w,y~>0} exists,  there  is a y c g ' "  a t ta in ing the 

min imum.  ( In  genera l ,  total  dual  in tegra l i ty  is also def ined for non- in tegra l  matr ices 

A, but  here  we are only  interested in integral  matr ices . )  

I f  xo is an e lement  o f  P := {x c Q " [ A x  ~ h}, denote  by A(xo) the matr ix  consis t ing 

o f  those rows a; o f  A for which aixo = bi. The system of  inequal i t ies  A x  <~ b is cal led 

locally strongly unimodular (LSU) in vertex xo o f  P if A(xo)  has an n x n submat r ix  

with d e t e r m i n a n t  •  
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Hoffman [5] proved for pointed polyhedra and Edmonds and Giles [3] proved 

in general that if A x  <~ b is TDI and b c Z", then P is integral, i.e. each face of P 

contains an integral point. (Fulkerson [4] proved this earlier for 0-1 matrices. 

Edmonds and Giles' results motivated the study of lattices that led to fundamental 

results in integer programming, see [9].) In the present note we sharpen this result 

by proving the following theorem. For the sake of simplicity we state the theorem 

for vertices only (for the general case see the remark below). 

Theorem 1. Let Ax<~ b be a totally dual integral system o f  inequalities such that 

P := {x ~ Q " ] A x  <~ b} is full-dimensional. Then Ax<~ b is locally strongly unimodular 

in every vertex of  P. 

The proof of Theorem 1 will be postponed to section 3. As a consequence, 

theorems of Hoffman and Oppenheim, stating that some TDI descriptions of 

matching and b-matching polyhedra are LSU, follow, and are even sharpened: 
Theorem 1 states that every, in particular the minimal, TDI description of a 

full-dimensional polyhedron is LSU in every vertex. (Full-dimensional polyhedra 

have a unique minimal TDI description, see Schrijver [8] or [9, Theorem 22.6]. 

Cook and Pulleyblank [2] call such a minimal TDI description the Schrijver system 

of the polyhedron.) New results follow from Theorem 1 by applying it to other TDI 

systems: e.g. to any description of the clique or the stable set polytope of a perfect 
graph, since the facets make up already a TDI system. Moreover the Schrijver 

systems for (maybe capacitated) b-matching polyhedra and t-join polyhedra (Cook 

and Pulleyblank [2], Seb6 [10] respectively) are LSU. 

Throughout this text r(V) and r ( M )  denote the linear rank of the set V c  Q" and 

of the matrix M respectively. 

Remarks. For the sake of simplicity and in view of the applications cited above we 

have chosen to define local strong unimodularity only with respect to a vertex of P 
and we restricted ourselves in Theorem 1 to the case that P is full-dimensional. 

Below we explain how to generalize the notion of local strong unimodularity to be 

able to obtain more general results. It will turn out that the restrictions are not really 

essential and are more of a technical nature. 

Let A+x  <~ b + denote the subsystem of Ax <~ b consisting of those inequalities 

a~x <~ bi for which there exists an x0 ~ P satisfying Axo <~ b and a~xo < bi. Let A =x <~ b = 

denote the remaining inequalities in A x  <~ b (i.e., the so called implicit equalities). 
Let Xo be an arbitrary element of P := {x ~ Q " I A x  <~ b} and denote by A+(xo) the 

matrix consisting of those rows ai of A + for which a~xo = b~. Let r be the rank of 

A+(xo). We say that A x  <~ b is LSU' in x0 if r = 0 (i.e., there exists no row a~ of A + 

with a~xo = bg) or there exists an r • n submatrix M of A+(xo) such that the g.c.d. 

of all r • r subdeterminants of M is 1. (Since the faces  of P can be defined as sets 

of the form {x c P[ A+(x)  = A+(xo)}, LSU' concerns faces of polyhedra.) LSU' does 

not depend on implicit equalities and if P is full-dimensional and Xo is a vertex of 
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it, then P is LSU' in xo iff it is LSU in xo. If  P is not full-dimensional and A x  <~ b 

is LSU' in Xo, then by choosing the description of the affine hull appropriately (i.e., 
assuming that A -  is a basis of the lattice generated by A : )  it is also LSU in x0. 
Thus LSU'-ness is essentially the extension of LSU-ness to arbitrary faces of  an 
arbitrary polyhedron. 

The following can be proved similarly to the proof  of Theorem 1 in Section 3. 

I f  A x  ~ b is a T D I  system, then A x  <~ b is L S U '  in every x c P. 

In fact essentially this is the result which is proved in Section 3. 

2. Hilbert bases 

Giles and Pulleyblank [5], and Scbrijver [8] (cf. [9, Theorem 22.5]) make clear 
that total dual integrality is closely related to a more algebraic notion, the notion 
of Hilbert bases. 

I f  V =  { v ~ , . . . ,  vk}c Y", then the conic hull of V is the set 

cone(V):={~,=~ h,v~lAicQ,  hi>~O ( i =  l . . . . .  k ) ) .  

We call cone (V) pointed if ~ =  ~ hivi = 0, hi/> 0 (i = 1 . . . . .  k) implies that h l . . . . .  
hk = 0. H = {h~ , . . . ,  hk}= 7/" is called a Hilbert basis, if for every z ~ cone (H)  c~Y" 
there exist non-negative integers a ~ , . . . ,  OLk such that z = ~ : ~  aihi. The following 

statement has been used in Giles and Pulleyblank [5], and Schrijver [8] (cf. Schrijver 
[9, Theorem 22.8], it can be proved easily). 

(1) A x  <~ b is T D I  (1" and onl.v if .for every face  F o f  {x c Q"I A x  <~ b} the set o f  all 

rows ai q f  A f o r  which x c F implies aix - hi, j b r m s  a Hilbert basis. 

This explains that any statement for Hilbert bases has an implication for TDI 
systems. For example the simple property of a Hilbert basis H that every integral 
vector in its linear hull is an integer combination of elements of  H (cf. [1, Theorem 
2.4b]) implies that if Ax<~ b is TDI then it is locally unimodular in every vertex 
( A x  <~ b is locally unimodular in a vertex Xo if the g.c.d, of the n x n subdeterminants 
of  A(xo) is 1; Hoffman and Oppenheim [7]). Local strong unimodularity will follow 
from the following stronger but still easy statement: 

(2) l f  H c ~" is a Hilbert basis, r = r ( H ) ,  and cone(H)  is pointed, then there exist 

vectors h~ . . . .  , hr in H such that {h~, . . .  , h,} is linearly independent and is a Hilbert 

basis. 

We postpone the proof  of  (2) until Section 3. We finish this section with a trivial 
statement characterizing linearly independent Hilbert bases. 
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(3) The following statements about { h i , . . . ,  h, } c 77" are equivalent: 

(i) { h ~ , . . . ,  h,.} is linearly independent, and it is a Hilbert basis. 

(ii) I fY~=~3./7~isintegra/ ,  3.~cQ, 0<~3.1<1 ( i =  l , . . . ,  r), then3.~ . . . . .  3.,.=0. 

(iii) The g.c.d, o f  the r x  r subdeterminants o f  the matrix formed  by h ~ , . . . ,  hr is 1. 

(Each of  ( i ) ~ ( i i ) ,  ( i i ) ~ ( i i i ) ,  ( i i i ) ~ ( i )  can be proved  s t ra ight forwardly . )  

3. Proof  of  Theorem 1 

First we prove (2). We need the fo l lowing lemma.  

Lemma. Let H be a Hilbert basis such that c o n e ( H )  is full  dimensional. Moreover 

let vx>~O be a facet  inducing inequality ./or c o n e ( H ) .  / f  the components o f  v are 

relatively prime integers, then there exists an h c H with vh = 1. 

Proof.  Since g.c.d. { v i [.j = 1 . . . .  , n} = 1 there exists an x0 c a[" with vxo 1. First we 

show that  we may assume xo c c o n e ( H ) .  Suppose  x,)Z c o n e ( H ) .  Let v~x ~ 0 (v~ c Y_", 

i = 1 , . . . ,  t) be the comple t e  list of  those facet inducing  inequal i t ies  for c o n e ( H )  

for  which vix(,<O. Since no two facets can conta in  one another ,  there exists for 

each i =  1 , . . . ,  k an x~ ~ cone ( /4 )  such that  vx~ = 0 and v~x~> 0. We may suppose  
t 

x~ c ~" ( i = 1 . . . . .  t). Clear ly ,  x := Xo + ~ t ( -  v~xo)x, satisfies all the facet inequal i t ies  

for c o n e ( H ) .  Moreove r  vx = t. Hence the a s sumpt ion  x,  c c o n e ( H )  was correct.  

Since xo is integral,  we have 
k 

xo= 3- ceih i withc~i~>0, c~,~aY- ( i = 1  . . . . .  k). 
i = l  

Now 

~ , ( v h ~ ) =  v a~h, = v x , =  I. 
i ,1  i 1 

Since both a, and vh, are non-negat ive  integers for each i =  1 , . .  k, there exists an 

i e { 1 , . . . , k }  with v h i = l .  

Proof  of (2). Let H be a Hi lber t  basis,  and suppose  c o n e ( H )  is po in ted .  We use 

induct ion  on r :=  r ( H ) .  We may assume that  cone (F / )  is full d imens iona l ,  i.e. r =  n. 

( Indeed ,  if not take a basis  for the lat t ice of  all integral  vectors in the l inear  hull 

o f  H. One may use this basis to obta in  a u n i m o d u l a r  t r ans fo rmat ion  m a p p i n g  the 

l inear  hull o f  H onto the l inear  space  of  vectors  having the last n - r componen t s  

zero.) It fol lows that  there  exists a facet inducing  inequal i ty  vx > 0, v integral ,  and  

a vector,  hr say, in H such that vhr = 1 (by the Lemma) .  The set F/~, := {h ~ H I vh = 0} 

is a Hi lber t  basis,  r(H,,)  = r -  1, and  cone(H~,) is poin ted .  By induc t ion  there exist 

vectors h ~ , . . . ,  h, ~ in H,, such that  { h ~ , . . . ,  h, ~} is a l inear ly i n d e p e n d e n t  Hi lber t  

basis.  Obvious ly  { h , , . . . ,  hr} is l inear ly independen t .  It is a Hi lber t  basis  too. Indeed ,  

let w be an integral  vector  sat isfying w = ~ ,  ~,~hi for certain 3.~cQ with 0<~A,< 1 

for i = l , . . . , r .  Then ar=Y~'~ jA~(vh~)=vw is an integer,  so 3.,.=0. Since 

{ h j , . . . , h r  L} is a l inear  i ndependen t  Hi lber t  basis we get 3.~ . . . . .  3 . r_ j=0  ((3) 

(i)==>(ii)). Now (3) ( i i ) ~ ( i )  yields that  { h ~ , . . . ,  h~} is a Hi lber t  basis.  
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Fina l ly  we prove  Theo rem 1. 

73 

Proof  of  Theorem 1. Let Ax <~ b be TDI ,  and let xo be a vertex of  P := {x c Q"[ Ax <~ b}. 
Moreover  let P be ful l -d imensional .  Denote  the set o f  rows o f  A(xo) by H. By (1) 

H is a Hilbert basis. S ince  P is fu l l -d imensional ,  c o n e ( H )  is pointed.  N o w  using 

(2),  (3) ( i ) ~ ( i i i ) ,  and the fact that r ( H ) =  r(A(xo))= n we get that A(xo) has an 

n • n submatrix  o f  determinant  1. So Ax<~ b is LSU in xo. 
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