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CNRS, Laboratoire G-SCOP, 46, Avenue Félix Viallet,
38000 Grenoble 38031 Grenoble, Cedex 1, France

Andras.Sebo@g-scop.inpg.fr

Abstract. A polyhedron P has the integer decomposition property, if
every integer vector in kP is the sum of k integer vectors in P . We ex-
plain that the projections of polyhedra defined by totally unimodular
constraint matrices have the integer decomposition property, in order to
deduce the same property for coflow polyhedra defined by Cameron and
Edmonds. We then apply this result to the convex hull of particular stable
sets in graphs. Therebye we prove a generalization of Greene and Kleit-
man’s well-known theorem on posets to arbitrary digraphs which implies
recent and classical purely graph theoretical results on cycle covers, is
closely related to conjectures of Berge and Linial on path partitions, and
implies these for some particular values of the parameters.

1 Introduction

Partitioning the vertex-set of a graph by a minimum number of paths is one of
the most natural problems concerning graphs. Minimizing the number of paths
in such a partition contains the Hamiltonian Path problems both in the directed
and undirected case.

For undirected graphs some variants involve matching theory some others the
connectivity of graphs. Some results concern only particular classes of graphs.
The only general result about minimum partitions of the vertex-set into paths
in undirected graphs concerns intersection graphs of paths in a tree, by Monma
and Wei [27], a class later generalized in [19], [20].

For digraphs, a classical theorem of Gallai and Milgram relates the problem
to the stability number of a graph. Path partitions in digraphs have been treated
both with elegant graph theory, network flows, and polyhedral combinatorics,
but have not yet revealed all of their secrets:

Conjectures of Berge [4] and Linial [26] about the relation of maximum sets
of vertices inducing a k-chromatic subgraph and particular path partitions resist
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through the decades. Hartman’s excellent survey [22] witnesses of the variety of
the methods that have been tried out with a lot of partial results but no break-
through as far as the general conjectures are concerned. Some other conjectures
are less well-known or have not yet been stated.

Led by analogies, we ask and answer in this talk more questions, and point
at some connections.

Section 2 states analogous pairs of theorems on path partitions and cycle
covers.

Section 3 presents the results concerning cycle covers deducing all from a gen-
eral theorem proved with the help of the property of a corresponding polyhedron:
the integer decomposition property.

Section 4 presents some results on path partitions, and some connections of
these to cycle covers.

Notation and Terminology: Let G = (V, E) a digraph. A path of a digraph
is an ordered set P = (v1, . . . , v|P |) of vertices, all different, so that vivi+1 ∈ E
(i = 1, . . . , |P | − 1). We will denote ini(P ) := v1 the initial (first) vertex of
a path and ter(P ) := v|P | the terminal (last) vertex of it. For us a path will
be a vertex-set, that is, with an abuse of notation we will apply set-operations
involving a path P , and in this case P is just the set of its vertices. If the first
and last points are equal it is called a cycle which also included one element
sets (even if there is no incident loop). A subpartition is just a family of disjoint
subsets of V .

For a family of sets P , R(P) := V \ ∪P . This complementation concerns the
complement with respect to the graph in which it is defined. If we delete some
vertices and the new vertex set is V ′, for a subpartition P ′ of V ′, R(P ′) is defined
as R(P ′) := V ′ \∪P ′. We apply this notation only when the vertex-set to which
we apply it is clear. A subpartition of paths is a path partition if and only if
R(P) = ∅.

If we do not say otherwise, G = (V, E) is a digraph, n := |V | and m := |E|.
A stable set is a subset of vertices that does not induce any edge. The maxi-

mum size of a stable set of a graph G is denoted by α = α(G). The maximum
size of a k-chromatic induced subgraph (equivalently, the union of k stable sets)
is denoted by αk; α1 = α. The chromatic number, denoted by χ = χ(G), is the
minimum of k such that αk = n. The minimum size of a partition into paths
is denoted by π = π(G), and the minimum cover by cycles is ζ = ζ(G). By
convention {v} is also a cycle for all v ∈ V (and it is of course a path too). So
π, ζ ≤ n. The number of vertices of the longest path is denoted by λ = λ(G).

Two families of sets are called orthogonal if taking any set of each, the inter-
section is always 1. A family is said to cover a set, if the union of its members
contains the set.

The subgraph induced by a set X ⊆ V will be denoted by G(X), just replaced
by X to avoid double parentheses, for instance α(X) := α(G(X));“strongly
connected” will sometimes be replaced by strong.
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2 Pairs of Assertions

2.1 Tournaments (α = 1)

A tournament is an oriented complete graph.

Theorem 1 (Rédei [28]). Let G be a tournament. Then it has a Hamiltonian
Path.

Theorem 2 (Camion [12]). Let G be a strong tournament. Then it has a Hamil-
tonian Cycle.

We state “loose” and “tight” versions of some assertions. The former refers to
inequalities that generalize the nontrivial inequalities of minmax theorems (of
Dilworth’s, of Greene-Kleitman’s or of some more recent ones), and the latter
generalize “complementary slackness” (the sstructure implied by the equality in
these inequalities).

2.2 Stability (k = 1, loose)

Theorem 3 (Gallai, Milgram [17]). Let G be an arbitrary digraph. Then α ≥ π.

Theorem 4 (Bessy, Thomassé [7], Gallai’s conjecture [16]). Let G be strong .
Then α ≥ ζ.

Specializing these to acyclic transitive digraphs both imply the nontrivial part of
Dilworth’s theorem stating equality in the former theorem for acyclic transitive
digraphs (posets), see for instance [33]. To deduce it from the latter theorem,
we first have to make an acyclic transitive digraph strongly connected. This can
be done for instance by adding a “supersource” and joining it to all the vertices
of 0 indegree (sources), adding a “supersink” and joining all the vertices of 0
outdegree (sinks) to it, and adding an arc from the supersink to the supersource.
(Just one vertex joined to and from all vertices is also a possible choice.)

2.3 Stability (k = 1, tight)

Any proof of the Gallai-Milgram theorem obviously provides the following:

Theorem 5. Let G be an arbitrary digraph. Then there exists a path partition
P of G and a stable set orthogonal to P.

Since Theorem 4 is the weakening of a min-max theorem, the condition of equal-
ity (“complementary slackness”) easily implies:

Theorem 6. Let G be a strong digraph. Then there exists a cycle cover C of G
and a stable set S orthogonal to C, where each element of S is covered by exactly
one member of C.

Of course these statements can also be specialized to Dilworth’s theorem, with
the same reduction as before.
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2.4 Coloring (k = λ, loose)

Theorem 7 (Gallai, Roy [18], [29]). Let G be an arbitrary digraph. Then there
exists a path of size at least χ.

Theorem 8 (Bondy [8]). Let G be a strong digraph. Then there exists a cycle
of size at least χ.

2.5 Coloring (k = λ, tight)

Any proof of the Gallai-Roy theorem obviously provides the following:

Theorem 9. [8] Let G be an arbitrary digraph. Then for any longest path there
exists a colouring whose color classes are orthogonal to the path.

Bondy’s theorem does correspond to an LP duality theorem, but the vertices are
not stable sets and cycles ; the corresponding polyhedron does have fractional
vertices [31], and it is not evident how it would imply an analogous theorem for
the longest cycle in a strongly connected graph. Nevertheless, this tight version
of Bondy’s theorem is true, and this is actually what Bondy proved:

Theorem 10. [8] Let G be a strong digraph. Then there exists a cycle and a
colouring so that the color classes are orthogonal to the cycle.

Here is a somewhat different structural sharpening of the Gallai-Roy theorem:

Conjecture 1 (Laborde, Payan, Xuong [25]). Let G be an arbitrary digraph.
Then there exists a stable set in G that meets every longest path.

Could this be true replacing “longest path” by “longest cycle” in strongly con-
nected graphs ?

2.6 General (Loose)

Conjecture 2 (Linial [26]). Let G be a digraph. Then αk ≥ minX⊆V {|X | +
kπ(V \ X)}.
Theorem 11 (Sebő [31]). Let G be a strong digraph. Then αk ≥ minX⊆V {|X |+
kζ(V \ X)}.
Corollary 1 (Greene-Kleitman [21]). Let G be a transitive acyclic digraph.
Then αk = minX⊆V {|X | + kζ(V \ X)}.
Indeed, for transitive acyclic digraphs “ ≤ ” is easy, and to prove the nontrivial
inequality of the Greene-Kleitman theorem, the reduction of Subsection 2.2 to
strongly connected graphs works again. So the corollary indeed follows from
the preceding theorem. Note that the right hand side of the Greene-Kleitman
theorem or of Linial’s conjecture is usually written as min{∑P∈P min{|P |, k} :
P is a path partition}, and this sum is called the k-norm of P .



Path Partitions, Cycle Covers and Integer Decomposition 187

2.7 General (Tight)

The following is a simple already unknown version of Berge’s conjecture. It im-
plies Linial’s conjecture. (The two conjectures have been stated independently.)

Conjecture 3 (Berge [4]). Let G be a digraph, and k ∈ IIN, k ≥ 1. Then there
exists X ⊆ V , a path partition P of V \X, and k disjoint stable sets orthogonal
to P whose union contains X.

We prove now the cycle cover version of this conjecture. Note that there are
several options here for replacing “there exists” by “for all”. Berge originally
stated for all X ⊆ V , and path partition P of V \ X minimizing |X | + k|P|.
We will call this strongest conjecture since it implies the above weaker assertion
which implies in turn Linial’s conjecture.

Theorem 12 (Sebő [31]). Let G be a strong digraph, and k ∈ IIN, k ≥ 1. Then
there exists X ⊆ V , a cycle cover C of V \X, and k disjoint stable sets covering
X, all orthogonal to C. Furthermore, each element of the stable sets is covered
by at most one member of C.

This last theorem easily implies all that has been previously stated about covers
in strongly connected graphs:

It shows k stable sets whose union U satisfies |U | = |X |+k|C| for some X ⊆ V
and cycle cover C of V \X . Theorem 11 follows since αk ≥ |U |. Theorem 12 and
Theorem 11 are central in our presentation. We show here how they can be
proved through the integer decomposition property of coflow polyhedra, and
how they can be useful.

Theorem 8 follows from Theorem 12 because choosing k to be the size of the
longest cycle, |X |+ k|C| ≥ |X |+ | ∪ C| ≥ n, so the union of the k disjoint stable
sets provided by Theorem 12 is at least n. So G can be colored with k colors.

The k = 1 special case of Theorem 12 is Theorem 6, itself implying Theorem 4.
Indeed, in this case the elements in X can be replaced by 1-element cycles.

Theorem 12 will, in turn, be proved in Section 3.3.

3 Cycle Covers

The ultimate goal of this section is to prove the second theorem of each subsec-
tion of Section 2. They have already been proved from Theorem 12, and here
we will prove this latter. There are some interesting tools on the way, and they
will lead us further: the integrality and integer decomposition property of coflow
polyhedra, and the coherent orders of Knuth, Bessy and Thomassé. For the no-
tations and basic notions from polyhedral combinatorics (including TDI, integer
decomposition, etc.) we refer in this extended abstract to [32], [33]. The talk will
be self-contained.
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3.1 Coflows and Integer Decomposition

We wish to introduce here a ready to use helpful treatment of node-capacitated
circulation problems. The idea is well-known: node-capacities can be reduced
to edge-capacities by splitting each vertex v into two copies, an in-copy vin

and an out-copy vout and adding the arc vinvout with the given vertex-capacities
(possibly lower and upper), see [32], [11]. It is less well-known that relevant cycle-
cover or cycle packing problems arise in this way and have useful properties, such
as box total dual integrality, primal integrality if the parameters are integers
[11], furthermore integer decomposition (below). This elegant tool defined by
Cameron and Edmonds is defined as follows:

The coflow system of inequalities Q(G, a, b, c), where G = (V, E) is a digraph,
a, b : V (G) → ZZ, c : E → ZZ is the following system in n := |V | variables xv

(v ∈ V ):

x(VC) ≤ c(EC) for every cycle C with vertex-set VC and edge-set EC ,

a ≤ x ≤ b.

The set of points x ∈ IRV satisfying the coflow inequalities Q(G, a, b, c) is
called the coflow polyhedron, and is denoted by Q(G, a, b, c). The coflow (primal)
problem P (G, a, b, c, w), where G, a, b, c are as before, and w : V (G) → ZZ, is the
following:

max{w�x : x ∈ Q(G, a, b, c)}

D(G, a, b, c, w) will denote the dual linear program, and opt(G, a, b, c, w) the
common optimum of the primal and the dual (which can also be infinite).

In [31] the coflow approach is followed by applying the splitting of vertices
case by case, without stating any general theorem. (Coflows have been so far
absent from books and surveys - we hope to contribute to their inclusion.) Both
in [11] and [31], primal integrality is deduced from the TDI property (the above
Lemma) through Edmonds and Giles’ theorem. However, [11] observes that pri-
mal integrality can be directly deduced proving that the coflow polyhedron is
the projection of the dual of a circulation problem, and in [31] the dual of the
stated flow problem provides an integer primal solution to coflows.

We express all this in a slightly simpler way using Charbit’s matrix from [13],
which is smaller and simpler than the network matrices from [11] (or [31]) :

Given a digraph G = (V, E), n := |V |, m := |E|, let A denote the 2n × m
matrix whose first n rows consist of the usual incidence matrix of G (one +1
and one −1 per column, the rest is 0) and the second m rows the same, except
that the +1 are replaced by 0. It is easy to see that this matrix A is totally
unimodular (as a submatrix of a network matrix, or see [13] end of Section 3.2).

Lemma 1. The coflow polyhedron Q(G, a, b, c) can be written as

Q(G, a, b, c) = {(yn+1, . . . , y2n) : y ∈ IR2n, yA ≤ c}. (1)
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Proof. (see [13] proof of Theorem 3.3 Claim 2, but our context here is sim-
pler.) Indeed, (y1, . . . , yn) is a potential for the weight function ce − ∑{yn+i :
vertex i is the tail of edge e}. However, a potential exists if and only if there is

no negative cycle, that is, along every negative cycle the sum of the yn+i does
not exceed the sum of the ce on the same cycle. 	

Lemma 2 (Coflow Theorem [9],[11]). Any system of coflow inequalities Q(G, a,
b, c) is TDI.

Proof. First proof: For every w : V (G) → ZZ the dual problem D(G, a, b, c, w)
is a problem of covering vertices by cycles which is a flow problem with w as
lower capacities on the vertices. Second proof: The dual solutions are the same
as the primal solutions of the LP with TU coefficient matrix in the preceding
lemma. 	

Surprisingly, these two three-line proofs are sufficient for getting our general
graph theory results in a straightforward way.

Lemma 3 (Baum, Trotter [3]). If A is totally unimodular, {y : yA ≤ c} has the
integer decomposition property.

Proof. Indeed, suppose ȳA ≤ kc. We have to show an integer vector yk, ykA ≤ c
for which

(ȳ − yk)A ≤ (k − 1)c.

Then the statement follows by induction on k. We have to find a linear solution
to

ȳA − (k − 1)c ≤ ykA ≤ c,

where ȳ, A, k, c are fixed and the entries of yk are the variables. This system
of linear inequalities has a solution, since yk := (1/k)ȳ is a solution. Since A is
unimodular, then it also has an integer solution, and the claim is proved. 	

We mimic now the same proof once more for handling projections:

Lemma 4. If Q ⊆ IRm′
, Q = {y : yA ≤ c} where A is totally unimodular, and

m < m′, then
P := {(y1, . . . , ym) : y ∈ Q}

has the integer decomposition property.

Proof. Let x ∈ kP ∩ZZm, that is, x/k ∈ P . By definition there exists (xm+1, . . . ,
xm′ , so that (x/k, xm+1, . . . , xm′) ∈ Q. So So (x, kxm+1, ...kxm′) ∈ kQ. It is
sufficient to show that x′ := (kxm+1, ...kxm′) can be chosen to be integer, because
then by the integer decomposition property of Q:

(x, x′) = y1 + . . . + yk, yi ∈ Q, and yi is an integer vector,

and letting xi be the vector formed by the first m entries of yi, we get

x = x1 + . . . + xk, xi ∈ P ∩ ZZm (i = 1, . . . k).
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Now x′ is a feasible solution of the equation xB + x′A′ ≤ c, where B is the
matrix formed by the first n rows of A, and where A′ is the rest of A. Since A
is totally unimodular, A′ is also totally unimodular, so the equation

x′A′ ≤ kc − xB,

– where k, c, x, B are fixed, all integer, and x′ is variable –, also has an integer
solution x′ (it does have a feasible solution x′, A′ is totally unimodular, and the
right hand side is integer). 	

In [31] flows are applied in each special case separatly: c takes there only two
different values in all of these– 0 and k ∈ IIN, which makes the proofs and
algorithms simpler. The integer decomposition property of Q(G, a, b, c) is also
proved for a special case, and turns out to be crucial for proving Theorem 11
and 12.

Integer decomposition makes possible the inclusion of unions of vertices of 0−
1 coflow polyhedra, establishing that these also form coflow polyhedra, analogously
with a similar matroid property.

It is unfortunate that these special cases were proved one by one in [31],
[13], without knowing about coflows. Several colleagues advised a similar unified
treatment – Attila Bernáth made a very concrete suggestion. Then I learned
about coflows from Irith Hartman, but the nontrivial graph theoretic proof of
the integer decomposition property in particular cases – where the tree is hiding
the forest – persisted. I have realized Lemma 4 only recently, and that proving
this property for coflows in general provides a much simpler proof of Theorem 15
than the proof we followed in [31]:

Theorem 13 (Coflow ID). Coflow polyhedra have the integer decomposition
property.

Proof. By Lemma 3, coflow polyhedra are of the form of the condition of
Lemma 4, therefore, by this latter Lemma, they have the integer decomposi-
tion property. 	


3.2 Coherence

Graph theory courses characterize strongly connected graphs with the existence
of an “ear decomposition” [33, Theorem 6.9]. Knuth’s characterization is then
at hand, and provides considerably more information:

Theorem 14 (Knuth). Let G = (V, E) be a strong digraph. Then for every
v ∈ V there exists an order v1, . . . , vn on V such that v1 = v, and

(i) Every e ∈ E is contained in a cycle C with at most one backward arc.
(ii) Every v ∈ V can be reached from v1 using only forward arcs.

A backward arc (with respect to a given order of the vertices) is an arc vivj ∈ E,
i > j, the other arcs are forward arcs.



Path Partitions, Cycle Covers and Integer Decomposition 191

Bessy and Thomassé [7] found the relevant part (i) independently, and de-
veloped it as a key to their proof of Gallai’s conjecture Theorem 4. (A sec-
ond ingredient was Dilworth’s theorem that has been traded for circulations
in [31].) Following them we call an order satisfying (i) coherent. They proved,
equivalently to (i), that every strong digraph has a coherent order. The
equivalence of this fact with Knuth’s theorem has been realized by Iwata and
Matsuda [23].

Four simple proofs of the existence of coherent orders in strongly connected
graphs, each providing its own insight, can be found in [7], [23], [24], [31].

Knuth proved this theorem as an application of his “Wheels within Wheels”
theorem [24]. Iwata and Matsuda found Knuth’s theorem in the archives, and
proved it shortly and constructively using the ear decomposition of strongly
connected graphs providing a measurable computational progress as well: it takes
O(nm) time to construct the order in Theorem 14, whereas a construction in
[31] based on different ideas takes O(n2m2) time. To prove the statement by
induction (ii) is useful.

Fixing an order, the index (or winding) ind(C) of a cycle C is the number of
its backward arcs, except for cycles {v} (v ∈ V ) for which we define ind({v}) = 1
(like if it had one “backward loop”). If C is a set of cycles, we denote

ind(C) :=
∑

C∈C
ind(C).

For any cycle C in any graph with any order, ind(C) ≥ 1, so for any set of cycles
C, we have ind(C) ≥ |C|.

3.3 Topping

At the end of Section 2 we deduced the Greene-Kleitman theorem, and well-
known results on cycle-covers, from Theorem 12. It is now the turn of Theorem 12
itself, completed by the following topping:

Given a graph G = (V, E) with an order on the vertex set, let us call a set S
satisfying

(COMB) |S ∩ C| ≤ ind(C), (i = 1, . . . k).

a cyclic stable set. (This notion is equivalent to a geometric notion of Bessy and
Thomassé [7]. The equivalence is proved in [31, (5)].)

The only thing we need here about cyclic stable sets though is that they are
indeed stable sets provided G = (V, E) with the given order is coherent. This
is true, because by coherence every arc e = ab ∈ E (a, b ∈ V ) is contained
in a cycle C with ind(C) = 1, so we get for the sets S satisfying (COMB):
|S ∩ {a, b}| ≤ |S ∩C| = 1. So for every arc ab ∈ E, S can contain at most one of
a and b.

Theorem 15 ([31] Theorem 3.1). Let G be a strong digraph given with a co-
herent order.
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max{|S1 ∪ . . . ∪ Sk| : Si (i=1,. . . k) is a cyclic stable set } =

= min{|R(C)| + k ind(C) : C is a set of cycles}.

Proof. Let G = (V, E) be strong and k ∈ ZZ. Apply Theorem 14 to G and fix
the coherent order it provides. Let B be the set of backward arcs, and define
cB,k(e) := k if e ∈ B, and 0 otherwise a := 0 ∈ ZZn, b := w := 1 ∈ ZZn

(constant 0 and constant 1 vectors, that we will simply denote by 0 and 1).
Then Q(G, 0, 1, cB,k) is the following system:

(kBT ) x(VC) ≤ k ind(C) for every cycle C with vertex-set VC , 0 ≤ x ≤ 1.

Claim 1: The optimum of P (G, 0, 1, cB,k, 1) is max |S1 ∪ . . . ∪ Sk|, Si ⊆ V
(i = 1, . . . k) satisfies (COMB).

Such a union defines a primal solution, so the optimum is at least this quan-
tity. To prove the equality, we show that the optimum xopt of P (G, 0, 1, cB,k, 1)
can be written in this form. Note Q(G, 0,∞, cB,k) = kQ(G, 0,∞, cB,1), so
P (G, 0, 1, cB,k, 1) is the problem

max 1�x, subject to x = (x1, . . . , xn) ∈ kQ(G, 0,∞, cB,1), x ≤ 1.

Because of Theorem 13 applied to Q(G, 0,∞, cB,1):

xopt = x1 + . . . + xk, xi ∈ Q(G, 0,∞, cB,1) for all i = 1, . . . k,

and because of xopt ∈ {0, 1}n and xi ≥ 0 (i = 1, . . . k) we have xi ∈ {0, 1}n,
that is, xi is the incidence vector of a set Si satisfying (COMB).

Claim 2: The optimum of D(G, 0, 1, cB,k, 1) is

min{|R(C)| + k ind(C) : C is a set of cycles}.
Indeed, (kBT) is a TDI system (Lemma 2), and therefore the optimum of

D(G, 0, 1, cB,k, 1) is a 0 − 1 vector. Since for a given dual solution R(C) := {v ∈
V : the dual variable for v is 1 }, the dual optimum of (kBT) is as claimed.

We have arrived at the end of the proof now: by the duality theorem of linear
programming OPT(G, 0, 1, cB,k, 1) is equal to both the quantities in Claim 1 and
Claim 2, and by (COMB) the sets Si (i = 1, . . . , k) are all cyclic stable sets. 	

Theorem 11 is an immediate corollary since ind(C) ≥ |C|.

The stable sets Si (i = 1, . . . k) and the set of cycles C provided by the theorem
satisfy by complementary slackness (get it directly from the equalities of the
theorem or in its proof) : |Si ∩ C| = ind(C) ≥ 1 (i = 1, . . . k), C ∈ C, so we can
delete from each Si all but one of the elements of Si ∩ C, finishing the proof of
Theorem 12 as well.

The original proof of theorems 15, 11, 12 was quite tedious – the integer de-
composition property was proved through a complicated graph theory argument
using potentials (arriving at a geometric surplus though). Theorem 13 provides
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a shorter way. (Which can also be converted into an algorithm.) Theorem 15 is
actually the most general result we can prove for the union of k stable sets. It is
similar to sums of matroids.

Let us finally deduce from Theorem 15 the two fundamental results of Bessy
and Thomassé [7] originally proved with two entirely different methods. They
are both minmax theorems, so “structural versions” follow by complementary
slackness.

Corollary 2 ([7] Theorem 1). Let G be a strong digraph given with a coherent
order.

max{|S| : S is a cyclic stable set } = min{ind(C) : C covers V }.
Proof. Apply Theorem 15 to k = 1, noting that the one-element subsets of X
can be replaced by a cycle of index 1. 	

For k = 1 the integer decomposition actually becomes simply flow integrality and
we get back the simple proof of Theorem 6 in the introduction of [31] (Subsection
0.3).

Corollary 3 ([7], combination of Lemma 3 and Theorem 3). The minimum of
k such that G can be colored with k cyclic stable sets is equal to the maximum
of |C|/ ind(C)� over all cycles of C.

Proof. Apply Theorem 15 to k := max{|C|/ ind(C)� : C is a cycle of G }.
Then k ind(C) ≥ |C| for every cycle, and therefore the right hand side in Theo-
rem 15 is n. Less cyclic stable sets are not enough, since k − 1 cyclic stable sets
meet each cycle C in at most (k − 1) ind(C) elements, which is less than |C| for
the cycles for which the above maximum is reached. 	

These two corollaries showed the way: they are the two ice-cream balls, the
theorem is the topping.

4 Path Partitions

We prove Berge’s conjecture in the following cases:

4.1 Long Paths

Theorem 16. Let G = (V, E) be a digraph, k, m ∈ IIN and P = {P1, . . . , Pm} a
path partition. Then there exists

(i) either k disjoint stable sets orthogonal to P,
(ii) or a subpartition Q = {Q1, . . . , Qm−1} of paths s.t. ini(Q) ⊆ ini(P), ter

(Q) ⊆ ter(P), and
|R(Q)| ≤ k − 1.

Proof. We prove the statement by induction on n := |V |. Suppose it holds for
all n′ < n with all values of m and k, and prove it for G.
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We can suppose that |P | ≥ k for all P ∈ P , because if say |Pm| < k, define
Qi := Pi for all i = 1, . . . , m−1. We see that (ii) holds: |V \ (Q1∪ . . .∪Qm−1)| =
|Pm| ≤ k − 1.

Let ai := ini(Pi), and let a′
i be the second vertex of Pi, and P ′

i := Pi \ {ai},
that is, ini(P ′

i ) = a′
i (i = 1, . . . , m).

We distinguish now two cases:

Case 1: ini(P) is not a stable set, that is, say a1a2 ∈ E.
If |P1| = k, we can replace P by P \ {P1}, and add a1 to P2 as first vertex:

we see that (ii) holds then.
So suppose |P1| ≥ k + 1, and apply the induction hypothesis to G − a1 and

the same path partition restricted to V \ {a1}, that is, with the only change of
replacing P1 by P1\{a1}. If now (i) holds, then, using also that |P1\{a1}| ≥ k, (i)
also holds for G. So suppose (ii) holds for G− a1, and let Q′ = {Q′

1, . . . , Q
′
m−1}

be the path partition satisfying (ii). Since ini(Q′) is an m − 1 element subset
of {a′

1, a2, . . . , am}, it contains a path Q′
1 with ini(Q′

1) = a′
1 or ini(Q′

1) = a2.
Adding a1 as a first vertex to Q′

1 we get a path partition of G that satisfies (ii).

Case 2: ini(P) is a stable set.
Apply the statement to G′ := G − ini(P), k′ := k − 1.
If then (i) holds, then adding the stable set ini(Q) to the provided k−1 stable

sets, we get that (i) holds for G and P with parameter k.
Otherwise alternative (ii) holds for G′ = (V ′, E′) with P ′ and k′, that is, we

have a subpartition of paths Q′ = {Q′
1, . . . , Q

′
m−1}, in G′ such that ini(Q′) ⊆

ini(P ′) (and ter(Q′) ⊆ ter(P ′) = ter(P)), that is, with an appropriate choice
of the notation ini(Q′) = {a′

1, . . . , a
′
m−1}, furthermore ini(Q′

i) = {a′
i} for all

i = 1, . . . , m − 1, and

|R(Q′)| = |V ′ \ (Q′
1 ∪ . . . ∪ Q′

m−1)| ≤ k − 2.

Define now Qi := Q′
i ∪ ai (i = 1, . . . , m − 1). Clearly, Q := {Q1, . . . , Qm−1} is a

subpartition of paths in G, and

|R(Q)| = |V \ (Q1 ∪ . . . ∪ Qm−1)| = |V ′ \ (Q′
1 ∪ . . . ∪ Q′

m−1)| + 1 ≤ k − 1,

since V \ (Q1 ∪ . . . ∪ Qm−1) = (V ′ \ (Q′
1 ∪ . . . ∪ Q′

m−1)) ∪ {am}, proving that
alternative (ii) holds for G with P and k. 	

This implies Berge’s conjecture when there exists an optimal path partition with
only paths of length at least k, which turns out to be equivalent to a result of
Aharoni, Hartman and Hoffman [2]. Their proof is based on improving paths,
and probably implies all the claims of the Theorem, in a more involved way
though.

Corollary 4. [2] If G is a digraph and P is a path partition where k|P| =
min{|X |+kπ(V \X) : X ⊂ V }, then there exist k disjoint stable sets orthogonal
to P.
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4.2 Acyclic Digraphs

For acyclic digraphs Berge’s and Linial’s conjectures are consequences of The-
orem 13 on the lines of, and more simply than the proof of Theorem 15, but
I do not see how to deduce them directly from the statement of Theorem 15.
The results have been proved in [1], [2], [10], [14], [26], [30]. Let us show how
Theorem 13 replaces all the difficulties:

Let G be acyclic, and 1, . . . , n an order of the vertices with only forward arcs.
Add all backward arcs, that is Ĝ := G ∪ B, B := {ij, i > j}. Note that this
order is coherent for Ĝ, and a cycle with β backward arcs is the disjoint union
of vertex-sets of β cycles each having 1 backward arc.

Consider now the polyhedron Q(Ĝ,−∞, 1, cB,k) ⊆ kQ(Ĝ,−∞,∞, cB,1). It
can have negative vertices! (We cannot avoid this, since since we want equality
constraints for the dual problem.) By Theorem 13 Q(Ĝ,−∞,∞, cB,1) – which
is now simply {x ∈ IRn : x(P ) ≤ 1 for every path P } – has the integer decom-
position property again, and by Theorem ?? Q(G,−∞, 1, cB,k) is TDI. Now we
can finish using Theorem 13 exactly like in the proof of Theorem 15. (Negative
variables do not disturb, since by complementary slackness a primal optimal
solution x ∈ Q(Ĝ,−∞, 1, cB,k) satisfies x(P ) = k for all paths P of an optimal
path partition; because of x ≤ 1, x has at least k different 1 entries; because
of Theorem 13 we have x = x1 + . . . + xk, xi ∈ Q(Ĝ,−∞,∞, cB,1), and then
the positive coordinates of the xi meet every path, and in different vertices for
i �= j = 1, . . . , n.)

4.3 Corollaries for Path Partitions

Berger and Hartman studied the two next-to-extreme cases of Berge’s conjecture
[5], [6]:“k = 2” and “k = λ − 1” – the k = 1 and k = λ cases being completely
settled, see the subsections 2.2, 2.3, 2.4, 2.5. It is somewhat discouraging for
the continuation that the path partition and cycle cover versions are so far
completely unrelated even in the Gallai-Milgram case k = 1.

However, the following theorems show some connections at the other extreme,
and for strongly connected graphs a larger interval can be allowed for k. These
are the starting steps of a research with Irith Hartman in the frame of the
French-Israeli collaboration project, intending to prove Berge’s conjecture.

The following result is a direct corollary of Theorem 15, and it provides a
common statement and proof of the Gallai-Roy theorem, and a theorem of Berger
and Hartman [6] according to which Berge’s strongest conjecture (and therefore
Linial’s conjecture as well) is true if k = λ − 1. Their original proof is quite
involved. Note that we prove only the version Conjecture 3 ignoring short (< k)
paths that are not singletons, still implying Linial’s conjecture.

Theorem 17. Let G = (V, E) be a digraph, and k ∈ IIN, k ≥ λ − 1. For any
subpartition P of paths minimizing |R(P)| + k|P|, there exists k disjoint stable
sets orthogonal to P whose union contains R(P).
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Proof. Let P satisfy the condition. The number |R(P)| + k|P| is called the
k-norm of P [22].

Add a new vertex v0 to the graph, a cycle C0 through v0 with k+1 new vertices
besides v0, and add all the edges v0v, vv0 (v ∈ V ). Denote V̂ := V ∪V (C0). Order
V starting with v0, continuing on C0 until the vertex before v0, then continuing
with the other members of P in some order, from the sources to the sinks, and
finally adding the vertices of R(P) in arbitrary order. Let Ĝ = (V̂ , Ê) be the
constructed graph.
Note: C0 serves the goal of covering v0 in a predictable way, and the presence
of C0 will also have the useful consequence that we will never color v0. Adding
v0 without adding C0 may slightly change the problem and cause technical dif-
ficulties. Let C := {C0} ∪ {v0 ∪ P : P ∈ P}.

The defined order is coherent, since for all uv ∈ E : v0, u, v is a cycle with one
backward arc, and C0 is also a cycle that has one backward arc.

All cycles in C have one backward arc, so ind(C) = |C| = |P|+1. We show that
C minimizes the right hand side of Theorem 15 (see after Claim 2), and then
this theorem will provide the statement. Let Q = {Q0, . . . , Qm} (Q0, . . . , Qm are
cycles) minimize the right hand side of this theorem, and among the possible
choices R(Q) be maximum. In fact we will show

|R(C)| + k ind(C) ≤ |R(Q)| + k ind(Q), (1)

by showing through claims 1, 2 a path partition P ′ in G, R(P ′) = R(Q), |P ′| =
|Q| − 1, and then by the minimality of the k-norm of P we have

|R(P)| + k|P| ≤ |R(P ′)| + k|P ′|, (2)

implying (1): indeed, the left hand side of (1) is k plus the left hand side of (2),
and according to the following, the right hand side of (1) is at least k plus the
right hand side of (2):

|R(P ′)| + k|P ′| + k = |R(Q)| + k|Q| ≤ |R(Q)| + k| ind(Q)|.

Claim 1: There exists i ∈ {1, . . . , m} so that Qi = C0, and therefore Q0 = C0

can be supposed.
Indeed, if C0 does not occur, then the vertices of C0 different of v0 cannot

occur in Q at all. Since their number is k + 1, by adding C0 to Q we decrease
|R(Q)| by k + 1 and k|Q| increases only by k (|Q| increases by 1), contradicting
the optimal choice of Q.

Claim 2: P ′
i := Qi \ v0 (i = 0, 1, . . . , m) are pairwise disjoint.

Indeed, Qi \ v0 ≤ λ ≤ k + 1, so if it meets Qj \ v0 (j �= i), then Q \ {Qi}
contradicts the choice of Q, because |R(Q \ {Qi})| ≤ |R(Q)| + k: v0 /∈ R(Q) by
Claim 1, and the possible other common point is not in R(Q) either. On the
other hand k ind(Q \ {Qi}) = k ind(Q) − k ind(Qi) ≤ k ind(Q) − k, so the right
hand side of the formula of Theorem 15 does not increase, R(Q) increases, again
contradicting the choice of Q.
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Now by Claim 2, P ′ := {P ′
1, . . . , P

′
m} is a set of disjoint paths satisfying the

promised relations R(P ′) = R(Q), |P ′| = |Q| − 1, so (1) is satisfied and C is an
optimal set of cycles in Theorem 15.

Theorem 15 provides now exactly what we want, unless v0 is a colored vertex.
However, one can suppose that v0 is contained in at least 2 members of C, since
in case of C = {C0} the set C′ = {C0, {v0} ∪ P}, where P is a longest path is a
set of cycles which also minimizes the right hand side. Then by complementary
slackness in Theorem 15, v0 is not contained in any of the sets Si provided by
the theorem. 	


For k = λ − 1 the theorem can be restated as follows:

Corollary 5. Let G = (V, E) be a directed graph. If P is a maximum number
of disjoint maximum paths of G, there exists a set U ⊆ V consisting of exactly
one vertex of each P ∈ P, and a (complete) coloring of G − U where each color
class is orthogonal to P.

Indeed, |R(P)|+(λ−1)|P| is minimum provided P is a maximum set of disjoint
maximum paths.

Applying the theorem to k = λ we can reformulate it into the following very
similar form where U can in addition be chosen to be a cyclic stable set (it is one
of the colors) the paths are not necessarily part of a maximum packing, however
all of the colors may have to meet R(P) (while U did not). Both corollaries
extend the Gallai-Roy theorem.

Corollary 6. Let G = (V, E) be a directed graph. If P is any number of disjoint
maximum paths of G, there exists a coloring of G where the color classes are
orthogonal to P.

The following result exploits some simple properties of paths, but the application
of these prevents to use the gadget reductions of the previous proof and we cannot
avoid assuming strong connectivity.

Theorem 18. Conjecture 3 is true provided G is strongly connected and k ≥
λ −√

λ.

Proof. Let G be strongly connected, k ≥ λ − √
λ, and choose a coherent order.

Apply Theorem 15 and let S1, . . . , Sk the stable sets in the maximum, X and
C the set and cycle cover in the minimum, moreover, suppose that among the
possible choices, |X | is biggest possible. As in the previous proof, k ≥ λ/2 easily
implies that ind(C) = 1 for all C ∈ C. The problem is that the cycles in C are
not necessarily disjoint.

If a cycle has at most λ− �√λ� vertices not covered by any other cycle, then
delete it from C and add to X the vertices that get now uncovered, contradicting
the choice of X . So the difference of any two cycles has size larger than λ−�√λ�.
If for two intersecting cycles C1, C2 we have |C1 \C2|, |C2 \C1| > λ−�√λ�, then
their union contains a path with more than λ vertices. (This bound is essentially
tight.)
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Indeed, we have then |C1 ∩ C2| ≤ �√λ�. But then C1 ∩ C2 divides both
cycles into paths, and one of these paths has at least �√λ� vertices outside C1,
say. (If all these subpaths of C2 have at most

√
λ − 1 vertices outside C1, then

|C2 \ C1| ≤
√

λ(
√

λ − 1) = λ − √
λ.) Take such a path P for instance in C2.

Then |C1 ∪ P | > λ − �√λ� + �√λ� = λ. It is easy to see that |C1 ∪ P | contains
a Hamiltonian path, that is, a path of length larger than λ, contradicting the
definition of λ.

So the cycles in C are pairwise disjoint and then we are done again by com-
plementary slackness. 	


Acknowledgment. Many thanks are due to Irith Hartman and an anonymous
referee for a very thorough reading of the originally submitted manuscript and
a lot of helpful corrections.
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von Rédei. Acta Sc. Math. 21, 181–186 (1960)

18. Gallai, T.: On directed paths and circuits. In: Erdős, P., Katona, G. (eds.) Theory
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