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Abstract: The paper is concerned with static search on a finite set. An unknown subset of car- 

dinality k of the finite set is to be found by testing its subsets. We investigate two problems: in 

the first, the number of common elements of the tested and the unknown subset is given; in the 

second, only the information whether the tested and the unknown subset are disjoint or not is 

given. Both problems correspond to problems on false coins. If the unknown subset is taken from 

the family of k-element sets with uniform distribution, we determine the minimum of the lengths 

of the strategies that find the unknown element with small error probability. The strategies are 

constructed by probabilistic means. 
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1. Introduction 

The problems treated in this paper belong to a type of search problems, the com- 

mon and general formulation of which may be the following: 

H is a finite set, F, T are systems of subsets of H, t is a mapping of pair 

(F, T), FE F, TE T, in the set of natural numbers. We search for an unknown 

set TE T with the help of ‘strategies’ which are sequences of elements of F; the 

result of the strategy S= (F,, . . . , FN), F;E F, is an N-dimensional vector t(S, T) = 

tt(F,, T), . . . , t(FN, T)); N is called the length of the strategy. 

To determine T uniquely with the help of the strategy S it is necessary and suffi- 

cient to have 

t(S’, T)#t(S, T’) for all Tf T’. (1) 

In this paper we only discuss problems in which Fj may depend on none of 

t(Fj, T), j<i. Such strategies are called static. We could ask for the minimal length 

of the strategies which determine T uniquely, i.e. for which (1) holds. Instead of 

this, we shall consider the uniform distribution on Tand define the error probability 

for each strategy S: 
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p’(s)= I{ TE T: YT’E T, T’z T, t(S, T)=t(S T’)II 
e 

IT/ 

Our purpose is to find the minimal number N for which there exists a strategy S of 

length N with Pi(S) c-c, where Ore< 1 is given in advance. Denote this number by 

N(H,F,T,t,c). 
We introduce some more notations: H,, = { 1,2, . . . , n}, V,, = 2Hn, V,” = {HE V,: 

IHI =k}; for A,BE V,: 

tl(AB)=IAnBI, 
i 

1 
f2(A’B)= O 

if AflBf0, 
ifA(IB=0, 

f(n, k, E) = WC,, v,, Vi, tl, ~1, 

g(n, k, E) = NW,, v,, V,“, f2, ~1. 

Let us notice that the minimal length of the strategies for which (1) holds is 

N(H,F, T, LO), i.e. f(n, k,O) for F= V,, T= V:, t = t,, and g(n, k,O) for F= V,, 

T= V,“, t= t2. 

In the present paper asymptotically exact estimates are given for f(n, k, E) and 

g(n, k, E) with k fixed and n + m, 0 < E < 1. All estimates are independent of E. 

Theorem 1. For all O<E< 1, 

Since f(n, k, 0) 2 f(n, k, E) (0 I E < 1) the lower estimate is true for f(n, k, 0) as well, 

which was first proved by Diatchkov with a method utilizing information-theoretical 

means (Diatchkov, 1976). We shall give an elementary proof using the generaliza- 

tion of an idea of Moser (ErdBs-Spencer, 1974). 

Theorem 2. 

lim g(‘, k, ‘) = k 

n-m logzn 

In the upper estimates of both theorems we use the random constuction method 

of Erdijs and Renyi and in the proof of Theorem 2 the ideas in Diatchkov’s paper 

(1976) which gives an upper bound for g(n, k, 0). 
It will be useful to let the subsets of H,, correspond to n-dimensional O-l vectors 

as usual, where the vector corresponding to A E H, is 

tJ/j=(ui,...,un), 
1 if ie_4, 

“= 0 if i@A. 

It is obvious that if A E H,, and BE H,,, then IA fl B\ = ( uA, ug) with ( , > the inner 
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product. If S=(F,, . . . . F,), F;cH,,, let As be the matrix the i-th row of which is 

the vector corresponding to Fi. Thus a one-to-one correspondence has been 

established between strategies and Nx n matrices. It is clear that if the vector x cor- 

responds to TE I’,“, then Asx= t,(S, T). So if we define 

for each matrix A, we have for all strategies S that P,“(S) = P,, 1 (A,). 

Similarly, if A,Vx denotes the N-dimensional vector which has 1 in its i-th coor- 

dinates if and only if it has 1 in the i-th coordinate of at least one of the column 

vectors of A, corresponding to the I’s of x, then we have 

A,Vx= t&!$ T), 

and 

Let the set of vectors corresponding to V,, or V,” inherit these notations. E.g. V,” 

is also the set of n-dimensional O-l vectors in which there are k l’s and n -k 0’s. 

2. Proof of Theorem 1 

We first prove the upper estimate in Theorem 1. The following statement will be 

proved: There is a sequence of matrices (A,), so that A, has rows in V,, A, has N,, 

rows and n columns, and 

N 
lim sup n 5 

2k 

n-a- logn log nk 

with P&l,,)-+0 (n-m). 

We construct an Nx n matrix choosing its elements either 1 or 0 independently 

with probability 3. (It can easily be seen that the best estimate is expected from this 

distribution.) In the probability space describing this random construction, the con- 

structed matrix will be a random variable, denote it by LNxn. Then P,, l(LNnxn) is 

also a random variable. We prove that the expected value E(P,, l(LNnxn)) con- 

verges to 0 if N, = (2k/log nk)log n + o(n) with o(n)--+c~. (a(n) is otherwise arbi- 

trary.) This proves the statement as there is at least one N,, x n matrix A, with 

P,(4) 5 E(P,, 1 W/v” x n )) and o(n) can be chosen to have a magnitude o(log n) (e.g. 

ll&$Z). Let MNxn be the set of all Nxn matrices. 
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where oc=(l,..., 1,0 ,..., O)T (k ones, n-k zeroes). As 

c -47 
~uzkXu 2 

has the same value for all u E V,“, the right-hand side of (2) is equal to 

Thus we only have to compute the number of matrices for which there exists a 
u = V,” with Xv =XoO. Since Xu, u E V,“, is the sum of columns in X corresponding 
to the l’s of u, Xv =XuO is equivalent to Xv’=Xu~, where u’= u - u(u, uc), ui = 

u. - u(ui, uo) and u(ui, uo) is the vector the i-th coordinate of which is 1 if and only 

if it is 1 in both u ad uo. Hence it follows that the number of Nxn matrices has to 

be found which have i columns among the first k and i among the last n - k columns, 

such that the two groups of i columns have equal sums (1 <is k). This number is 

majorized by 

(2) 

Using 

/i. (;)‘=(y)+ 
which follows from the inequality 

(Robbins, 1953, and using (2), we have 

It is enough to demand of each member of the sum to tend to 0, i.e. 
2;logn-(N,/2)logni,O, which holds if 

N,=2k 
log nk 

log n + o(n) (o(n)po3). 
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Proof of the lower estimate in Theorem 1. The proof is based on the fact that the 

number of elements of the set A, V,” = {A,+: IJ E V:}, with A, an Nx n matrix, can 

be estimated from above as a function of N. So, if N is small, we can arrive at the 

conclusion that there are many vectors u in V,” for which A,o is the image of 

another vector as well; consequently P,(A,) is large: 

P.(A.)Bldg. 
n 

Let us take arbitrarily two numbers, a, b, a#b (depending on n and k) instead 

of 0 and 1; V,” can also be represented as a set of vectors in which k coordinates 

are a and n-k are b. From here on in this section, V,” will denote this set of 

vectors. a en b will be chosen so that a large part of the set A, V,” will be within a 

small sphere, and all its elements will be on a unit lattice in the n-dimensional space. 

From this it will follow that A,V,k can possess only few elements. 

We set a= (k/n)- 1 and b=(k/n). If the i-th row of A,, has m l’s, then the i-th 

coordinate of all elements of A,V,” will be of the form 

v k-1 +(m-v)& 
c > n n 

for some v (v=1,2,..., k). Since the difference between two numbers of this form 

can only be 1,2,..., k,A, V,” lies on a unit lattice in the n-dimensional space. Let 

C=(i,, ***, &) be a random variable with P([ = u) = l/(z) for all u E V,“. To prove 

that a large part of A, V, is within a small sphere, we shall use Markov’s inequali- 

ty, and therefore E(IIA,. (cl, &, . . . , [,,)112) has to be estimated (11 II is the Eucledian 

norm). If A, has m(i) l’s in its i-th row (i= 1,2,...,N,) then 

A,.((,,..., i,)=(C+ ..* +r ~,,,cI)* ... 7 CA + “’ + ~Ln~w,,j). (3) 

This shows that for the estimation of E(IJA,(C,, . . . , &)l12) we need the following 

lemma: 

Lemma. 

@CC, + (m=1,2,...,n) 

and equality holds if and only if m = + n. 

Proof. 

NC, + 1.. +<,)2)=(ka+(n-k)b)2=0 

and by symmetry 
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From this we get E([, [.J = -E(c:)/(n - 1). Clearly 

WC: + ... +[,2>= k(k - n)2 k(n - k) 

n2 
+(n-k) &-- 

n ’ 

and hence 

,57((z) = k(n - k, k(n - k) 
1 

r12 ’ 
E(C, C2) = - tn _ ljn2. 

We have 

E(([, + ... + &,,)2) = 2(9E([, c2) + mE(C:) = k(n - k, 
n2(n - 1) 

m(n - m). 

This formula has its maximum at m = +n, and the proof of the lemma is completed. 

Equation (3) and the lemma prove the inequality 

Then, by the Markov inequality and passing to the complementary event, 

(4) 

for all K>l. As A,,.(ct,..., [,,) has its values in A, V,“, i.e. on a unit lattice, (4) 
means that at least [A, V,kJ(K- 1)/K elements of A, V,” lie in the sphere of radius 

KN k(n-k) 1’2 

n 4(n-1) > . 

But in the N-dimensional space in the sphere of radius R there are ‘not much more’ 

elements of any cubic lattice than its volume Tz more precisely, 

y IA, V,“l sDT,N,(l + o(1)) (5) 

is true with some constant D for all K> 1, where 

We compute DT:: 

DTF(1-t o(1)) = D RN(l +0(l)) 

I 2ne N’2RN 

(_I N (6) 

(if NzNo but we are not interested in small N’s; here we used the Stirling for- 
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mula). Let us insert (6) in (5): 

K+lAn V,“j 5 (F)““(KN, =J’” 

= 
( 

$e nk s)N”2< e &T/2 (K> 1). 

We write 1 -P&4,)5 IA, V,k j/(l) in (7) to have an estimate for P&In): 

(7) 

P&l,) 11- fi (fKe;Y) 
N, /2 K 

11-p 2(N,/2) logz (Kd2)nk - k log2 n 

K-l 
(8) 

k 

(for all K> 1). If 

N,,= 2k 
2k 

+ + log, rck 
log n 

( log, fink 
log,n , 

> 

then, with arbitrary constant 1 <K<2\iZ/e, (8) gets the form 

P&l,)> 1 - C*2-C2’0s2n 

where C,>O, C,>O. Thus P&4,)-+1 as n-03. 0 

3. Proof of Theorem 2 

Using the heuristic fact that the best strategy is the one with biggest Shannon en- 

tropy, it is not difficult to see that the best upper estimate on g(n, k, E) can be ex- 

pected from the following random construction: choose each element of A, to be 

0 with probability (+)“k and 1 with probability 1 - (+)1’k independently (Diatchkov, 

1976). Denote by DNnxn the random matrix determined by this construction. 

Similarly to the proof of the upper estimate of Theorem 1 (namely to (2)), we can 

write 
k-l 

E(Pe, 2 (4v, x n)) = c fv)~ c c PW) 
X~VV”%” r=O XEM:, Xn n 

3u#u,Xvu=XVu, 

with the same o0 as in (2), and where 

MA”..= {x~~N”x..: S~I+V~, (v,vo> =r, XnVv=XnVvOl. 

It can be simply verified that for any fixed r, 

(9) 

(10) 

where qr is the probability of the event that B, xn is a 1 x n matrix for which there 

exists a vector v=(O ,..., O,l,O ,..., O,l,O ,..., O,l,O ,..., 0) with l’s at positions 
. . 
11,12,..., ik, where il <i2< .-. <i,, i,<k<i,+,, that satisfies the equation 
L. IxnVu=Llxn v vo. We have 
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qr= [ (;y’k]k[(;y’k]k-r 

+ [(;)‘nl’p _ [ (yk]“‘]‘+ 1 _ [(g’“]‘= (g-y 

Here the first member is the probability of the event that in Blxn the 

1,2,...,k,i,+,,i,+2,..., ik-th coordinates are 0, the third member is the probability 

of the event that at least one coordinate of the il, i2, . . . , i,-th coordinate is 1, and 

the second is the probability of the event that among the i,, . . . , i,-th places there are 

only O’s but there is at least one 1 among the 1,2, . . . , k-th coordinates, and at least 

one 1 among the il, . . . . i,-th coordinates. We put qr=(i)(k-r)‘k in (10) and sub- 

stitute it in (9) to obtain the estimate 

As (;:$)<nk-’ it follows, setting N, = k log, n + o(n) (with w(n)+cx, but w(n) 

otherwise arbitrary), that 

E(Pe,,(L,,,..))+O (n+m). 

Hence 

The lower estimate is trivial as t2 can have only two values and therefore 

2Nn/(t)z 1 -Pe,2(A,). So 1 -P,,,(A,)-+l implies N,rklog,n(l +0(l)). 0 

4. Comments 

Although the estimates for f(n, k, E) and g(n, k, E), 0 <E < 1, could be proved quite 

simply, the estimation forf(n, k, 0) and g(n, k, 0) seems much more difficult. The up- 

per estimates given for them are multiples of the lower estimates (Diatchkov, 1976, 

1977, and RCnyi, 1965). There are no exact estimates even for k=2. 

Other problems arise when taking systems of subsets different from ours for F, 

T or t. RCnyi (1965) and Katona (1966) have examined N(H,, V,“, VI, t,, 0) and 

Katona (1966) practically solves the problem for this case. 

The cases c=O need combinatorial and algebraic methods but the validity and 

simplicity of the exact results for O< E < 1 have some information-theoretical 

reasons, and maybe a more general statement of the character of coding theorems 

is in the background. However, there are no results in this direction. 
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