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ABSTRACT 

We prove that partitionable graphs are 2w - 2-connected, that this bound is sharp, and 
prove some structural properties of cutsets of cardinality 2w - 2. The proof of the con- 
nectivity result is a simple linear algebraic proof. 0 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Let G = (V, E )  be a graph with vertex-set V = V(G) ,  and edge-set E = E(G). 
V’ 2 V is said to be a (vertex-) cutset, if G - V’ is not a connected graph (or V’ = V ) ,  

and similarly, E’ C E is an (edge-) cutset, if G - E’ is not a connected graph. For k E N, G 
is said to be k-connected or k-edge-connected, if IV(G)l 2 k + 1 and the cardinality of 
every vertex-cutset or edge-cutset respectively, is at least k.  Clearly, if G is k-connected, 
then it is also k-edge-connected, but the converse is not necessarily true. The (vertex- or 
edge-) connectivity number of a graph is the maximum k for which the graph is k (vertex 
or edge-) connected. 

w = w(G) denotes the cardinality of a maximum clique of a graph, and r(G) denotes 
the linear rank of the set of characteristic vectors (in R”) of the w-cliques of G, and is 
called the clique rank of G, it was introduced in Fonlupt and Sebo [8]. a(G) denotes w ( G ) ,  
that is the cardinality of a maximum stable set. If k E N, a k-clique or k-stable set will 
mean a clique or stable set of size k. If V’ g V, then w(V’), a(V’), and r(V’) will denote 
the maximum clique or stable set or clique rank of the graph induced by V’. 

x = x(G) is the chromatic number of G, that is the minimum number of stable sets 
partitioning V. If there is exactly one partition into a minimum number of stable sets, G 
is said to be uniquely colorable. Subgraph means induced subgraph in this note. 
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A graph G is called perject if x ( H )  = w ( H )  for every subgraph H of G,  otherwise 
it is called imperfect. A graph is called minimal imperject if it is not perfect, but all its 
subgraphs are perfect. 

An odd hole is an odd circuit of length at least five, and an odd antihole is the comple- 
ment of such a graph. 

We will use the notation n = n(G) := JV(G)). 
Lovasz [13] proved that every minimal imperfect graph is partitionable, that is, n = 

aw + 1, ( a , w  E N,a 2 2 ,w  2 2 ) ,  and G - w can be partitioned both into w-cliques 
and into a-stable sets, for arbitrary u E V(G) .  If G is partitionable, then clearly, x = 
w + 1, x (G - w) = w = w(G - w), and G is also partitionable. 

Padberg [ 181 deduced from Lovasz’s result that the number of w-cliques of a minimal 
imperfect graph G is n, moreover they are linearly independent. In fact, what Padberg 
proved is that the a-stable sets can be listed in the following way: fix an arbitrary a-stable 
set S, and consider the coloration of G - s for all s E S;  the aw + 1 = n considered color 
classes together with S include every a-stable set. As a consequence G - 11 is uniquely 
colorable for all w E V(G) .  

Bland, Huang, and Trotter [ I ]  observed that the same properties hold for partitionable 
graphs. 

Let G be partitionable. It follows from the unique colorability of the graphs G - u (w E 
V ( G ) )  that the a-stable sets can be coded with the notation S ( a , b ) ,  meaning the color- 
class of G - a which contains b; similarly, K(a,  b)  denotes the w-clique containing b in the 
clique partition of G - a. It is easy to see that the unique w-clique disjoint from S(a ,  s )  is 

An edge e E E ( G )  is called critical, if a(G\ e )  > a + 1. As Markossian, Gasparian, and 
Markossian [14] and [13] observe, if xy is a critical edge, then there is a unique w-clique 
containing z and not y. (Indeed, if S denotes the a + 1-stable-set of G \ el then such a 
clique K ,  is disjoint of the a-stable set S \ {x}, Conversely, the clique disjoint of S \ {x} 
must intersect S \ {y}, whence it contains 5 and not y.) 

V ( G ) ,  is called a small transversal, if IT1 5 a t w - 1, and 
the intersection of T with every w-clique and every a-stable set is non-empty. Chvatal [6] 
pointed out that no minimal imperfect graph has a small transversal, because if T was one, 
thencr(G-T) < a - l , w ( G - T )  I w - 1 , a n d n - ( T I  2 (a - l ) (w- l )+ l , imply ing  that 
x (G - T )  > w(G - T ) .  There exist partitionable graphs which do have small transversals, 
and those which don’t are not necessarily minimal imperfect. 

All these facts about partitionable and minimal imperfect graphs will be used without 
further reference in the sequel. 

An (a,w)-web is a graph G = (V, E )  on aw + 1 vertices so that w ( G )  = w, a(G) = a,  
and there is a cyclical order of V so that every set of w consecutive vertices in this 
cyclical order is an w-clique. (It follows then that there is no other w-clique in G, and 
that the definition is symmetric in a and w : if C: is a web, then it also has another cyclic 
order, where exactly the sequences of a consecutive vertices form a-stable sets.) Chvatal 
[6] proved that (a,w)-webs have a small transversal, provided both a 2 3 and w 2 3 ,  
implying that among webs, only odd holes and antiholes can be minimal imperfect. 

We prove in this note a lower bound on the (vertex-) connectivity number of partitionable 
graphs. The bound will turn out to be sharp for both the vertex- and edge-connectivity 
number of webs, in particular for odd holes and antiholes. (This provides us with examples 
for arbitrary a and w.) 

K(s1 a ) .  

If G is partitionable, T 

The connectivity results that have been known so far are the following: 
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- The minimum degree of a minimal imperfect graph is at least 2w - 2, a result proved 
by Olaru [ 171, and independently reproved by Markossian and Karapetian [ 161, and 
Reed [ 191. 

- The connectivity number of a minimal imperfect graph is at least w , a result proved 
in Hougardy 1121. 

Let us finish this introduction with a relation we will need between the rank r(G) of the 
set of characteristic vectors of the w-cliques of a graph, observed by Fonlupt and Sebo 181, 
as the trivial part of a characterization of perfectness and unique colorability. We include 
the proof for the sake of completeness. 

(*) If x ( G )  = w(G), then r(G) 5 n - w + 1, 
and if in addition equality holds, then G is uniquely colorable. 

Indeed, let x l , .  . . , xw be the characteristic vectors of the color classes (as sets of ver- 
tices) in an w-coloration. The vectors x1 - x 2 , .  . . , x1 - xw are all orthogonal vectors to 
every w-clique, and they are linearly independent: the bound follows. 

be the characteristic vector of a color 
class in this coloration, which is different from x,(i = 1,. . . , w ) .  Clearly, x1 - x w f l  is 
linearly independent from { X I  -x2, . . . , x1 -xu} ,  and it is also orthogonal to the w-cliques. 

I 

If there exists another coloration, then let 

But then the bound is not tight. 

2. CONNECTIVITY AND TIGHTNESS 

The intuition behind the high connectivity number of minimal imperfect graphs is that their 
clique rank is high (= n),  but the clique rank of perfect graphs is small (< n - w + 1) : 
hence, if the w-cliques are split up into those of two proper subgraphs, then the vertex 
sets of these must have a big intersection. This is the key to the proof of the following 
theorem: 

Theorem 1. If G = (V, E )  is partitionable, then it is 2w - 2-connected. Furthermore, 
if C 2 V is a cutset of cardinality 2w - 2, then w ( C )  5 w - 1 ,G  - C has exactly two 
components C1 and C2, and both C1 u C and C, u C induce uniquely colorable graphs. 

ProoJ Suppose that C C V is a cutset, that is {Vl, C, V2) is a partition of V(G), VI # 
0 # V2, and there is no edge between V1 and V,. Let n1 := IVl/,n2 := IV21, k = /GI. 

Clearly, every w-clique is either in VI U C or in V, u C. Hence: 

r(G) 5 r(V1 U C) + T ( V ~  U C).  

According to ($), r ( K  u G) 5 n, + k - ( w ( V ,  u C) - l), where w(V, U C) = w,  because 
V,  U C contains all w-cliques intersecting V,  (i = 1,2). (Since V,  # 0, there exists at least 
one such w-clique.) Substituting this, we get 

n 5 n1+ k - (w - 1) + n2 + k - (w - 1) 

Finally, using nl+ 7x2 + k = n : we get k 2 2(w - 1) as claimed. In case of equality, we 
must have equality in all our bounds, in particular T(G)  = r(Vl u C )  + r(V2 u C), which 
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means exactly that on the right-hand-side no w-clique is counted more then once, that is, 
C contains no w-clique. 

In case of equality, we also have r(Vl U C) = n, + k - (w(V, u C) - l), and then, 
according to (*), V,  u C induces a uniquely colorable graph (i = 1,2) .  

At last, we have to prove that both VI and V2 induce connected graphs. Suppose 
indirectly that {V:, V,l, V,l, C )  is a partition of V(G) ,  where none of the classes is empty, 
and there is no edge between V,’, Vi, and V3/. Since any of the V,’ can play the role of 
Vl , v,l U C is uniquely colorable, and w (V,’ u C) = w (i = 1,2,3). Moreover since v,l u 5’ u C 
is a proper subgraph, 

w 2 x(v,’ u 5’ u C )  2 w(V,’ u v j  u C )  = w, 

and then clearly, we have equality throughout. On the other hand, the w-coloration of 
v,l u y’ U C induces a coloration of both V,‘ U C and y’ U C, which is the unique coloration 
of these graphs, and therefore the unique coloration of V,, U C and that of y’ u C induce 
the same coloration of C. 

We have now that the unique coloration of V,’ U C induces the same coloration of C for 
I 

We cannot say more about tight cutsets in general than what is claimed in Theorem 1. 
However, we will say more about a particular kind of tight cutset: those, where on one of 
the two separated sides there is exactly one vertex, corresponding to the tightness of the 
Olaru, Markossain, Gasparian, Reed bound. This seems to be a reasonable first treatable 
case; the neighbors of a vertex are a most natural candidate for a 2w - 2 element cutset. 
Let us denote the neighbors of v E V(G)  (without v) by N ( v ) .  

According to a conjecture of Ravindra (see Chvatal [7]), if a vertex v E V(G) has 
exactly 2w - 2 neighbors, then N ( v )  can also be covered by two w - 1-cliques. We prove 
that this latter implies that G is “locally” a web: 

all i = 1,2,3, proving that G is w-colorable, a contradiction. 

Theorem 2. If G = (V, E )  is partitionable, vo E V(G), and N(vo) is covered by two w-l- 
cliques, then there exists a (unique) order v-( , -~) ,  . . . , vP1, vo, v1,. . . , u,-1 of {vo}UN(vo) 
so that {vi, wi+l, . . . , vi+,-l) is an w-clique in G for all i = -(w - I), . . . , - l , O .  

Since the cardinality of {wo} UN(vo) is by Theorem 1 at least 2w - 1 and on the 
other hand this set contains all the w different w-cliques containing vo, we can apply (*) (or 
Theorem 1): {wo) U N ( v o )  induces a uniquely colorable graph, and the set K of w-cliques 
of this graph is exactly the set of w-cliques of G which contain WO. Clearly, N(vo) is also 
uniquely colorable. 

Claim 1. In the (unique) w - 1-coloration of N ( v o )  the cardinality of every color class 
is 2. 

Indeed, since IN(vo)l = 2w - 2 and w(N(v0)) = w - 1, if not all the w - 1 color classes 
are of cardinality 2, then there is one of cardinality 1, let {wj (v E N(vo) )  be this color 
class. {v) intersects all the maximum cliques of N(vo) ,  that is v E K for every K E lc. 
Thus v and vo are contained in the same w-cliques. But this is impossible, because v is 
contained in an w-clique of the partition of G - vo into w-cliques. 

Proof. 

Claim 2. If {a, b) C N ( v o )  is a color class in the (unique) w - 1-coloration of N(vo) ,  then 
there exists an w - 1-clique K so that K u { a } ,  K U { b )  E K. 
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Indeed, let S be an a-stable set, vo E S. The a-stable sets of G are S, and the color 
classes of G - s (s E S). For s E S \ {vo} one of the color classes of G - s contains 
vo, and the others provide an w - 1-coloration of N(wo) : if a and b are as described in 
the condition of the claim, then by Claim 1, S(s ,a)  = S(s ,b) .  Thus K(a,s )  = K(b,s)  for 
every s E S \ {vo}. We have obtained: in the w-coloration of G - a and G - b all cliques are 
the same, except K(u,  wo) and K(b, vo). But then the symmetric difference of these two is 
{a, b} and the statement follows. (In Markossian, Gasparian, and Markossian’s [14], [15] 
terminology Claim 2 states that ab is a critical edge in G, and the last two sentences of 
the proof are equivalent to their remark: ab is a critical edge of G if and only if the set 
{a, b} is contained in a - 1 a-stable sets.) 

Let the color classes provided by Claim 1 be {a,, b,} and let the corresponding w - 1- 
cliques provided by Claim 2 be K, ( i  = 1, . . . , w - 1). 

Let us denote now the two (w - 1)-cliques of the condition by A and B, respectively, 
that is N(vo)  = A U B. Since {a,,b,} is a stable set, it intersects both A and B in at 
most one element, so we can choose the notation so that A = { a l , .  . . ,au- l} ,  and B = 
{bl , - . ,bu- I} .  

Claim 3. 
elements of K exactly twice, except for A U wo, and B u vo, which are listed once. 

The list K, U {u,} ,  K, U {b,} (i = 1,. . . , w - 1) of w-cliques in K lists all 

We only have to prove that every K E K is listed at most twice, and A U wo, B U vo are 
listed at most once, because then, since the list is of length 2w - 2, we must have equality 
everywhere. 

Let K E K be arbitrary, and let S be the a-stable set disjoint from K. 
If K = AUvo, then SnN(v0) C B, whence S intersects N(vo)  in at most one element. 

But then K = K1 U al = K2 U u2 for some a l ,  u2 E A is impossible, because it would 
imply S 2 {bl, b2}. (By definition, S is disjoint from K1 and K2, and then it is not disjoint 
from K1 u bl or K2 u b2.) Thus K is in the list at most once, and the case K = B U uo is 
the same. 

Suppose now indirectly that K = K1 u {zl} = K2 U {zz} = K3 U ( 2 3 )  say, where 
q, x2, x3 E N(vo)  are three different vertices. Let yl ,  y2, y3 be the other vertex of the 
same color as zl, 5 2 ,  z3 in the coloration provided by Claim 1; that is, according to Claim 
2, K, u {y,} ( i  = 1,2,3) are also w-cliques. S must contain {yl, y2, y3}, because it is 
disjoint from K, U z,, but intersects K, u {y,} (i = 1,2,3). On the other hand, since 
N(vo)  is covered by two cliques, a stable set cannot contain 3 elements of N(wo), and this 
contradiction proves Claim 3. 

Let us define now a bipartite graph, whose vertices are K, (i = 1, . . . , w - 1) constituting 
one of the two classes of the bipartition, and K constituting the other; we define an edge 
between K, and K E K if and only if K = K, U {z,} (z, E {a,, bz} ) .  According to Claim 3 
the degree of every vertex of this graph is two, except that of A U vo and B U uo : the graph 
can be decomposed into a path between these two, and circuits, all pairwise vertex-disjoint. 
But since ((A \ B) u ( B  \ A)J  = 2w - 2, the path here must have at least 2w - 2 edges, 
which is the number of edges of the graph. Thus the defined graph has a Hamiltonian path 
between A u vo and B u wo, and there are no circuits in it: this means that one can reach 
B U vo from A u wo in w - 1 steps by exchanging an a E A to a b E B in each step. If we 
define a, to be the element of A which is deleted in the ith step, and b, the element of B 

I which is added, we get the theorem. 
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3. MUSINGS 

In this section we study some connections of the results we proved to the Strong Perfect 
Graph Conjecture. 

First let us note that according to Berge’s Strong Perfect Graph Conjecture [2, 31 the 
bound on the connectivity number provided by Theorem 1 is always tight: 

Berge’s Strong Perfect Graph Conjecture. A graph is minimal imperfect if and only if 
it is an odd hole or antihole. 

In an odd hole and antihole every degree is exactly 2w - 2, whence Theorem 1 is tight 
for  arbitrary w (even if we replace vertex-connectivity with edge-connectivity). Thus the 
following conjecture follows from Berge’s conjecture. 

Conjecture 1. If a graph G = (V, E )  is minimal imperfect, then it has cutsets of cardi- 
I 

Conversely, supposing Conjecture 2, Conjecture 1 implies the perfect graph conjecture. 

Let G be partitionable, and suppose G and G have a cutset of cardinality 
I 

Conjecture 2 might be proved before the Strong Perfect Graph Conjecture, but we do 
not think the same about Conjecture 1. 

Webs provide examples to the tightness of the bound in Theorem 1 for an arbitrary pair 
w, a : consider a web where the only edges are those contained in some w-clique, and let 
C = C1 u C2, where C1 and Cz are both w - 1 consecutive vertices in the cyclical order 
defining the web, but they are not next to each other in this cyclic order. Then C is a 
cutset, /C(  = 2w - 2. The neighbors of each vertex are of this form. 

Odd holes and antiholes are in the class of webs we considered. In webs we saw 
minimum cutsets which are not neighbors of a vertex, but all have the following property. 
This is a slight modification of Ravindra’s conjecture for arbitrary cutsets: 

Conjecture 3. If C is a cutset of cardinality 2w - 2 in a partitionable graph, then there 
exist two disjoint w-cliques K and L and a E K ,  b E L so that C = ( K  \ { u } )  U 

Let G be partitionable. Tucker [22] has noted that the graph whose vertices are the w- 
cliques of G, and two vertices are joined if and only if the intersection of the corresponding 
w-cliques is nonempty, is also partitionable. (Easy to check.) Let us call this graph the 
intersection graph of G, and denote it by I (G) .  

nality 2w - 2, and the neighborhood of every vertex is such a cutset. 

Conjecture 2. 
2w - 2, then G is either an odd hole or antihole or it contains a small transversal. 

( L  \ -@I). I 

Conjecture 2 is true if we ask the condition for the intersection graph: 

Theorem 3. Let G be a partitionable graph, and suppose that both I (G)  has a vertex of 
degree 2w - 2 ,  and I ( G )  has a vertex of degree 2a - 2. Then G is an odd hole or antihole, 
or has a small transversal. 

Note that the constraint of this theorem means exactly the existence of an w-clique K 
and an a-stable set S so that G - K and G - S are uniquely colorable. If in addition 
K n S = 0, then the proof becomes considerably easier, and has already been proved in 
Sebo [20]. For a proof of Theorem 3 we refer to Sebo [21]. 

From Theorem 2 we can immediately read out the following Corollary. 
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Corollary 1. The Strong Perfect Graph Conjecture is equivalent to the existence of a 
vertex of degree 2w - 2 in I (G) ,  for every minimal imperfect graph G. 

Edges which are contained in w-cliques are called determined, the number of determined 
edges adjacent to a vertex is the determined degree. The results of this note hold for 
arbitrary partitionable graphs, so they hold in particular if we delete non-determined edges. 

Corollary 2. Let G be a partitionable graph, and suppose that both G has a vertex of 
determined degree 2w - 2, and G has a vertex of determined degree 2 a  - 2. Then G is an 
odd hole or antihole, or I ( G )  has a small transversal. 

Applying Theorem 1 to the partitionable graph formed by the determined edges, we get 
that every edge adjacent to a vertex of degree 2w - 2 of a partitionable graph is determined. 
So we can also delete “determined” in Corollary 2. 

Note that I ( I ( G ) )  is the graph we get from G by deleting the non-determined 
edges. Using this, we get the statement by applying Theorem 2 to I ( G )  in the place of G, 

I 
Corollary 2, which is the “polar” of Theorem 2 is not a useful statement, because there 

is not yet a result saying that I ( G )  has no small transversal if G is minimal imperfect. 
So we cannot deduce from Corollary 2 the “polar” of Corollary 1, that is we cannot yet 
replace I ( G )  by G in Corollary 1. However, we believe that this polar can be shown by 
proving the following conjecture, the “skew polar” of Theorem 2: 

Prooj 

and noting also that I ( G )  is an odd hole or antihole, if and only if G is so. 

Conjecture 4. Let G be a partitionable graph, and suppose that both G has a vertex of 
determined degree 2w - 2, and G has a vertex of determined degree 2 a  - 2. Then G is an 
odd hole or antihole, or has a small transversal. I 

Remark. It is not a good idea to study when the degree bound is tight at the same 
time for a partitionable graph and its complement, because this involves the too strong 
assumption that both G and G have a vertex with only determined edges adjacent to them. 
A more interesting problem is to characterize when the bound is tight for the determined 
degrees. For example, the assumption of Theorem 2 concerns the determined edges of 
I ( G )  and of its complement. (The edge-set of I ( G )  is exactly the set of determined edges 
of the complement of I(G).)  

However, we do not have to deal with determined edges: we can always delete them 
before applying the theorems, and we should do so in order to get the sharpest possible 
result. 
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