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We prove the following result: Let G be an undirected graph. If G has a nowhere
zero flow with at most k different values, then it also has one with values from the
set [1, ..., k]. When k�5, this is a trivial consequence of Seymour's ``six-flow
theorem''. When k�4 our proof is based on a lovely number theoretic problem
which we call the ``Lonely Runner Conjecture:'' Suppose k runners having nonzero
constant speeds run laps on a unit-length circular track. Then there is a time at
which all runners are at least 1�(k+1) from their common starting point. This
conjecture appears to have been formulated by J. Wills (Monatsch. Math. 71, 1967)
and independently by T. Cusick (Aequationes Math. 9, 1973). This conjecture has
been verified for k�4 by Cusick and Pomerance (J. Number Theory 19, 1984) in
a complicated argument involving exponential sums and electronic case checking.
A major part of this paper is an elementary selfcontained proof of the case k=4 of
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1. INTRODUCTION

Let G=(V, E) be an undirected graph. A nowhere zero flow of G is an
orientation of G supplied with a vector f =( fe) of positive integers indexed
by E(G), such that for every v # V(G) the sum of fe on edges entering v is
the same as that on edges leaving v. The number fe is called the value of
the edge e. The theory of nowhere zero flows is a major topic in combinatorics
related to graph coloring and the cycle double cover conjecture; see [9, 14, 16].
The main result of this paper is the following.

Theorem 1.1. Let G be an undirected graph. If G has a nowhere zero
flow with at most k distinct values, then it also has one with all values from
the set [1, ..., k].

In view of the matroid duality [16, 15, 9, 11, 14] between vertex colorings
and nowhere zero flows there is a cographic analogue to Theorem 1.1.
A coloring of G is a function c : V(G) � R, so that for all xy # E, c(x){c( y).

Theorem 1.2. If G has a coloring with real numbers so that the set
[ |c(x)&c( y)| : xy # E] has at most k distinct values, then G has a
(k+1)-coloring (and thus one where |c(x)&c( y)| # [1, ..., k] for all xy # E.)

Theorem 1.2 is easy to prove. By orienting each edge toward the
endpoint with the larger color and identifying the color classes, one obtains
an acyclic digraph having maximum out-degree k. An easy greedy
algorithm results in a (k+1)-coloring of G.

Theorem 1.1 is more difficult. Our proof relies on Seymour's six-flow
theorem [13] and a number theoretic result of Cusick and Pomerance [6]
to which we give a short proof. We state here the six-flow theorem.
A graph is called bridgeless, if it has no bridge, where e # E is a bridge if
G&e has more components than G.

Theorem 1.3. Every bridgeless graph has a nowhere zero flow with values
from the set [1, ..., 5].

There is a common generalization of Theorems 1.1 and 1.2 regarding
flows in regular matroids (see [11, 15]) which is strongly suggested by
Seymour's regular matroid decomposition theorem [12]. A matrix is totally
unimodular if every subdeterminant belongs to [0, \1].

Conjecture 1.4. Let A be a totally unimodular matrix and suppose that
Af =0 has a real solution f =( fe), where each fe is nonzero and where
|[ | fe| : e # E(G)]|�k. Then there exists a solution f $=( f $e) with each
| f $e| # [1, 2, ..., k].
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The analogous statement concerning group-valued flows [16, 9] is false.
For example, the graph with two vertices and three parallel edges has a
flow with range [1] in Z3 , but not in the integers.

The paper is organized as follows. In Section 2, Conjecture 1.4 is reduced
to the ``Lonely Runner Problem''; in particular, Theorem 1.1 is reduced to
the special case k�4. A general proof technique for this problem is
introduced in Section 3 and is applied to the case k=4 in Section 4.

2. RUNNERS AND FLOWS

Let us informally state the Lonely Runner Problem: At time zero, k
participants depart from the origin of a unit length circular track to run
repeated laps. Each runner maintains a constant nonzero speed. Is it true
that regardless of what the speeds are, there exists a time at which the k
runners are simultaneously at least 1�(k+1) units from the starting point?
The term ``lonely runner'' reflects an equivalent formulation in which there
are k+1 runners with distinct speeds. Is there a time at which a given
runner is ``lonely,'' that is, at distance at least 1�(k+1) from the others?
This poetic title (given by the second author) made its way through an
internet inquiry (of the second and last authors) up to the cover page of
a public relations booklet for the Weizmann Institute in Israel [22].

We introduce some notation. The sets of real numbers and positive
integers are denoted R and N, respectively. The residue class of a # R
modulo 1 (called the fractional part of a) is denoted by (a). We view the
unit-length circle C as the set [(a) : a # R], which we frequently identify
with the real interval [0, 1). An instance of the Lonely Runner Problem
consists of a set of runners R :=[1, 2, ..., k] and a speed vector v :=(v1 , ..., vk)
having nonzero real entries. At time t=0, each r # R begins running on C
from the point 0 maintaining the constant speed vr . The position of runner
r on C at time t is (tvr). The position of R at time t is the vector (tv) :=
((tv1), ..., (tvk) ) # [0, 1)k. A vector x=(x1 , ..., xk) # [0, 1)k is a position
(for the speed vector v) if there exists t # R with x=(tv) . The set of all
positions is denoted X=X(v)�[0, 1)k. The distance between two points
on C is the length of the shorter of the two (arc) intervals between them.
We say that r # R is distant (from 0) in x # X or at time t if xr=(tvr) #
[1�(k+1), k�(k+1)]. A subset R$�R is distant (in some position x) if
each r # R$ is distant in x. (Here, k is understood to equal |R|, not |R$| ).

The aforementioned internet inquiry led us to the following assertion,
which we call the Lonely Runner Conjecture. This conjecture appears to have
been introduced by Wills [17] and again, independently by Cusick [3].
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Conjecture 2.1. For all k # N and v # (R&[0])k, there exists a position
where R is distant.

This problem appears in two different contexts. Cusick [3�6] was motivated
by a beautiful application in n dimensional geometry��view obstruction
problems. Our statement of the problem is closer to the diophantine
approximation approach of Wills [1, 17�21]. A more general conjecture
appears in [2]. The cases k=2, 3, 4 were first proved in [17, 1, 6],
respectively.

Theorem 2.2. If k�4, then for any v # (R&[0])k there exists a time at
which R is distant.

The proof by Cusick and Pomerance [6] of the case k=4 is not easy
and requires a computer check. In Sections 3 and 4 we provide a simple
self-contained proof. Section 3 also contains a very short proof for the case
k=3. We now prove Theorem 1.1 using Theorems 2.2 and 1.3.

Proof of Theorem 1.1. Let f be a nowhere zero flow with k different
values. If k�5, then the result is a trivial consequence of Theorem 1.3 since
any graph having a nowhere zero flow must be bridgeless. If k�4, then by
Theorem 2.2 there exists t # R such that the fractional part of each entry of
tf is in the interval [1�(k+1), k�(k+1)]. The flow tf is a feasible flow in
the edge-capacitated network (G, l, u), where l=wtfx and u=Wtf X (we take
floors and ceilings componentwise). But then there also exists a feasible
integer-valued flow for (G, l, u), (Ford and Fulkerson, [7]), in which each
edge e has value either wtfe x or Wtfe X. Let us denote this flow by wtf X.
Thus tf &wtf X is a flow with all entries in [&k�(k+1), &1�(k+1)] _
[1�(k+1), k�(k+1)]. Multiplying this flow by k+1 and reorienting the
edges corresponding to negative entries yields a flow with values in [1, k].
Again, there also exists then an integer flow with values in [1, k]. K

Note. We may loosely denote the final flow in the proof of Theorem 1.1
as w(k+1)( f &wtf X)X.

We remark that this proof can be directly generalized to flows in regular
matroids by applying Hoffman's theorem [8] in order to define f $=w(k+1)
( f &wtf X)X. Thus, Conjecture 1.4 is a weak form of the Lonely Runner
Conjecture.

Theorem 2.3. For any k # N, if the Lonely Runner Conjecture holds true
for k runners, then the statement of Conjecture 1.4 holds true for that
particular value of k.

The remainder of this paper is devoted to the Lonely Runner Conjecture.
Wills [17] reduced the Lonely Runner Conjecture from the case of irrational
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speeds to the rational case. So when proving any case k�1, one can
assume without loss of generality that v # Nk, whence the speeds express the
number of laps the runners make in unit time. One can further assume that
t # [0, 1), although there is usually no advantage in doing so.

Proof of Theorem 2.2 when k�2. The case k=1 is trivial. In case k=2
we prove a stronger statement:

Suppose v1 , v2 # N are relatively prime speeds. At any time t, the nearer
runner has distance at most w(v1+v2)�2x�(v1+v2). Moreover, this
bound is achieved at time t={�(v1+v2) for some { # N.

Whenever the distance from 0 to the nearer runner is maximum, we have
(tv1)=1&(tv2). This equality holds if and only if t is an integer multiple
of 1�(v1+v2). For such t, both runners are at distance a�(v1+v2) for
some integer a�w(v1+v2)�2x. Since gcd(v1 , v1+v2)=1 we can solve the
congruence air v1{#w(v1+v2)�2x mod v1+v2 , to obtain a time at which
the bound on a is achieved, proving the statement. K

3. PREJUMPS

We state the fact that the set X of positions is closed under addition
modulo 1 in a particular form suggesting a technique used by all the proofs
hereafter.

(1) If x1 , x2 # X and : # Z, then the vector x=(x1+:x2) # [0, 1)k is
also in X. If moreover, x1=(t1 v) , x2=(t2 v) , and t#t1+:t2 mod 1, then
x=(tv) .

Our use of (1) is as follows. We first note the existence of certain ``key''
positions in X which we call prejumps. In the proof of our main result, it
sometimes becomes convenient to add one of these prejumps to a position
that has already been constructed, thereby obtaining a position in which all
runners are distant. Our first example of prejumps will be used in a short
proof of the case k=3. (Compare with the proofs in [1, 3].)

(2) Let v # Nk, k�3. If gcd(v1 , ..., vk&1) does not divide vk , then
there exists a time when R is distant if and only if there exists a time when
R"[k] is distant.

Proof. Let d�2 be the greatest common divisor defined in the statement,
and suppose without loss of generality that gcd(d, vk)=1. Then

�0
d

vr�=�1
d

vr�= } } } =�d&1
d

vr�=0 for r=1, ..., k&1,
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whereas

{�0
k

vk�, �1
d

vk�, ..., �d&1
d

vk�=={0
d

,
1
d

, ...,
d&1

d = .

Let now x=(tv) be a position where R"[k] is distant. Since R"[k] is
also distant in each of the d positions (x+( j�d ) v) (1=0, 1, ..., d&1), it
suffices to show that k is distant in one of these positions. However, this
follows from the fact that 1�d is at most the length 1&2�(k+1) of the
interval of distant positions since k�3 and d�2.

Proof of Theorem 2.2 when k�3. We assume that the speeds v1 , v2 , v3

are distinct positive integers having no common factor. If all three speeds
are odd, then ( 1

2v)=( 1
2 , 1

2 , 1
2), so we may assume that v2 is even. By (2) we

may further assume that v1 and v3 are odd. So ( 1
2v) =( 1

2 , 0, 1
2), and this

will provide our prejump x1=(t1v) , t1 := 1
2 .

Consider the time interval T :=[1�4v2 , 3�4v2], during which runner 2 is
for the first time in the distant region [ 1

4 , 3
4]. For r=1, 3, let Tr=[t # [0, 1):

(tvr) # [ 1
4 , 3

4]].
If T"(T1 _ T3)=<, then use (1) with the defined prejump x1 , an arbi-

trary t2 # T"(T1 _ T3), and :=1: ( (t1+t2)v)=( 1
2 , 0, 1

2)+(t2v) . Since 2
is the only distant runner at time t2 , [1, 2, 3] is distant at time t1+t2 .

We may now assume T�T1 _ T3 . Suppose that T�Ti for some i # [1, 3].
Then T is contained in one of the closed intervals comprising Ti , which
implies v2�vi . Furthermore, i first becomes distant no later than 2 does,
so v2�vi which contradicts v2 {vi .

Thus T�T1 _ T3 , T & Ti {< (i=1, 3). Both T & T1 and T & T3 consist
of disjoint closed intervals and their union is T. Hence, <{(T & T1) &
(T & T3)=T & T1 & T3 , and we are done. K

4. THE CASE k=4

Before completing the proof of Theorem 2.2, we set some notation and
present two more prejump facts which hold true whenever k+1 is prime.
The notation a | b means that a divides b. For fixed k�2 we partition the
circle C=[0, 1) as [0] _ C1 _ C2 , where

C1 :=\0,
1

k+1+_ \ k
k+1

, 1+_ { 1
k+1

,
2

k+1
, ...,

k
k+1= ,

C2 :=\ 1
k+1

,
2

k+1+_ \ 2
k+1

,
3

k+1+_ } } } _ \k&1
k+1

,
k

k+1+ .
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Given a speed vector v # Nk and a position x # X=X(v), we define D :=
[r # R: (k+1) | vr] and partition the runners R as R0(x) _ R1(x) _ R2(x),
where

R0(x) :=D _ [r # R : xr=0],

R1(x) :=[r # R"D : xr # C1],

R2(x) :=[r # R"D : xr # C2].

(3) Let k+1 be prime, and suppose there exists x # X in which D is
distant and |R2(x)|<|R0(x)|. Then there exists a time when R is distant.

Proof. We consider the list of k positions (x+ j�(k+1) v) (1=1, 2, ..., k).
Since k+1 is prime, we have

� 1
k+1

vr�= } } } =� k
k+1

vr�=0 if r # D,

{� 1
k+1

vr�, ..., � k
k+1

vr�=={ 1
k+1

, ...,
k

k+1= if r # R"D.

Using this, it is straightforward to check that, for m=0, 1, 2, each runner
in Rm(x) is distant in exactly k&m of the listed positions. Thus, there are
at most |R1(x)|+2 |R2(x)| positions in the list in which R is not distant.
If |R2(x)|<|R0(x)| ) then |R1(x)|+2 |R2(x)|<k, so R is distant in at least
one of the k listed positions. K

Here is an easy corollary.

(4) Suppose that k+1 is prime and the only speed which it divides
is v2 . If there exists d # N dividing at least k�2 different speeds, but not
dividing v2 , then there exists a time when R is distant.

Proof. Let R$ :=[r # R : d | vr]. Since d�2 and 2 � R$, there exists
j # [0, ..., d&1] such that runner 2 is distant in x :=( ( j�d ) v). We have
that xr=0 for each r # R$, so R0(x)$[2] _ R$, and therefore |R0(x)|�
1+|R$|>k�2=|R|�2, whence |R0(x)|>|R2(x)|. Since D=[2] is distant,
we are done by (3). K

Proof of Theorem 2.2. We assume k=4, R=[1, 2, 3, 4], all speeds are
distinct and have no common prime factor. Consider the (proper) subset
D=[r # R : 5 | vr]. If |D|=0, then R is distant at time 1

5 . Suppose 2�|D|�3.
By induction on k there exists a position y where D is distant. Either we
are done at y, or some runner in R"D is not distant, whence |R0( y)|+|R1( y)|
�|D|+1�3, so |R2( y)|�1, whereas |R0( y)|�|D|�2>1� |R2( y)| and
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we are done by (3). We henceforth assume D=[2], whence 2 # R0(x) for
every position x.

If no runner is faster than 2, then at time 1�5v2 , 2 is the only distant
runner, whence |R2(v�5v2)|=0, |R0(v�5v2)|=1, and we are again done by
(3). We thus assume v1>v2 , v3 , v4 .

At least one of v3 , v4 , say v3 , is not equal to v1&v2 . Since v2 , v3 are
distinct and less than v1 , the assumptions v3 {v2 and v3 {v1&v2 imply
v3 �\v2 mod v1 . If d :=gcd(v1 , v3)>1, then if d divides v2 , we are done
by (2); if it does not, we are done by (4).

Thus we can assume gcd(v1 , v3)=1. Then there exists : # N, :v3#
1 mod v1 . Let x be the position at time :�v1 . We have x1=0 and x3=1�v1

<1�v2�1�5, so 1, 2 # R0(x) and 3 # R1(x). If D=[2] is distant in x, then
we are done by (3) since 1, 2 # R0(x), whereas 3 # R1(x), so |R2(x)|�1. So
we may assume 2 is not distant in x.

We notice two facts. First, the distance of x2 from 0 is at least twice that
of x3 (this follows from v2 �0, \v3 mod v1 and gcd(:, v1)=1, which
implies x2=(:�v1) {0, \1�v1 , whence x2 # [2�v1 , 1&2�v1].) Second, if a
runner has distance $�1�4 from 0 in some position z # X, then it has
distance 2$ in position (2z). Let x$ be the first position in the sequence
(2x) , (4x), (8x), ... in which 2 is distant. As before, 1, 2 # R0(x$), whereas,
by the two facts and the minimality in the choice of x$, x$3 # (0, 1�5) so
3 # R1(x$), and we are again done by (3). K
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