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The chromatic gap is the difference between the chromatic num-
ber and the clique number of a graph. Here we investigate gap(n),
the maximum chromatic gap over graphs on n vertices. Can the ex-
tremal graphs be explored? While computational problems related
to the chromatic gap are hopeless, an interplay between Ramsey-
theory and matching theory leads to a simple and (almost) exact
formula for gap(n) in terms of Ramsey-numbers. For our purposes
it is more convenient to work with the covering gap, the differ-
ence between the clique cover number and stability number of
a graph and this is what we call the gap of a graph. Notice that
the well-studied family of perfect graphs are the graphs whose in-
duced subgraphs have gap zero. The maximum of the (covering)
gap and the chromatic gap running on all induced subgraphs will
be called perfectness gap.
Using α(G) for the cardinality of a largest stable (independent) set
of a graph G , we define α(n) = minα(G) where the minimum is
taken over triangle-free graphs on n vertices. It is easy to observe
that α(n) is essentially an inverse Ramsey function, defined by the
relation R(3,α(n)) � n < R(3,α(n) + 1). Our main result is that
gap(n) = �n/2� − α(n), possibly with the exception of small inter-
vals (of length at most 15) around the Ramsey-numbers R(3,m),
where the error is at most 3.
The central notions in our investigations are the gap-critical and
the gap-extremal graphs. A graph G is gap-critical if for ev-
ery proper induced subgraph H ⊂ G , gap(H) < gap(G) and gap-
extremal if it is gap-critical with as few vertices as possible (among
gap-critical graphs of the same gap). The strong perfect graph
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theorem, solving a long standing conjecture of Berge that stimu-
lated a broad area of research, states that gap-critical graphs with
gap 1 are the holes (chordless odd cycles of length at least five)
and antiholes (complements of holes). The next step, the complete
description of gap-critical graphs with gap 2 would probably be
a very difficult task. As a very first step, we prove that there is a
unique 2-extremal graph, 2C5, the union of two disjoint (chordless)
cycles of length five.
In general, for t � 0, we denote by s(t) the smallest order of
a graph with gap t and we call a graph is t-extremal if it has
gap t and order s(t). Equivalently, s(t) is the smallest order of
a graph with perfectness gap equal to t. It is tempting to con-
jecture that s(t) = 5t with equality for the graph tC5. However,
for t � 3 the graph tC5 has gap t but it is not gap-extremal
(although gap-critical). We shall prove that s(3) = 13, s(4) = 17
and s(5) ∈ {20,21}. Somewhat surprisingly, after the uncertain val-
ues s(6) ∈ {23,24,25}, s(7) ∈ {26,27,28}, s(8) ∈ {29,30,31}, s(9) ∈
{32,33} we can show that s(10) = 35. On the other hand we can
easily show that s(t) is asymptotically equal to 2t, that is, gap(n) is
asymptotic to n/2. According to our main result the gap is actually
equal to �n/2� − α(n), unless n is in an interval [R, R + 14] where
R is a Ramsey-number, and if this exception occurs the gap may
be larger than this value by only a small constant (at most 3).
Our study provides some new properties of Ramsey graphs them
selves: it shows that triangle-free Ramsey graphs have high match-
ability and connectivity properties, leading possibly to new bounds
on Ramsey-numbers.

© 2012 Published by Elsevier Inc.

1. Introduction

After the proof of the strong perfect graph conjecture [5], the problems concerning graph families
that are close to perfectness become more interesting. Here we focus our attention on a parameter
that we call the chromatic gap of a graph, gap(G), equal to the “duality gap” of a most natural integer
linear programming formulation of the graph coloring problem.

Graphs in this paper are undirected, their vertex set is denoted by V (G). A cycle is a connected
subgraph with all degrees equal to 2. A clique is a subset of the vertices inducing a complete subgraph,
and a stable set does not induce any edge. The notations Ci and Ki will refer to cycles, respectively
cliques of order i (i = 1,2, . . .).

The size of a largest clique (resp. stable set) in a graph G is denoted, by ω(G) (resp. α(G)). We
also speak about k-cliques or k-stable sets meaning that their cardinality is k. A 3-clique is also called
a triangle. The chromatic number, χ(G), and clique cover number, θ(G), denote the minimum number
of partition classes of V (G) into stable sets and into complete subgraphs, respectively. Using G for
the complement of G , we have obviously

ω(G) = α(G), χ(G) = θ(G) (1)

and

χ(G) �ω(G) � |V (G)|
θ(G)

, θ(G) � α(G) � |V (G)|
χ(G)

. (2)

Let us define the chromatic gap of a graph G as χ(G) − ω(G), and the covering gap as θ(G) − α(G).
Although these parameters are equivalent (through (1)), for our purposes it is more convenient to
work with the latter, so we define the gap, or covering gap of a graph G as gap(G) = θ(G) − α(G).
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Notice that perfect graphs are the graphs whose induced subgraphs have gap zero. The perfectness
gap of a graph is the maximum of the (covering) gap and the chromatic gap running on all induced
subgraphs.

A graph G is gap-critical if for every proper induced subgraph H ⊂ G , gap(H) < gap(G). The perfect
graph theorem [5] states that gap-critical graphs with gap 1 are the holes (chordless odd cycles of
length at least five) and antiholes (complements of holes). The complete description of gap-critical
graphs with gap 2 would probably be a very difficult task – it seems there is not even a plausible
guess available. Trivial members can be obtained as a disjoint union of holes and/or antiholes. A non-
trivial member (15 vertices, α = 6, θ = 8) is shown in [10, p. 427]. Deleting any pair of vertices of the
Ramsey graph R13, the unique graph with ω(G) = 2, α(G) = 4 on 13 vertices, gives another example
of order 11 with α = 4, θ = 6. However, as we shall prove, the smallest order of a gap-critical graph
with gap 2 is 10, the unique example is the trivial member, the union of two disjoint C5. The graph
R13 itself is also gap-critical with gap 3, in fact the smallest one (see Section 5).

Note that the definition of gap-critical graphs cannot be simplified by requiring only gap(G − v) <

gap(G) for every vertex v: indeed, for instance the gap of the circular graph C(3,3) (on 10 cyclically
ordered vertices, where any three cyclically consecutive ones form a clique) is 1, deleting any vertex
the gap is 0 although C5 subgraphs are still present. Here the smallest example. Consider a hole on 5
vertices c1 . . . c5c1 and replicate c1 and c3 (replicating a vertex v means adding a vertex adjacent to v
and all neighbors of v). For the obtained graph G we have ω(G) = 3, χ(G) = 4, but for any v ∈ V (G)

ω(G − v) = χ(G − v) = 3, while G contains a C5. So, the complementary graph Ḡ is not gap-critical,
although gap(G − v) < gap(G) for all v ∈ V (G).

The central topic of our work is to determine the maximum gap of graphs of order n, denoted
by gap(n) which leads to a study of gap-extremal graphs. For t � 0, we denote by s(t) the smallest
order of a graph with gap t . A graph is t-extremal if it has gap t and order s(t); it is gap-extremal,
if it is t-extremal for some t . Note that the empty graph has gap 0, so s(0) = 0, and – since C5
is the unique smallest non-perfect graph – s(1) = 5, and C5 is the only 1-extremal graph. It will
be much more difficult to prove that s(2) = 10 (Theorem 5.2). It is tempting to conjecture that the
pattern continues and s(t) = 5t with equality for the graph tC5, this is how we started . . . However,
classical Ramsey graphs provide better bounds. We shall prove that s(3) = 13, s(4) = 17 and s(5) = 21
or 20. From a general conjecture we think that the true value is 21. Somewhat surprisingly, after the
uncertain values s(6) ∈ {23,24,25}, s(7) ∈ {26,27,28}, s(8) ∈ {29,30,31}, s(9) ∈ {32,33} we can show
that s(10) = 35.

Gap-extremal graphs are obviously gap-critical. Holes and antiholes are gap-critical but if they
have more than five vertices they are not gap-extremal; if they have more than eleven vertices their
gap is also not maximal among graphs of the same order, since the gap of two disjoint C5 is 2.

A large θ(G) might be the consequence of a small ω(G). But small clique number may mean
not too many edges, so a large α(G) too! What happens with the gap in this competition? The
trade between the size of cliques and stable sets is described by Ramsey-theory, itself having a lot
of open questions. We will convert the relations provided by Ramsey-numbers into a balance be-
tween θ and α. Using Ramsey-numbers as a black box we will be able to (almost) determine our
functions.

It will turn out to be essentially true that the graphs with a large gap are triangle-free. In other
words, decreasing the clique-size, makes θ increase more than it does increase α. To work out this
precisely will need a refined analysis based on details concerning Ramsey-numbers R(3, .) and match-
ings. In Section 3 we prove simple statements about the gap, about Ramsey-numbers and about
matchings that will provide the right tools for this work. In Section 4 we determine the gap-function
with only a small constant error, and this relies mainly on a study of triangle-free graphs.

In view of this role, we will need to use variants of the notions and terms for triangle-free graphs
separately. We will speak about triangle-free t-extremal graphs which means that their cardinality is
minimum among triangle-free graphs of gap t . Note that a triangle-free gap-extremal graph is not
necessarily a gap-extremal graph, since there might be a graph containing a triangle with smaller
cardinality and the same gap. By analogy, the corresponding notations for triangle-free graphs will
be gap2(n), s2(t). Thus gap2(n) is the maximum gap among triangle-free graphs on n vertices, s2(t)
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is the smallest order of a triangle-free graph with gap t . Clearly, gap(n) � gap2(n) for all n ∈ N, and
s(t) � s2(t) for all t ∈N. (N is the set of natural numbers {1,2, . . .}).

For any n ∈ N, t = gap(n), adding n − s(t) isolated points to a t-extremal graph we get a graph of
maximum gap among graphs of order n. However, both α and θ increase by the addition of isolated
vertices. When G is triangle-free, graphs of maximum gap, at the same time with minimum stability
number among triangle-free graphs on n vertices will be particularly appreciated. Let α(n) denote
the minimum of α(G) over triangle-free graphs G with n vertices. So, α(n) is defined by the relation
R(3,α(n)) � n < R(3,α(n) + 1). A graph G on n vertices will be called stable gap-optimal, if G is
triangle-free, gap(G) = gap2(n), and α(G) = α(n). It will turn out that there exist stable gap-optimal
graphs for every n. Therefore it is unavoidable to know something about the function α(n), in fact it
is just the inverse of the well studied Ramsey function R(3, x).

We say that a graph is an (ω,α)-Ramsey graph (ω,α ∈ N) if it is of maximum order among the
graphs G without an ω-clique (a clique of size ω) and without an α-stable set (stable set of size α).
By Ramsey’s theorem [15], this maximum is finite. The smallest n such that for any graph G of order
n either ω(G) � ω or α(G) � α, is called the Ramsey-number R(ω,α). We will use mainly Ramsey-
numbers for ω = 3. Clearly, the order of (ω,α)-Ramsey graphs is R(α,ω) − 1, and their maximum
clique and stable set have size ω − 1, α − 1.

Clearly, the above introduced number α(n) (n ∈N) is actually defined by the relation R(3,α) � n <

R(3,α + 1). It is equal to the number of Ramsey-numbers smaller than or equal to n. Indeed, among the
Ramsey-numbers R(3, x) those with 1,2, . . . , x are smaller than or equal to n, and all the others are
larger. It will turn out that s(t + 1) − s(t) is usually 2, and the exceptions are at the Ramsey-numbers
where this difference is equal to 4 with rare exceptions 5 of 3 (but these latter might actually all be
for t � 3).

Although s(t) will be determined with a constant error (modulo Ramsey-numbers), we also in-
clude a transparent easy proof in Section 2 that shows that 2t + c1

√
t log t � s(t) � 2t + c2

√
t log t

(Corollary 2.3).
The main result of the paper is finding gap(n) and s(t) with constant error in terms of Ramsey-

numbers. First we shall prove that gap(n) = gap2(n) = �n/2� − α(n) except when n is even and there
exist odd numbers n1,n2 such that n = n1 + n2 and α(n) = α(n1) + α(n2), in which case 1 must
be added. The exceptional case can occur in an obvious way, when n is a Ramsey-number and n1
or n2 is equal to 1, or in a rather mysterious way (only if n1 = n2 = 5?), when we call n Ramsey-
perfect.

A number n is Ramsey-perfect if n is not an even Ramsey-number and n = n1 +n2, where n1,n2 � 5
are odd and α(n) = α(n1) + α(n2). We know only one Ramsey-perfect number, 10 (α(10) = 2α(5)),
and we believe that there are no others. One way this might still happen is α(n) = α(n − 5) + α(5),
in that case n − 1,n − 4 must be both Ramsey-numbers – we call them (Ramsey) twins. Probably
there are no Ramsey twins beyond 6,9 but this is not proved, although Erdős and Sós [7] (see also
in [4]) conjectured R(3,m + 1) − R(3,m) tends to infinity with m. Our main results are summarized
as follows.

– gap2(n) = �n/2�−α(n)+ε(n), where ε(n) = 1 if n is an even Ramsey-number or a Ramsey-perfect
number and 0 otherwise (Theorem 4.1).

– The functions gap(n), s(t) are determined with a small error by their restricted counterparts: for
all n, t ∈ N: 0 � gap(n) − gap2(n) � 2, 0 � s2(t) − s(t) � 10 (Theorem 4.11).

– A synthesis of this work: for all n ∈ N \ ⋃
α∈N[R(3,α), R(3,α) + 14]: gap(n) = gap2(n) = �n/2� −

α(n), and always �n/2� − α(n)� gap(n) � �n/2� − α(n) + 3 (Theorem 4.12).

It is worth noting that for Ramsey-numbers R that are at least 5 bigger than the preceding
Ramsey-number (so maybe for all Ramsey-numbers larger than 28), only one s(t) value is uncer-
tain and equal to either R + 1 or R + 2. Also, our study reveals high matchability and connectivity
properties of Ramsey graphs. For example, (3,α + 1)-Ramsey graphs are (R(3,α + 1) − R(3,α) − 3)-
connected, moreover, deleting at most R(3,α+1)− R(3,α)−3 vertices, the remaining n � R(3,α)+2
vertices, if n is even, induce a graph with a perfect matching (Corollary 4.5).
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Finally we mention some related work. Bíró [1] raised the problem of finding the minimum of α
while fixing n and θ , more precisely finding

β(n, θ) = min
{
α(G): G graph,

∣∣V (G)
∣∣ = n, θ(G) = θ

}
and gave the first bounds and a conjecture. Jahanbekam and West [12] stated another conjecture for
constrained values of n and θ . If θ � n+1

2 Theorem 4.1 easily provides the following formula for θ ,
implying these conjectures: β(n, θ) = n +α(W )− W − ε, where W = 2(n − θ)+ 1 and ε is 0 or 1, the
latter if W is Ramsey-perfect or another (even more exceptional, possibly non-existing) case. A recent
communication of Bíró, Füredi and Jahanbekam [2] proves a formula for β(n, θ) in the range θ � n+3

2
with similar methods.3 The equality between the two formulas can be proved easily. As far as we
know, finding the exact values of gap(n) (without restricting ourselves to triangle-free graphs) and
the solution of Bíró’s problem for arbitrary θ both remain open.

2. Asymptotic of s(t)

Before giving the exact values of the function gap and gap2 (up to a small constant) we show how
to get easily the asymptotic of s(t).

Proposition 2.1. s(t)� s2(t) � 2t + c1
√

t log t.

Proof. The celebrated result of Kim [13] states that for every sufficiently large n there is a graph Gn

with n vertices such that ω(Gn) = 2 and α(Gn) � 9
√

n log n. Define f (t) as the smallest n for which
there exists Gn such that⌈

n

2

⌉
− 9

√
n log n � t. (3)

Clearly f (t) is an upper bound for s2(t) because by the definition of Gn and by (3)

gap(Gn) = θ(Gn) − α(Gn) �
⌈

n

2

⌉
− 9

√
n log n � t. (4)

One can easily check that the last inequality in (4) can be satisfied with n = 2t + �c1
√

t log t� where
c1 is a constant. This gives the required upper bound. �
Proposition 2.2. s(t)� 2t + α(2t)� 2t + c2

√
t log t.

Proof. Let G be a graph with gap(G) = t and with n vertices. Consider a clique cover of G obtained
by greedily selecting a largest clique in the subgraph induced by the vertex set uncovered in previ-
ous steps. Suppose that in the first k steps cliques of size at least three were selected, covering 2k
vertices plus a set A ⊆ V (G), followed by l steps of selecting edges and covering Y , finally a set Z of
independent vertices covers the rest of the vertices of G . Set B = Y ∪ Z .

Then clearly,

θ(G) � n − |Z | − |A|
2

+ |Z | = n − |A|
2

+ |Z |
2

� n − |A|
2

+ α(B)

2

therefore

θ(G) − α(G) � n − |A|
2

+ α(B)

2
− α(G) � n − |A|

2
+ α(B)

2
− α(B) = n − |A| − α(B)

2

3 Ref. [2] mentions the relation of β(n, θ) to the present work (to [11] or to an earlier version from November 2009) but
misses the close tie to Theorem 4.1.
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thus 2t + |A| + α(B) � n = s(t). We gained |A| + α(B) over the 2t lower bound. However, we know
that 3|A| + |B| � n � 2t . It is easy to see that the gain is smallest for |A| = 0 thus we gain at least
α(2t) as desired. �
Corollary 2.3. s(t) = 2t + θ(

√
t log t ).

3. Matchings and Ramsey-numbers

In this section we explore the main properties of the gap of a graph, of gap-critical graphs, of the
relation of these to matchings and the Ramsey-numbers.

3.1. Easy facts

Proposition 3.1. If a graph G has k connected components C1, . . . , Ck then gap(G) = gap(C1)+· · ·+gap(Ck).
Every connected component of a gap-critical graph is gap-critical. Every connected component of a gap-
extremal graph is gap-extremal.

Proof. Both θ and α are sums of the θ and α of the components. �
Proposition 3.2. The N →N functions gap and gap2 are monotone increasing.

Proof. Indeed, if n1 � n2, then adding n2 − n1 isolated vertices to a graph G of order n1 of maximum
gap, we get a graph of order n2 of the same gap. �
Proposition 3.3. For any n1,n2 ∈ N we have gap(n1 + n2) � gap(n1) + gap(n2). For any t1, t2 ∈ N we have
s(t1 + t2) � s(t1) + s(t2).

Proof. Let G be a graph that consists of two components, G1 on n1 vertices, and G2 on n2 vertices,
gap(G1) = gap(n1) and gap(G2) = gap(n2). Then G has n1 + n2 vertices, and gap(n1 + n2) � gap(G) =
gap(n1)+gap(n2). For the second part let G be a graph that consists of two components, a t1-extremal
graph G1 on s(t1) vertices, and a t2-extremal graph G2 on s(t2) vertices. Then G has s(t1) + s(t2)

vertices, and gap(G) = t1 + t2 thus s(t1 + t2) � |V (G)| = s(t1) + s(t2). �
The equality is easily satisfied, for instance gap(5) = 1, gap(17) = 4, and gap(22) = 5 as we will

see in Section 5. We have a third, similar inequality where the condition of equality is less trivial
(Theorem 3.19), that turns out to be very restrictive and the related notion of Ramsey-perfect numbers
are crucial for the main results (Section 4.1).

Proposition 3.4. For any n1,n2 ∈ N we have

α(n1 + n2)� α(n1) + α(n2).

Proof. Indeed, a graph G that consists of two components, G1 on n1 vertices, and G2 on n2 vertices,
α(G1) = α(n1) and α(G2) = α(n2), has n1 + n2 vertices, and α(n1 + n2) � α(G) = α(n1) + α(n2). �
Proposition 3.5. Let G be a graph and Q a clique of G. Then

θ(G) � θ(G − Q )� θ(G) − 1,

α(G) � α(G − Q )� α(G) − 1,

gap(G) + 1 � gap(G − Q )� gap(G) − 1,
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and there exists a chain of induced subgraphs of G with gaps equal to gap(G),gap(G)−1, . . . ,0. Furthermore,
if G is gap-critical,

θ(G − Q ) = θ(G) − 1, α(G − Q ) = α(G), gap(G − Q ) = gap(G) − 1.

Notice that the equality gap(G − Q ) = gap(G)−1 may hold also for graphs that are not gap-critical
(see the example in the Introduction: a hole on 5 vertices with two non-adjacent vertices replicated).

Proof of Proposition 3.5. θ(G) � θ(G − Q )+ 1 is true because adding Q to any clique cover of G − Q
we get a clique cover of G . α(G) � α(G − Q )+1 holds because any stable set meets Q in at most one
vertex. The third inequality follows from these first two and the obvious bounds α(G − Q ) � α(G),
θ(G − Q ) � θ(G). The statement about the chain of induced subgraphs follows by noting that the
deletion of a vertex changes the gap by at most 1, in the beginning it is gap(G), and at the end it
is 0.

If G is gap-critical, gap(G − Q ) = gap(G) + 1, gap(G − Q ) = gap(G) cannot occur in the proven
inequalities, so the only option is gap(G − Q ) = gap(G) − 1, and then θ(G − Q ) = θ(G) − 1 and
α(G − Q ) = α(G). �

A vertex of a graph is simplicial if its neighbors induce a complete graph.

Proposition 3.6. If G is gap-critical, then it has no simplicial vertex.

Proof. If v ∈ V (G) is a simplicial vertex, α(G − N[v]) = α(G) − 1, since S ∪ {v} is a stable set for any
stable set S of G − N[v], contradicting Proposition 3.5 for Q = N[v]. �

The following generalizes the condition on N(v) if α � 2:

Proposition 3.7. Let G be a graph such that α(G) � 2 and there exists v ∈ V (G) where G(N(v)) is perfect.
Then gap(G) � 1.

Proof. Consider G1 := G(N[v]) which is now perfect, and Q := G − N[v] which is a clique because of
α(G) � 2. By Proposition 3.5, 0 = gap(G1) = gap(G − Q ) � gap(G) − 1. �

At last we state easy but crucial lower bounds for s(t) and s2(t), and an interesting relation be-
tween these bounds and the equality s(t) = s2(t).

Proposition 3.8. If there exists a (t + 1)-extremal graph G with ω(G) � k (k ∈ N), then s(t + 1) � s(t) + k,
in particular, for any t ∈ N: s(t + 1) � s(t) + 2.

Proof. Let K be a k-clique in G . By Proposition 3.5, gap(G \ K ) = gap(G) − 1. So

s(t) �
∣∣V (G \ K )

∣∣ = ∣∣V (G)
∣∣ − k = s(t + 1) − k. �

We prove three simple but important statements on the relation of s and s2:

Proposition 3.9. If s(t + 1) = s(t) + 2, then s(t) = s2(t), s(t + 1) = s2(t + 1).
If s(t) �= s2(t) or s(t + 1) �= s2(t + 1), then s(t + 1) � s(t) + 3.
If s(t) = s2(t) and s(t + 1) �= s2(t + 1), then s2(t + 1) � s2(t) + 4.

Proof. Let G be t + 1-extremal, and suppose s(t + 1) = s(t) + 2. If G is not triangle-free, by Proposi-
tion 3.5, s(t + 1) � s(t) + 3, so G is triangle-free, and deleting the two endpoints of an edge, the gap
decreases by 1, so what we get is t-extremal, and the first statement follows. The second statement is
just the indirect reformulation of the first. The third follows by s2(t +1) > s(t +1) � s(t)+3 = s2(t)+3,
using the preceding inequality. �
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3.2. Gaps and matchings

As usual, ν(G) denotes the size of a maximum matching of G , the maximum number of pairwise
disjoint edges; let ζ(G) denote the minimum number of edges that cover the vertices of G . If G is
a triangle-free graph, θ(G) = ζ(G). The reader can find in any textbook or check that for connected
graphs ν(G) + ζ(G) = n.

A graph is factor-critical if the removal of any vertex yields a graph with a perfect matching. (It is
convenient to include graphs of order 1 under this term.) A graph is bicritical if deleting any two ver-
tices there is a perfect matching. Clearly, factor-critical and bicritical graphs are connected. The following
is a simple but ingenious and important result of Gallai [8] (in English in [16] or [15, Exercise 26,
p. 58]).

Theorem 3.10. (See Gallai [8].) If G is connected and ν(G \ v) = ν(G) for all v ∈ V (G), then G is factor-critical,
and in particular it has an odd number of vertices.

Proposition 3.11. If G is a triangle-free and gap-critical graph then every component of G is factor-critical of
(odd) order at least 5.

Proof. Let H be a component of a triangle-free, gap-critical graph. By Proposition 3.1 H is gap-critical.
Since H is triangle-free, θ(H) = ζ(H) and by Proposition 3.5, for all v ∈ V (H) we have ζ(H \ v) =
θ(H \ v) = θ(H) − 1 = ζ(H) − 1. So

ν(H \ v) = ∣∣V (H \ v)
∣∣ − ζ(H \ v) = ∣∣V (H)

∣∣ − ζ(H) = ν(H),

whence H is factor-critical by Theorem 3.10.
If some component is a vertex, deleting that isolated vertex the gap does not decrease. It cannot

be a triangle either. �
The following proposition gives a lower bound on the gap and this bound will turn out to be very

sharp, in fact an equality. The intuition behind it: in a triangle-free graph G θ(G) = θ(G − v) + 1 for
every vertex v ∈ V (G) implies θ(G) = � V (G)

2 �, which is the smallest possible value in a triangle-free
graph. That is, if we want θ(G) to be largest possible comparing to θ(G − v), then θ takes its smallest
possible value.

Proposition 3.12. For any triangle-free graph G, gap(G) � � |V (G)|
2 � − α(G), and for connected triangle-free

gap-critical graphs the equality holds. If there exists a triangle-free gap-extremal graph of order n with k com-
ponents of order n1, . . . ,nk,

gap2(n) =
⌈

n1

2

⌉
− α(n1) + · · · +

⌈
nk

2

⌉
− α(nk).

Proof. Since G is triangle-free, θ(G) � � |V (G)|
2 � so gap(G) = θ(G) − α(G) � � |V (G)|

2 � − α(G). If G is

gap-critical and connected, by Proposition 3.11 it is factor-critical, so θ(G) = � |V (G)|
2 �, settling the

first claim. Now if G is triangle-free gap-extremal, then by Proposition 3.1 all of its components are
connected gap-critical graphs, and by the already proven assertion, gap(Gi) = �ni

2 � − α(Gi).

If α(Gi) > α(ni) then replacing Gi by Hi of the same order ni , triangle-free, (θ(Hi) � �ni�), and
α(Hi) = α(ni) < α(Gi), the gap increases, contradicting that Gi is gap-extremal. So θ(Gi) = �ni

2 �,
α(Gi) = α(ni), finishing the proof with an application of Proposition 3.1. �

Is the triangle-free condition essential in these statements? For some of the claims it can be
dropped! Gallai himself proved in [9]: If the complement of a k-color-critical graph is connected, it has
at least 2k − 1 vertices. By Proposition 3.5 the complements of gap-critical graphs are color-critical, so
we immediately get:
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Table 1
Inequalities for
Proposition 3.15.

40 � R(3,10) � 43
46 � R(3,11) � 51
52 � R(3,12) � 59
59 � R(3,13) � 69
66 � R(3,14) � 78
73 � R(3,15) � 88
79 � R(3,16)

92 � R(3,17)

99 � R(3,18)

106 � R(3,19)

111 � R(3,20)

122 � R(3,21)

125 � R(3,22)

136 � R(3,23)

143 � R(3,24)

153 � R(3,25)

159 � R(3,26)

167 � R(3,27)

172 � R(3,28)

182 � R(3,29)

Proposition 3.13. If G is a connected gap-critical graph, θ(G) � � |V (G)|
2 �.

Stehlík [19] proved the sharpening of Gallai’s general theorem stating that there exists a coloration
where all color classes are of size at least two, extending Gallai’s proof [15,16] of Theorem 3.10 [8]. Despite
these promising generalizations, we were not able to make essential use of Proposition 3.13 or prove
in any other way that gap-extremal graphs cannot contain a triangle. However, Proposition 3.9, the
main results of the paper and further verifications for small t (see Section 5) suggest that it is true:

Conjecture 3.14. Every gap-extremal graph is triangle-free.

3.3. Gaps and Ramsey-numbers

Let W8 be the Wagner’ graph [18], a cycle on 8 vertices with its four long chords. Deleting one
of these chords we get W81 and deleting two neighboring chords we get W82. Let R13 be the graph
on {r1, . . . , r13} with the following edges: riri+1 and riri+5, i = 1, . . . ,13, where the addition is taken
modulo 13. It is well known [18] that R13 is the largest graph such that ω = 2 and α = 4. Note that
gap(R13) = 3.

The following is mostly an extract of [18], except for the lower bounds on R(3,24), . . . , R(3,29)

that are from [22]:

Proposition 3.15. The Ramsey-numbers R(3, l) for values l = 2,3,4,5,6,7,8,9 are 3, 6, 9, 14, 18, 23, 28, 36,
and the corresponding Ramsey graphs are unique for l = 2, l = 3 and l = 5: K2 , C5 and R13 respectively. For
l = 4 there are three Ramsey graphs, W8 , W81 , W82 . Moreover all the inequalities from Table 1 hold.

R(4,4) = 18, and the unique (4,4)-Ramsey graph on 17 vertices is a cycle of length 17 with all chords
between vertices at distance 2, 4, 8.

The following is a result of Xiaodong, Zheng and Radziszowski [21, Theorem 3] see also [18,
2.3 (g)].

Proposition 3.16. (See [21].) If p,q � 2, R(3, p + q − 1) � R(3, p) + R(3,q) + min{p,q} − 2.
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Proposition 3.17.

(1) α + 1 � R(3,α + 1) − R(3,α) � 3 (provided α � 2 for the second inequality) and both inequalities are
strict if both R(3,α) and R(3,α + 1) are even.

(2) R(3,α + 2) − R(3,α) � 7 provided α � 3.
(3) R(3,α + 3) − R(3,α) � 11 provided α � 2.
(4) R(3,α + 4) − R(3,α) � 17 provided α � 3.
(5) R(3,α + k) − R(3,α) � R(3,k + 1) + k − 1, if α � k + 1 � 3.
(6) The right hand side of (5) for α � 3 and k = 5,6,7 are: 22,28,34.

(7) The right hand side of (5) for α � 4, k = 8,9,10,11,12,13 are: 43,48,55,62,70,78.

(8) R(3,α + 14) − R(3,α) � 86, if α � 3.

Proof. First, we prove (1): The upper bound is the easy and most well-known upper bound
R(3,α + 1) � R(3,α) + R(2,α + 1) [15], where the equality does not hold if both terms on the right
hand side are even, and where of course R(2,α + 1) = α + 1 (to see this, start the usual induction
with a vertex of even degree). Since equality would imply that R(2,α + 1) = α + 1 is even too (that
is, α is odd), we have the assertion concerning the upper bound. The lower bound of (1) is a result
in [3] and also a special case of Proposition 3.16 by substituting q = 2 and R(3,2) = 3.

Second, we check (2) by substituting p = α � 3, q = 3 and R(3,3) = 6 into Proposition 3.16. Third,
substituting p = α � 4, q = 4 and R(3,4) = 9 into Proposition 3.16 provides (3) for α � 4, and for
α = 2,3 it can be checked in Proposition 3.15. (4) for α � 5 is a specialization, and can be checked
directly in Table I for α = 3,4, (5) is just a rewriting of Proposition 3.16.

Finally, if we specialize (5) to k = 5, . . . ,14, we get (6), (7), (8) for α � 6, . . . ,α � 15, respectively.
For α = 3, . . . ,9 we still get the inequalities from [18, Tables II and I], for the lower bounds are
provided until l = 23, and the upper bounds until l = 15: for instance, R(3,23) � 136, R, (3,9) = 36,
so R(3,23)− R, (3,9) � 100. For the lower bounds concerning the highest arguments we have to rely
on upper bounds [22] copied into Proposition 3.17. The inequalities with the largest values that we
have to check are R(3,α + 14) − R(3,α) � 86, for α = 4, . . . ,14. (For α � 15 we have from (5) and
substituting R(3,15) � 73 from Table I [18] R(3,α + 14) − R(3,α) � R(3,15) + 13 � 86.) We make
the last checking, for α = 14: R(3,28) − R(3,14) � 86. Indeed, from Proposition 3.15 R(3,28) � 172
(copied from [22]) and R(3,14) � 78 (from Proposition 3.15), so in fact R(3,28) − R(3,14) � 94 �
86. �

If R(3,α + 1) − R(3,α) = 3, we will say that R(3,α), R(3,α + 1) are twins.

Proposition 3.18. gap2(n) � � n
2 � − α(n).

Proof. Indeed, by Proposition 3.12 for any triangle-free graph G on n vertices gap2(n) � gap(G) �
� n

2 � − α(G), and if we apply this to a triangle-free graph G with α(G) = α(n) we get the claim. �
We will now need to deduce conditions on the equality in Proposition 3.4. These computations

will enable us to conclude that there exist stable gap-optimal graphs of any order n ∈N, and this will
be crucial for our formulas describing the gap. A combination of the inequalities of Proposition 3.16
and the upper bound of Proposition 3.17 (1) yield the following characterization of the equality in
Proposition 3.4 that will be crucial for describing the gap-function, through Ramsey-perfect numbers.

Theorem 3.19. Let n,n1,n2,n3 ∈ N. Equality in α(n1 +n2)� α(n1)+α(n2) implies that there exist ε, ε1, ε2
such that n1 +n2 −ε, n1 +1+ε1 , n2 +1+ε2 are all Ramsey-numbers, and ε, ε1, ε2 ∈ {0,1}, ε+ε1 +ε2 � 1.

Furthermore if ni � 3 for i = 1,2,3 then α(n1 + n2 + n3) < α(n1) + α(n2) + α(n3).

In the last, strict inequality the condition is necessary: α(6) = 3 = 3α(2); if say n3 = 2, then n :=
n1 + n2 + n3 may be a Ramsey-number, n − 3 its twin, and n − 2 could be Ramsey-perfect. However,
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luckily, we are interested in these equalities only if the numbers n1, n2, n3 are odd, and then a
stronger inequality holds.

Note that even in the first part of the theorem, α(n1 + n2) = α(n1) + α(n2) with n2 = 1 can be
useful. This holds if and only if n1 + 1 is a Ramsey-number. If in addition n1 + 1 is even, a Ramsey
graph on n1 vertices and an isolated vertex provides the maximum gap (Theorem 4.1).

Proof of Theorem 3.19. We reprove the easy inequality α(n1 + n2) � α(n1) + α(n2) (see Proposi-
tion 3.4) in a complicated way, in order to deduce the conditions of equality. Set αi = α(ni). Then
ni � R(3,αi + 1) − 1 (i = 1,2).

Lemma 3.20. For arbitrary α1,α2 ∈ N

(9) R(3,α1 + 1) − 1 + R(3,α2 + 1) − 1 � R(3,α1 + α2) + 1, and

equality implies that Proposition 3.17 (1) (first part) holds with equality for the smaller of α1,α2 .

Proof. By symmetry we may suppose α1 � α2.
If α2 = 1 then (9) and Proposition 3.17 (1) (first part) are equalities. If α2 � 2 we can substitute

p = α1 + 1, q = α2 into Proposition 3.16 and add 1 to both sides:

(10) R(3,α1 + 1) − 1 + R(3,α2) − 1 + α2 + 1 � R(3,α1 + α2) + 1.

Applying Proposition 3.17 (1) to α2,

(11) R(3,α2) + α2 + 1 � R(3,α2 + 1),

and (10), (11) gives lemma (together with the remark on equality). �
From the definitions and from Lemma 3.20, n1 + n2 � R(3,α1 + 1) − 1 + R(3,α2 + 1) − 1 �

R(3,α1 + α2) + 1, from where we indeed can read α(n1 + n2) � α1 + α2, and the equality holds
if and only if

R(3,α1 + α2) � n1 + n2 � R(3,α1 + α2) + 1.

These inequalities allow at most one of n1 or n2 be one less than R(3,α1 + 1) − 1 or R(3,α2 + 1) − 1
respectively, that is, ε1 + ε2 � 1, and in case of equality, n1 + n2 = R(3,α1 + α2), that is, ε = 0.

Next we prove the second part of Theorem 3.19, the strict inequality when n is decomposed into
three numbers. We could apply Lemma 3.20 twice and each time the conditions for the equality in it,
but then the result we get would be too weak. We repeat the proof, applying Proposition 3.16 directly,
twice, choosing its arguments carefully:

Lemma 3.21. For arbitrary natural numbers α1 � α2 � α3 � 2,

(12) R(3,α1 + 1) − 1 + R(3,α2 + 1) − 1 + R(3,α3 + 1) − 1 � R(3,α1 + α2 + α3 − 1) + 2.

Lemma 3.21 concludes the proof of Theorem 3.19 since n1 + n2 + n3 is less than or equal to
the left hand side of (12). Since ni � 3 implies αi � 2, Lemma 3.21 shows that n1 + n2 + n3 is also
bounded from above by the right hand side of (12). Then, because of Proposition 3.17 (1) (second
inequality providing the lower bound 3), the right hand side can be upper bounded by R(3,α1 +
α2 + α3) − 1, proving that α(n1 + n2 + n3) � α1 + α2 + α3 − 1, showing the claimed strict inequality
of Theorem 3.19. �
Proof of Lemma 3.21. Apply the upper bound of Proposition 3.17 (1) to get that the left hand side is
less than or equal to
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(13) R(3,α1 + 1) − 1 + (
R(3,α2) + α2 + R(3,α3) + α3

)
,

where the sum in the parentheses can in turn be bounded according to Proposition 3.16:

(14) R(3,α2) + R(3,α3) + α2 + α3 � R(3,α2 + α3 − 1) − (α3 − 2) + α2 + α3.

Substituting this to (13) and applying Proposition 3.16 again to the result,

(13)� R(3,α1 + 1) + R(3,α2 + α3 − 1) + α2 + 1

� R(3,α1 + α2 + α3 − 1) − (α2 + 1 − 2) + α2 + 1,

after noting that α2 + 1 � min{α1 + 1,α2 + α3 − 1}. �
Corollary 3.22. A number n ∈ N is Ramsey-perfect if and only if there exist α1 � α2 � 2 that satisfy n =
R(3,α1 + α2) + 1 = R(3,α1 + 1) − 1 + R(3,α2 + 1) − 1, where R(3,αi + 1) is even (i = 1,2). Moreover,
then the equality holds in (10), (11).

Proof. Indeed, if n is Ramsey-perfect, let n1,n2 � 5 be odd numbers such that n = n1 + n2, α(n) =
α(n1) + α(n2). Since n1 and n2 satisfy the condition of Theorem 3.19, the theorem can be applied.
Denote α := α(n), α1 := α(n1) � 2, α2 := α(n2) � 2. Since n is not a Ramsey-number, ε = 1, and then
ε1 = ε2 = 0. In other words n = R(3,α) + 1, ni = R(3,αi + 1) − 1 are odd, (i = 1,2), n = n1 + n2,
α = α1 + α2, showing the assertion. Moreover, Lemma 3.20 is satisfied with equality, whence (10),
(11) as well. Conversely, if the equality and the parity condition are satisfied with α1,α2 � 2, then
defining, n1 := R(3,α1 + 1) − 1, n2 := R(3,α1 + 1) − 1 we see that n = R(3,α1 + α2) is Ramsey-
perfect. �

The lack of other examples of twins or other Ramsey-perfect numbers is not really surprising:
only the first nine Ramsey values are known. Yet we believe that all the applied inequalities cannot
be tight for arbitrary large Ramsey-numbers, so we state two conjectures:

Conjecture 3.23. The natural number n is Ramsey-perfect if and only if n is even and n − 1 is the bigger of
Ramsey twins.

Conjecture 3.24. The only Ramsey twins are {3,6} and {6,9}.

Corollary 3.25. Let G be triangle-free-extremal with a minimum number of components. Then G has at most
two components, and two if and only if n := |V (G)| is Ramsey-perfect, when

gap(G) = �n/2� − α(n) + 1,

otherwise n is odd, G is connected, and

gap(G) = �n/2� − α(n).

In both cases the triangle-free-extremal graphs are stable gap-optimal, and in the second case any triangle-free
graph on n vertices and stability number α(n) is stable gap-optimal.

Proof. Let G be a triangle-free-t-extremal graph with a minimum number of components, t ∈ N,
and let G1, . . . , Gk be its components, of order n1, . . . ,nk , n := |V (G)| = n1 + · · · + nk . According to
Proposition 3.11 all the components are factor-critical, in particular all the ni are odd, θ(Gi) = �ni/2�
(i = 1, . . . ,k), and by Proposition 3.12,

(15) gap(G) = �n1/2� − α(n1) + · · · + �nk/2� − α(nk).
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It follows now from Theorem 3.19 that k � 2, because otherwise three components can be replaced
by one, contradicting the choice of G:

⌈
n1 + n2 + n3

2

⌉
� �n1/2� + �n2/2� + �n3/2� − 1,

α(n1 + n2 + n3)� α(n1) + α(n2) + α(n3) − 1.

Two components can also be replaced by just one, unless the equality is satisfied in both of the
following inequalities:

⌈
n1 + n2

2

⌉
� �n1/2� + �n2/2� − 1, α(n1 + n2)� α(n1) + α(n2).

So k = 1, or k = 2, and then (15) specializes to the claimed formula, since for k = 2

gap(G) = �n1/2� − α(n1) + �n2/2� − α(n2) =
⌈

n1 + n2

2

⌉
+ 1 − α(n1 + n2),

and this happens if and only if n is Ramsey-perfect.
In both cases G is stable gap-optimal, and conversely, if n = s2(t) is neither an even Ramsey-

number nor Ramsey-perfect, then according to Proposition 3.12 every graph H on n vertices and
stability number α(n) satisfies: gap(G) � �n/2� −α(n) = gap2(n), so there is equality throughout, and
G is stable gap-optimal. �
4. Finding the gap with constant error

In this section we first determine the functions gap2(n) and s2(t) exactly, and then the functions
gap(n) and s(t) with small errors (2 and 10 respectively), moreover we prove that the error may
occur only after Ramsey-numbers on an interval of length 13.

4.1. Finding the triangle-free gap

Recall that gap2(n) is the maximum of the gap of a triangle-free graph of order n, and s2(t)
denotes the minimum order of a triangle-free graph of gap t . The main result of this section is a
simple formula for these functions if the inverse Ramsey-numbers α(n) are used as black boxes.

Theorem 4.1. gap2(n) = �n/2� − α(n) + ε(n), where ε(n) = 1 if n is an even Ramsey-number, or if it is
Ramsey-perfect, and 0 otherwise.

Proof. Let f (n) := �n/2� − α(n) + ε(n).

Claim 1. gap2(n) � f (n) for all n ∈N.

Indeed, if n is neither an even Ramsey-number nor Ramsey-perfect, this is just Proposition 3.18. If
n is an even Ramsey-number, then α(n − 1) = α(n) − 1 and �n−1

2 � = � n
2 �, so by the monotonicity of

gap2 (see Proposition 3.2):

gap2(n) � gap2(n − 1) � f (n − 1) = �n/2� − α(n) + 1.

More generally, if n = n1 +n2 where n1, n2 are odd numbers and α(n) = α(n1)+α(n2), then � n
2 �+1 =

�n1
2 � + �n2

2 �, and applying Proposition 3.3 and then Proposition 3.18:

gap2(n) � gap2(n1) + gap2(n2) �
⌈

n1
⌉

− α(n1) +
⌈

n2
⌉

− α(n2) = �n/2� − α(n) + 1.

2 2
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Corollary 3.25 establishes the theorem for the values n = s2(t) (t = 1,2, . . .), thus we get

Claim 2. If n = s2(t) for some t ∈ N, then gap2(n) = f (n).

Claim 3. The function f (n) is monotone increasing.

Indeed, since �n/2� is a monotone increasing function, we have f (n + 1) � f (n) unless α(n) is
increasing, or unless ε(n) is decreasing when n grows to n + 1. We prove that in both of these less
trivial events actually f (n + 1) = f (n):

Assume first that α(n + 1) > α(n). Then α(n + 1) = α(n) + 1, that is, n + 1 is the Ramsey-number
R(3,α(n) + 1). If in addition n is even, �n+1

2 � = � n
2 � + 1, and ε(n + 1) = 0 = ε(n) since n + 1 is

an odd Ramsey-number, so neither n nor n + 1 is an even Ramsey-number or Ramsey-perfect by
Theorem 3.19. So

f (n + 1) =
⌈

n + 1

2

⌉
− α(n + 1) + ε(n + 1) =

⌈
n

2

⌉
+ 1 − (

α(n) + 1
) + ε(n) + 0 = f (n).

If n is odd – and still α(n + 1) > α(n) –, then �n+1
2 � = � n

2 �, but then n + 1 is an even Ramsey-number,
so

f (n + 1) =
⌈

n + 1

2

⌉
− α(n + 1) + ε(n + 1) =

⌈
n

2

⌉
− (

α(n) + 1
) + ε(n) + 1 = f (n).

Second, assume that α(n + 1) = α(n), but ε(n + 1) = ε(n) − 1. Then ε(n) = 1, so n is even, and
therefore �n+1

2 � = � n
2 � + 1, so again f (n + 1) = f (n) proving the claim.

To finish the proof of the theorem, suppose for a contradiction that gap2 �= f . Let x be the smallest
integer x for which t := gap2(x) �= f (x). By Claim 1, gap2(x) > f (x). Then, by Claim 3, we have for all
y � x: t = gap2(x) > f (x) � f (y) = gap2(y) by the minimality of x. So s2(t) = x, and then, by Claim 2,
gap2(x) = f (x), a contradiction that proves the theorem. �
Corollary 4.2. For all α ∈ N, gap2(R(3,α)) = � R(3,α)+1

2 � − α = gap2(R(3,α) − 1), in particular, Ramsey-
numbers are not in the image of the function s2 .

Proof. If n is even, ε(n) = 1, so �n/2� − α + ε(n) = �n+1
2 � − α. If n is odd, ε(n) = 0 and � n

2 � = �n+1
2 �,

so again �n/2�−α + ε(n) = �n+1
2 �−α. In both cases gap2(n) = gap2(n − 1), so n �= s2(t) for any t . �

Corollary 4.3. For every α ∈ N for which R(3,α + 1) − R(3,α) � 4, exactly the odd numbers of the
interval [R(3,α) + 3, R(3,α + 1) − 1] are the values of the function s2(t), for t = gap2(R(3,α)) +
1, . . . ,gap2(R(3,α + 1)) − 1.

Proof. This is an immediate consequence of Theorem 4.1, since for the integers n of the given interval
both α(n) and ε(n) are constant, and �n/2� increases exactly on odd numbers. �
Corollary 4.4. For every n there exists a stable gap-optimal graph G, defined from an arbitrary (3,α + 1)-
Ramsey graph Gα (α = 1,2, . . .):

– If n ∈ [R(3,α) + 2, R(3,α + 1) − 1] or if n = R(3,α) + 1 is not Ramsey-perfect or if n = R(3,α) is odd,
let G be an arbitrary, order n induced subgraph of Gα .

– If n is Ramsey-perfect, n = R(3,α) + 1 = n1 + n2 , ni := R(3,αi + 1) − 1 is odd (i = 1,2), α = α1 + α2 ,
then let G consist of two components: Gα1 and Gα2 .

– If n = R(3,α) is even, let G consist of Gα−1 and an isolated vertex.

If n or n − 1 is equal to R(3,α) then G is not necessarily connected, but otherwise every stable gap-optimal
graph is connected.
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For n = 6 the only stable gap-optimal graph is C5 and an isolated vertex. For n = 7 and any number
R(3,α) + 1 which is not Ramsey-perfect, a graph having two components, a Ramsey graph and a K2
is stable gap-optimal, and may actually coincide with Gα .

Proof of Corollary 4.4. In the first case gap(G) = �n/2� − α(n) = gap2(n) according to Theorem 4.1
G is indeed stable gap-optimal.

In the second and third cases, if n = R(3,α) + 1 or n = R(3,α), the defined graphs are readily
stable gap optimal, and so are the graphs of the remark before the proof if n = R(3,α) + 1 but n
is not Ramsey-perfect. If n is neither of these two numbers, it cannot be written as the sum of two
nonzero numbers whose inverse Ramsey-numbers sum up to α(n) (see Theorem 3.19), so the defined
stable gap-optimal G is connected. �
Corollary 4.5. (3,α + 1)-Ramsey graphs are (R(3,α + 1) − R(3,α) − 3)-connected, moreover, deleting at
most R(3,α + 1) − R(3,α) − 3 vertices, the remaining n � R(3,α) + 2 vertices, if n is even, induce a graph
with a perfect matching.

Proof. Apply Corollary 4.4 to odd n ∈ [R(3,α)+ 3, R(3,α + 1)− 1]: any induced subgraph G of Gα on
n vertices has optimal gap. Fix this G and have a look at Theorem 3.19: ε(n) = ε(n − 1) = 0, and we
see that the jump-points of the function gap2(n) = �n/2� − α, that is the values of the function s2(t)
on the considered interval are exactly the odd numbers. So G is a triangle-free-extremal graph, and
either by Corollary 4.4 or by Corollary 3.25 it is connected, and by Proposition 3.11 it is factor-critical,
and the graphs in the assertion arise by deleting a vertex in such a graph. �
Corollary 4.6. Order n induced subgraphs of (3,α + 1)-Ramsey graphs induce a factor-critical graph if n �
R(3,α) + 3 is odd, and a bicritical graph if n � R(3,α) + 4 is even.

Indeed, this corollary is an immediate consequence of Corollary 4.5.
We now determine the recurrence relations for the function s2. Why? Doesn’t Theorem 4.1 tell

us all we need? Indeed, it does already tell the most important information, the following theorem
and its proof are secondary, the reader can skip it at first reading. However, besides an automatic
conversion of Theorem 4.1 from the gap2 function to s2, it also has a new content: it shows that for
a Ramsey-perfect number n, the interval [n,n + 3] cannot contain a Ramsey-number again. Besides
making the formulas simpler (at the price of a slightly more difficult proof), it reveals some interesting
relations between the distance of consecutive Ramsey-numbers and Ramsey-perfectness.

Corollary 4.7. For all t, s2(t) is odd or Ramsey-perfect. Moreover, the function s2 is determined by the following
recursive relations:

1 If neither s2(t) + 1, nor s2(t) + 2 are Ramsey, then:
1.1 s2(t + 1) = s2(t) + 2 if s2(t) is not Ramsey-perfect.
1.2 s2(t + 1) = s2(t) + 3 if s2(t) is Ramsey-perfect, and s2(t) + 3 is not Ramsey.
1.3 s2(t + 1) = s2(t) + 4 if s2(t) is Ramsey-perfect, s2(t) + 3 is Ramsey, moreover s2(t) + 4 is Ramsey-

perfect.
1.4 s2(t + 1) = s2(t) + 5 if s2(t) is Ramsey-perfect, s2(t) + 3 is Ramsey, but s2(t) + 4 is not Ramsey-

perfect.
2 If either s2(t) + 1 or s2(t) + 2 are Ramsey, then:

2.1 s2(t + 1) = s2(t) + 3, if s2(t) + 3 is Ramsey-perfect.
2.2 s2(t + 1) = s2(t) + 4 otherwise, except if s2(t) + 4 is Ramsey.
2.3 s2(t + 1) = s2(t) + 5, if s2(t) + 4 is Ramsey.

Proof. Let n = s2(t) then by definition, gap2(n) > gap2(n − 1), and let α := α(n), ε = ε(n). Suppose
that n is odd, or Ramsey-perfect. We will show that the recursive relations 1.1–2.3 hold, and s2(t + 1)

is also odd or Ramsey-perfect.
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1.1: If neither n + 1, nor n + 2 are Ramsey-numbers, and n is not Ramsey-perfect, then by as-
sumption n is odd and α, ε are constant in the interval [n,n + 2]. Therefore by Theorem 4.1
� n

2 � = �n+1
2 � < �n+2

2 �, so 1.1 holds.
1.2: If n = s2(t) is Ramsey-perfect then according to Corollary 3.22 there exist α,α1,α2 ∈ N such

that

(1) n = R(3,α) + 1 = R(3,α1 + 1) − 1 + R(3,α2 + 1) − 1, n is even.

According to Theorem 4.1, gap2(n) = gap2(n + 1) = gap2(n + 2), since while the ceiling increases by 1,
ε decreases by 1. Now gap2(n + 3) = gap2(n) + 1 unless n + 3 is a Ramsey-number again, and 1.2 is
checked.

1.3: If n + 3 is a Ramsey-number (and otherwise the same condition holds as in 1.2), then in
addition to gap2(n) = gap2(n + 1) = gap2(n + 2) we have gap2(n + 2) = gap2(n + 3), since both θ

and α have increased. However, n + 4 may or may not be Ramsey-perfect, and in the former case
gap2(n + 4) = gap2(n) + 1, that is, s(t + 1) = n + 1, as claimed.

1.4: In case n + 4 is not Ramsey-perfect (and otherwise the same condition holds as in 1.2)
gap2(n + 3) = gap2(n + 4) and n + 4 is even, so θ , α remain the same as for n + 3. However,
n + 5 is odd, and cannot be Ramsey again since n + 3 is Ramsey; θ increases, but α does not:
gap2(n + 5) > gap2(n) = gap2(n + 4), so s2(t + 1) = n + 5, as claimed.

2.1: If n + 3 is Ramsey-perfect then n + 2 is an odd Ramsey-number, and by Theorem 4.1 we
have by parity, and because of ε(n) = ε(n + 1) = ε(n + 2) = 0, ε(n + 3) = 1, α(n) = α(n + 1) = α,
α(n + 2) = α(n + 3) = α + 1: gap2(n) = gap2(n + 1) = gap2(n + 2) < gap2(n + 3) as claimed.

2.2: If the same hold but n + 3 is not Ramsey-perfect, then all the relations of 2.1 hold except
that we have now ε(n + 3) = 0, and therefore gap2(n) = gap2(n + 1) = gap2(n + 2) = gap2(n + 3) <

gap2(n + 4), where n + 4 is indeed odd.
2.3: If n + 1 or n + 2 is a Ramsey-number, and n + 4 is a Ramsey-number again, then

n is odd, n + 1 and n + 4 are twins. So n + 1 is an even Ramsey-number, and α(n + 1) =
α(n) + 1, ε(n + 1) = ε(n) + 1 = 1 compensate one another, so Theorem 4.1 gives this time gap2(n) =
gap2(n + 1) = gap2(n + 2) = gap2(n + 3) = gap2(n + 4) < gap2(n + 5). Note that s2(t + 1) = n + 5 is
even in this case, in accordance with the fact that n + 5 is Ramsey-perfect because of α(n + 5) =
α(n) + α(5) = α + 2. �

Corollary 4.7 gives concrete values of s2(i) for i < 12, because we do not know whether 40 or 41
is a Ramsey-number.

Corollary 4.8. The values of s2(i), i = 1, . . . ,11 are 5,10,13,17,21,25,29,31,33,35,39.

In fact, we will prove s2(i) = s(i) almost everywhere, and we conjecture it is true everywhere. This
is a slightly weaker conjecture than Conjecture 3.14.

Conjecture 4.9. gap(n) = gap2(n) for all n ∈ N, and s(t) = s2(t) for all t ∈N.

In the next section we show that the possible exceptions to this conjecture are at constant distance
from Ramsey-numbers, and at any such place the difference of the function value from the “usual”
�n/2� − α(n) is also a small constant.

4.2. Bounding the gap-function

The first assertion of the following lemma states that once the relation s(t) = s2(t) holds, it
surely holds again and again (together with the equivalent equality gap(t) = gap2(t)) until the next
Ramsey-number; the second assertion ensures that the relation s(t) = s2(t) holds again after excep-
tions restricted to a small interval (of size at most 29) after each Ramsey-number.
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Lemma 4.10. Assume R(3,α) � s(t) = s2(t) < R(3,α + 1). Then:

– For all t′ ∈ N such that s(t) � s(t′)� R(3,α + 1): s(t′) = s2(t′).
– There exists t′ ∈N, t < t′ � t + 29 such that

s(t) = n < R(3,α + 1) < s
(
t′) = s2

(
t′) � R(3,α + 1) + 85 � R(3,α + 15) − 1.

Proof. Let us first prove the first assertion. Suppose that s(t′) �= s2(t′) for some t, t′ such that

(2) R(3,α) � s(t) = s2(t) < s2
(
t′) � R(3,α + 1),

and t′ is smallest possible under (2). Clearly, t′ = t +1. Since s(t′) �= s2(t′) but s(t) = s2(t), by the third
part of Proposition 3.9, s2(t)+4 � s2(t′). This implies that neither s2(t)+1, nor s2(t)+2 is a Ramsey-
number, thus s2(t′) is defined from s2(t) in Case 1 (1.1, 1.2, 1.3 or 1.4) of Corollary 4.7. This cannot
happen in 1.3 or in 1.4 because s2(t) + 3 < s2(t) � R(3,α + 1) so s2(t) + 3 cannot be a Ramsey-
number. But it cannot happen in 1.1 or in 1.2 either because there s2(t′) � s2(t) + 3, contradicting
s2(t) + 4 � s2(t′) and finishing the proof.

Now to prove the second assertion, let T := max{t′: s2(t′) < R(3,α + 1)}. By the condition of the
theorem, and the proven first part n = s(T ) = s2(T ). Because of Corollary 4.7 part 1.1,

s(T ) � R(3,α + 1) − 2, and T = gap(n) = gap
(

R(3,α + 1)
)
.

Suppose for a contradiction that s(T + i) �= s2(T + i) (i = 1, . . . ,k).
By the second part of Proposition 3.9 s(T + i) � s(T + i − 1) + 3, so s(T + i) � s(T ) + 3i �

R(3,α + 1) − 2 + 3i (i = 1, . . . ,k).

Claim. k � 29.

Indeed, otherwise s(t + 29) � s(t) + 3 × 29 � R(3,α + 1) − 2 + 87 = R(3,α + 1) + 85. On the other
hand, by Proposition 3.17 (8) R(3,α + 1) + 85 � R(3,α + 15) − 1, so by Proposition 3.18, and then
applying Corollary 4.2:

gap2
(

R(3,α + 1) + 85
)
�

⌈
R(3,α + 1) + 85

2

⌉
− (α + 14)

�
⌈

R(3,α + 1) + 1

2

⌉
+ 42 − (α + 14)

=
⌈

R(3,α + 1) + 1

2

⌉
+ 42 − (α + 1) − 13

= gap2
(

R(3,α + 1)
) + 29.

So s2(t + 29) � R(3,α + 1) + 85 � s(t + 29) and therefore there is equality throughout, proving the
claim, and the theorem. �
Theorem 4.11. For all n, t ∈N: 0 � gap(n) − gap2(n) � 2, 0 � s2(t) − s(t) � 10.

Proof. Let p < r be two integers so that s(p) = s2(p), s(r) = s2(r), and s(t) �= s2(t) for all t ∈ N such
that p < t < r. According to Lemma 4.10 with α := α(s(p)), we have

(3) s(p) = R(3,α + 1) − 1, or s(p) = R(3,α + 1) − 2,

where we can suppose α + 1 � 6 since s(p) < R(3,5) = 14 is not possible because then p = 3, and
the choice t = p + 1 = 4 would contradict Theorem 5.5. By Lemma 4.10

s(r) − s(p) � 87, r − p � 29, α
(
s(r)

) − α
(
s(p)

)
� 14.
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Moreover, for t ∈ [p, r]: s(t)� s(p) + 3(t − p) that is,

(4) gap(n) � p +
⌊

n − s(p)

3

⌋

for any integer n in the interval [s(p), s(r)], and in this same interval we are checking

(5) gap2(n) � p +
⌊

n − s(p)

2

⌋
− β

(
n − s(p)

)
,

where β : [0,86] → [0,14] is the following function:

– β(x) = 0 if x = 0, β(x) = 1 in the interval [1,3],
– β(x) = 2 in the interval [4,7], 3 in the interval [8,11], 4 in the interval [12,17],
– 5 in [18,22], 6 in [23,28], 7 in [29,34], 8 in [35,43], 9 in [44,48], 10 in [49,55],
– 11 in [56,62], 12 in [63,70], 13 in [71,78], 14 in [79,86].

We first prove (5), and then the following:

Claim. 0 � gap(n) − gap2(n) � 2 for all n ∈ [s(p), s(r)].

We will be done then, since every n ∈ N belongs to such an interval by Lemma 4.10. The second
assertion of the theorem also follows then: let t ∈ N, and apply the first assertion to n := s(t). Then
by the proven assertion, if we are not done, gap2(n) < t = gap(n) � gap2(n)+ 2 � gap2(n + 10), where
in the last inequality we have used the immediate consequence of Corollary 4.7 that gap2(n + 5) �
gap2(n) + 1. This means n < s2(t) � n + 10 = s(t) + 10.

Proof of (5). Indeed, according to Proposition 3.18, for n ∈ [s(p), s(r)]:

gap2(n) �
⌈

n − s(p) + s(p)

2

⌉
− α(n) + α − α �

⌈
s(p)

2

⌉
− α +

⌊
n − s(p)

2

⌋
− (

α(n) − α
)

� p +
⌊

n − s(p)

2

⌋
+ β

(
n − s(p)

)
,

where at last we applied that � s(p)
2 � − α = gap2(s2(p)) = p by (the first part of) Lemma 4.10; instead

of the obvious estimate α(n)−α(s(p)) � α(n− s(p)) (Proposition 3.4) we used the particular situation
of the number s(p) close to the Ramsey-number R(3,α + 1), see (3): the function β provides a
universal upper bound for α(s(p) + x) − α(s(p)), independently of s(p): this difference is the number
of Ramsey-numbers in the interval [s(p), s(p) + x]. We have to check

α
(
s(p) + x

) − α
(
s(p)

)
� β(x) for all 0 � x � 86.

Since α � 4, all the inequalities of Proposition 3.17 concerning 1 � k � 14 are valid. For x = 0
the upper bound is obvious, for x = 1 it follows from Proposition 3.17 (1), since R(3,α + 2) �
R(3,α + 1) + 3 � s(p) + 4, for x = 2 from Proposition 3.17 (2), since R(3,α + 2) � R(3,α + 1) + 7 �
s(p) + 8, etc., proving (5).

Proof of the claim. Of course gap(n) � gap2(n). Combining (5) and (4) we have

0 � gap(n) − gap2(n) �
⌊

n − s(p)

3

⌋
−

⌊
n − s(p)

2

⌋
+ β

(
n − s(p)

)
,

which gives our estimate by taking the maximum of the 86 values x = n − s(p), but actually only the
14 values
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x = n − s(p) = 1,4,8,12,18,23,29,35,44,49,56,63,71,79,

matters since while β is constant, the function gap2(n) increases faster than gap(n), and the bound
improves. For the given values the differences are

1,1,1,2,2,2,2,2,1,2,1,2,1,1

in order, proving 0 � gap(n) − gap2(n) � 2 for the interval [s(p), s(r)]. �
Remark. As can be expected, the somewhat modified computation of this proof provides the result of
Lemma 4.10 as well. Indeed, gap2(s(p)+86) � p +43−14 = p +29, that is, s2(p +29) � s(p)+86. On
the other hand, s(p +29) � s(p)+29×3 = s(p)+87. However, s2(p +29) � s(p +29), a contradiction,
proving actually r − p � 28.

Last, we summarize the results of the two preceding theorems, completed with the remark that
the both the worst differences between gap and gap2, s(t) and s2(t) or the exception of Theorem 4.1
occur in a very small radius of Ramsey-numbers. This can be considered as a synthesis of this work.

Theorem 4.12. For all n ∈ N \ ⋃
α∈N[R(3,α), R(3,α) + 14]: gap(n) = gap2(n) = �n/2� −α(n), and always

�n/2� − α(n) � gap(n) � �n/2� − α(n) + 3.

Proof. The last inequality follows from the error of 2 in Theorem 4.11 added to the additive term 1
of Theorem 4.1. For the first part let α ∈ N, t := gap2(R(3,α)), and assume R(3,α + 1) � R(3,α)+ 16,
otherwise there is nothing to prove. Then s2(t) < R(3,α) (Corollary 4.2), and s2(t + 1) � s2(t) + 4 �
R(3,α) + 3 (Corollary 4.7). Set

I := [
s2(t + 1) + 1, s2(t + 1) + 12

] ∩N ⊆ [
R(3,α), R(3,α) + 15

] ⊆ [
R(3,α), R(3,α + 1)

)
.

Claim. If I does not contain any Ramsey-number, then there exists t′ ∈ N:

s
(
t′) = s2

(
t′) ∈ I.

Indeed, by the condition α is constant on I , so by Theorem 4.1, s2(t + 7) = s2(t + 1) + 12 �
R(3,α) + 15. On the other hand, by Proposition 3.9 we have s(t + 7) � s(t + 3) + 12. If the claim
is not true, the equality does not hold here, whence s2(t + 1) > s(t + 3). This means that defining
n = s(t + 3), we have gap2(n) � t and gap(n) = t + 3, contradicting Theorem 4.11 and proving the
claim.

Now by Lemma 4.10, for the t′ provided by the claim and for any n ∈ [s2(t′), R(3,α + 1)] we have
gap2(n) = gap(n). According to the claim, s(t′)� R(3,α) + 15 finishing the proof. �
5. Graphs with small gap

In this section we explore the smallest gap-extremal graphs and for small orders we show the
graphs of maximum gap. Graphs on at most 4 vertices are perfect, so s(1) � 5, and the only 1-
extremal graph is C5.

We will need the following lemma of merely technical use. A graph G is clique-Helly if its
inclusion-wise maximal cliques (viewed as set of vertices) have the Helly property: if a collection
of maximal cliques of G pairwise intersect, then they have a common vertex. A triangular claw is a
graph T6 on 6 vertices, and 9 edges consisting of a triangle 
 ⊆ V (T6) and a 3-stable set S ⊆ V (T6),
V (T6) = 
 ∪ S so that every vertex of S is joined to a different pair of vertices of 
. This graph is
not clique-Helly, and as shown below, it is in a sense the basic example of a non-clique-Helly graph.
We omit the simple proof of the following lemma:

Lemma 5.1. (See [14].) If a graph G does not contain a triangular claw as an induced subgraph then it is
clique-Helly.
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Theorem 5.2. The graph 2C5 is gap-extremal, in particular, s(2) = s2(2) = 10 and the only 2-extremal graph
is 2C5 . Therefore the graphs consisting of a C5 and an arbitrary graph on {1}, {1,2}, {1,2,3}, {1,2,3,4} have
maximum gap for n = 6,7,8,9 respectively. In addition:

(1) For n = 6 this is the unique graph of maximum gap, and it is stable gap-optimal.
(2) For n = 7 the gap of C7 and C̄7 is maximum, as well as that of R − v where R is a (3,4)-Ramsey graph

and v ∈ V (R). The latter graphs are stable gap-optimal.
(3) For n = 8 the only stable gap-optimal graphs are the (3,4)-Ramsey graphs.
(4) For n = 9 a graph G on n vertices is stable gap-optimal if and only if it is triangle-free and α(G) = 4.

Proof. We first prove (1) and (2). By Proposition 3.8 s(2) � s(1) + 2 = 7, so gap(6) = gap(7) = 1, and
(2) immediately follows. A graph G of maximum gap on 6 vertices is imperfect, so it contains C5
as induced subgraph. The vertex v not contained in this C5 is an isolated vertex, since otherwise the
edge vu and the matching of C5 −u is a clique cover with 3 edges, whence gap(G) = 0, a contradiction
which proves (1).

Suppose that G is a 2-extremal graph. Since gap(2C5) = 2, we have n := |V (G)| � 10. The only
thing we have to prove now is G = 2C5, since then gap(8) = gap(9) = 1 follow and (3) and (4) can
be readily checked: by Proposition 3.15 α(8) = 3, α(9) = 4, so for any triangle-free graph G on 8
vertices with α(G) = 3 we have gap(G) � �n/2� − 3 = 1, and for any triangle-free graph G on 9
vertices with α(8) = 4 we have gap(G) � �n/2� − 3 = 1. It follows that their gap is maximum, and
on 8 vertices these are exactly the (3,4)-Ramsey graphs. Conversely, stable gap-optimal graphs are
triangle-free and their stability number is as claimed by definition, so the assertion follows from the
proven part.

Suppose now for a contradiction that G �= 2C5. Let α := α(G), ω := ω(G), θ := θ(G).

Claim 1. If K is a clique of G, then G − K has at least 7 vertices.

By Proposition 3.5 gap(G − K ) = 1, so it has at least 5 vertices. If it has exactly 5 vertices, then
it is a C5. Then θ(G) � 4, so α(G) � θ(G) − 2 � 2, and the equality holds everywhere. Pick a vertex
v of this C5. Then N(v) is the union of a stable set and a clique, so it does not contain a C5, C7 or
C̄7 (it is split graph), so N(v) induces a perfect graph, and we conclude gap(G) � 1 by Proposition 3.7.
If G − K has 6 vertices, then by (1) G − K has an isolated vertex v , whence N(v) is simplicial in G ,
contradicting Proposition 3.6.

Claim 2. α = ω = 3, θ = 5, n = 10.

Apply Claim 1 to an arbitrary clique K . Since n � 10, we get |K | � 3. If there exists a clique K for
which equality holds, we have n = 10, ω = 3.

If ω � 2, then by Proposition 3.11 every component of G is factor-critical, that is odd, and at least
two of them are imperfect: G = 2C5. So ω = 3 and n = 10.

Now by Proposition 3.15, R(4,3) = R(3,4) = 9, so since ω = 3, α � 3. But α � 4 is not possible,
because then by Proposition 3.5 α(G − K ) � 4, gap(G − K ) = 1, θ(G − K ) � 5. Since G − K has 7
vertices but is neither C7 nor C̄7, it contains a C5, and the two vertices that are not in this C5 are
isolated ones because of θ(G − K ) � 5. If v is one of them, then again, it is a simplicial vertex in G ,
contradicting Proposition 3.6, and finishing the proof of the claim.

Claim 3. G contains two disjoint triangles.

Because of θ(G − v) = 4, we have ω(G − v) = 3 for all v ∈ V . If G does not contain 2 disjoint
triangles, then the triangles of G pairwise intersect, so either G is clique-Helly and they all intersect,
a contradiction to ω(G − v) = 3, or by Lemma 5.1, G contains a triangular claw 
 ∪ S where S =
{s1, s2, s3} ⊆ V (G) is a stable set, and 
 = {t1, t2, t3} ⊆ V (G) is a triangle, and si is adjacent to T \ {ti}
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(i = 1,2,3). Note that 
∪ S may be assumed to be induced because adding an edge to it yields either
a K4 or two disjoint triangles.

We may assume that G −{t1, t2} is triangle-free because else, there are two disjoint triangles. Since
α(G − {t1, t2}) = 3, G − {t1, t2} must be one of W8, W81, W82 (Proposition 3.15). So, G − {t1, t2} has
a cycle w1 . . . w8 w1, and the only other edges are among wi wi+5, i = 1, . . . ,4. We suppose up to
symmetry t3 = w1. We consider now two cases.

Case 1. t1 is not adjacent to w2 and w8. Because of the triangular claw, w1 and t1 have a common
neighbor that must be w5. Also t2 and w1 must have a common neighbor, that cannot be w5 because
ω = 3, so it is w2 or w8, say w2 up to symmetry. Now, we may assume t2 w3, t1 w4, t1 w6 /∈ E(G)

because otherwise there are two disjoint triangles. So, the common neighbor s3 of t1t2 must be w7
and we may assume t2 w6, t2 w8 /∈ E(G) because otherwise there are two disjoint triangles. Hence,
{t2, w3, w6, w8} is a stable set, a contradiction.

Case 2. t1 has at least one neighbor among w2 and w8. Symmetrically, we may assume that t2
also has at least one neighbor among w2 and w8. Since ω = 3, we may assume t1 w8, t2 w2 ∈ E(G)

and t1 w2, t2 w8 /∈ E(G). Now, we may assume t1 w7, t2 w3 /∈ E(G) because otherwise there are two
disjoint triangles. Hence, {t1, w2, w7, w4} is a stable set unless t1 w4 ∈ E(G), so t1 w4 ∈ E(G) and
symmetrically, t2 w6 ∈ E(G). Now, t2 w5 /∈ E(G) because else there are two disjoint triangles. Hence,
{t2, w3, w5, w8} is a stable set, a contradiction. This proves the claim.

So, G contains two vertex-disjoint triangles, T1 = {a1,a2,a3}, T2 = {b1,b2,b3}. If the remaining
four vertices contain a triangle or two independent edges, we have θ(G) � 4, a contradiction. There-
fore three of these vertices form an independent set C = {c1, c2, c3} and we have the following cases
according to the adjacencies of the last vertex d (which has a neighbor among c1, c2, c3 because
α(G) = 3).

Case 1. dci ∈ E(G) for i = 1,2,3. Each vertex of T1 must have a neighbor in C because α(G) = 3. If
a1c1,a2c1 ∈ E(G) then we must have a3c2 ∈ E(G) or a3c3 ∈ E(G) because there is no K4. But then,
we can cover G with two triangles and two edges. So we proved that no two vertices in T1 can have
a common neighbor in C . Hence, we may assume that the only edges between T1 (and similarly T2)
and C are ciai (and similarly cibi ), i = 1,2,3. Using that α(G) = 3, it follows that aibi ∈ E(G) and now
ai,bi, ci for i = 1,2,3 give three disjoint triangles showing that θ(G) � 4, a contradiction.

Case 2. dc3 ∈ E(G), dc1,dc2 /∈ E(G). Suppose first that every vertex of T1 has a neighbor in {c1, c2}.
Since there is no K4 we may assume a1c1,a2c2,a3c2 ∈ E(G), so we can cover G with two triangles
and two edges, a contradiction. So there must be a vertex in T1 with no neighbor in {c2, c1}, say a1,
and by the same argument a similar vertex in T2, say b1. Using five times that α(G) = 3, we get that
a1c3,b1c3,a1b1,da1,db1 ∈ E(G), a contradiction because {a1,b1, c3,d} is a clique.

Case 3. dc2,dc3 ∈ E(G), dc1 /∈ E(G). We claim that c1 is non-adjacent to at least two vertices of
both T1, T2. If not, say c1 is adjacent to a2,a3, then c2a1, c3a1 /∈ E(G) otherwise we have a cover
with two triangles and two edges. Depending on c1a1 ∈ E(G) or not, we have either a clique or
an independent set of size four, a contradiction that proves the claim. Therefore, w.l.o.g. c1 is non-
adjacent to a2,a3,b2,b3. If c1a1 /∈ E(G) or c1b1 /∈ E(G) or a1b1 ∈ E(G) then c1 is a simplicial vertex, a
contradiction. Thus c1a1, c1b1 ∈ E(G),a1b1 /∈ E(G).

Next we note that each of a2,a3 must have a neighbor in {c2, c3}, else there is an S4. But a2,a3
may not have a common neighbor in {c2, c3} because then there is a cover with two triangles and
two edges. Hence w.l.o.g. the only edges between T1 and C are c1a1, c2a2, c3a3. Similarly, the only
edges between T2 and C are c1b1, c2b2, c3b3.

Now α(G) = 3 implies a2b2,a3b3 ∈ E(G). Moreover da2,da3,db2,db3 /∈ E(G) otherwise there is a
clique cover with two triangles and two edges. Then a2b3,a3b2 ∈ E(G) for otherwise a2,b3, c1,d or
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a3,b2, c1,d would form an independent set. But now have the final contradiction since a2,a3,b2,b3
span a clique. �

To slightly shorten the proof, one could use Chvátal’s [6] theorem stating that the Grötzsch graph
(the fourth in Mycielski’s well-known construction [17], being the “Mycielskian” of C5 which is the
third) is the only triangle-free graph on at most 11 vertices with chromatic number at least 4. The comple-
ment of the Grötzsch graph is therefore the only graph on at most 11 vertices with α � 2 and θ � 4.
Also the following lemma could be used. For a proof, see Lemma 1.16 in [20].

Lemma 5.3. If G is a graph on at least 10 vertices then either G contains a clique or a stable set on four vertices,
or G contains two disjoint triangles.

Theorem 5.4. The graph R13 is gap-extremal, in particular, s(3) = s2(3) = 13, and the only 3-extremal graph
is R13 . Any triangle-free graph G on 11 or 12 vertices and α(G) � 4 is stable gap-optimal and connected.

Proof. Suppose that G is a 3-extremal graph, α := α(G), ω := ω(G), θ := θ(G). Since R13 is triangle-
free, θ(R13) = ζ(R13) = 7, and α(R13) = 4 (it is a (3,5)-Ramsey graph). So gap(R13) = 3, and therefore
n := |V (G)| � 13. We have to prove G = R13. If ω = 2 this is true since then by Proposition 3.11 G is
factor-critical, θ(G) = 7, so α(G) = 4. Therefore G is a (3,5)-Ramsey graph, and by Proposition 3.15
G = R13. So suppose ω � 3.

Claim 1. n = 13, ω = 3, α = 4, θ = 7, and for every triangle T , G − T is a 2C5 .

If K is an arbitrary clique, gap(G − K ) = 2, so by Theorem 5.2, G − K is of order at least 10, whence
|K | � 3, and therefore ω = 3. If T is a triangle, n � 13 implies that G − T is of order at most 10. So
G − T is of order 10 and gap 2, and n = 13. By Proposition 3.5, gap(G − T ) = 2, and since G − T has
10 vertices, the unicity in Theorem 5.2 states that it is 2C5.

Now by the equalities of Proposition 3.5 concerning gap-critical graphs, α(G) = α(G − Q ) =
α(2C5) = 4 = θ − 3, finishing the proof of the claim.

Claim 2. Let T be a triangle, and C, D ⊆ V (G) be the two C5 components of G − T . Then for every t ∈ T either
α({t} ∪ C) = 2 or α({t} ∪ D) = 2.

Indeed, if there exists t ∈ T so that both are 3, then there exist c1, c2 ∈ C , and d1,d2 ∈ D so that
t, c1, c2,d1,d2 form a stable set in G , contradicting Claim 2.

So suppose t ∈ T , α({t} ∪ C) = 2. Then C \ N(t) is the subset of an edge of C , and therefore t forms
a triangle T1 and T2 with two different edges of C . But this is impossible, because by Claim 1 both
G − T1 and G − T2 are 2C5 graphs, however, (C − T1) ∪ T \ {t} �= (C − T2) ∪ T \ {t}, because T1 �= T2.

The remaining additional claim follows now from Proposition 3.12: if G is a triangle-free graph on
11 or 12 vertices and α(G) = α(n) = 4, then gap(G) � 6 − 4 = 2, so the equality holds and gap(G)

is maximum. Moreover G is connected since R(3,2) = 3, R(3,3) = 6, R(3,4) = 9 imply that two
vertex-disjoint graphs with stability numbers 2 and 2 or 1 and 3 have at most 12 vertices. �
Theorem 5.5. The (3,6)-Ramsey graphs are 4-extremal, in particular s(4) = s2(4) = 17. A graph is 4-
extremal and triangle-free if and only if it is a (3,6)-Ramsey graph; for all other (possibly non-existing)
4-extremal graphs G, α(G) = 4, and θ(G) = 8.

Proof. Let G be 4-extremal. According to Proposition 3.12 the gap of (3,6)-Ramsey graphs on 17
vertices is at least 9 − 5 = 4. So n := |V (G)| � 17.

Since s2(4) = 17 from Corollary 4.8, we may assume ω := ω(G) � 3. Then by Proposition 3.8 s(4) �
s(3)+ 3 = 16 (see Theorem 5.4), and s(4) � s2(4) = 17. The statement s(4) = 17 follows now from the
next claim.
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Claim. For any clique K , G − K is of order at least 13, ω � 4, and |V (G)| = 17.

Indeed, by Proposition 3.5, gap(G − K ) = 3. So G − K is of order at least 13, so |K | � 4. Suppose
n = 16. Then ω = 3 and for any triangle K , G − K is of order exactly 13 of gap 3, so it is a (3,5)-
Ramsey graph, in particular it is triangle-free. Consequently there are no two disjoint triangles in G ,
and α(G) = α(G − K ) = α(R13) = 4.

On the other hand n − 2 = 14 = R(3,5), so for all u, v ∈ V (G), ω(G − {u, v}) = 3.
So, by Lemma 5.1, G is clique-Helly or has a triangular claw. In the first case, since there are no

two disjoint triangles, the triangles pairwise intersect, so they intersect, a contradiction to ω(G −
{u, v}) = 3. Hence, there is a triangular claw {t1, t2, t3, s1, s2, s3} (our usual notation). Since ω(G −
{t1, t2}) = 3, G −{t1, t2} contains a triangle, hence G contains two disjoint triangles. This contradiction
finishes the proof of the claim.

Let K be an ω-clique of G . By Proposition 3.13, θ(G − K ) � 7, so by Proposition 3.5 θ(G) � 8,
and since gap2(G) = 4: α(G) � 4. The strict inequality here, that is, α � 3 would imply either ω � 3
and then applying R(4,4) = 18 (Proposition 3.15) we get that G is a (4,4)-Ramsey graph; or by
claim, ω = 4, and G − K is of gap 3 and order 13, so isomorphic to R13. In the former case we see
that θ = 6, implying α = 2, but (4,4)-Ramsey graphs have α = 3, a contradiction; in the latter case
α(G) = α(G − K ) = 4 is proved, finishing the proof of the theorem. �

Surprisingly, the next case we can treat is s(10):

Lemma 5.6. s(t)� s2(4) + 3(t − 4) for t = 5, . . . ,10.

Proof. Note that s2(i) − s2(i − 1) for the six values i = 5, . . . ,10 is equal to 4,4,4,2,2,2, that is, 3 in
average.

If the statement does not hold let t0 be the smallest value for which this inequality is violated.
Then

s(t0) < s2(4) + 3(t0 − 4)� s2(t0).

Clearly, s(t0) − s(t0 − 1) = 2 since if not, according to Proposition 3.9 s(t0) − s(t0 − 1) � 3 so we could
have chosen t0 − 1 or a smaller value instead of t0. Therefore any t0-extremal graph is triangle-free,
in contradiction with s(t0) < s2(t0). �

Using Lemma 5.6 for a lower bound and Corollary 4.8 as upper bound, s(5) ∈ {20,21}, s(6) ∈
{23,24,25}, s(7) ∈ {26,27,28}, s(8) ∈ {29,30,31}, s(9) ∈ {32,33}, and s(10) = 35.

Corollary 5.7. We have s(10) = 35, the (3,9)-Ramsey graphs are all 10-extremal, and all other 10-extremal
graphs contain a triangle.

Proof. s(10) � 35, since by Proposition 3.18 gap2(35) � �35/2�−α(35) = 18 − 8 = 10, so s2(10) � 35.
Substituting s(4) = 17 (Theorem 5.5) and t = 10 into Lemma 5.6 we get s(10) � 35. �
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