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iract: We give various reformulations of the Strong Perfect Graph Conjecture, based on a study of
F coloring procedures, uniquely colorable subgraphs and w — 1-cliques in minimal imperfect graphs.

fis a graph w = w(G) denotes the cardinality of a maximum clique and a = a(G)
he cardinality of a maximum stable set. x = x(G) is the chromatic number of G.
means induced subgraph in this paper.

replace {z} by z throughout the paper. Paths an circuits go through every vertex
nce. They will be considered to be subgraphs or edge-sets. The vertex-set of the
will be denoted by V(G), the edge-set by E(G).

G is called perfect if x(H) = w(H) for every subgraph H of G, otherwise it
perfect. Polyhedra of the form P = {z > 0: Az < 1}, where Aisa 0 -1
e integer vertices if and only if the rows of A are the characteristic vectors of
'_thre vertices of P are the characteristic vectors of stable sets of a perfect graph.
straightforward consequence of Lovasz’s Perfect Graph Theorem (1972 a) and
theorem on antiblocking (1970,1971), as it was observed by Chvétal (1975).)
t Graphs provide a pleasant reformulation of a wide range of integer programs
fageous properties with respect to Optimization.

> Perfect Graph Theorem has become the material of undergraduate textbooks,
as decreased toward the structure of perfect or minimal imperfect graphs in
Fulkerson’s Lovész’s and Padberg’s work (1970, 1972 a,b, 1974). A graph is
@hal imperfect if it is not perfect, but all its subgraphs are perfect. '

acterization of perfectness immediately follows from Lovasz (1972 b), but



coNP charaterization would be given by the following conjecture of Berge (1961), (1962):

A graph isomorphic to an odd circuit of length at least five is called a hole , and the
complement of such a graph is called an antihole .

Berge’s Strong Perfect Graph conjecture (SPGC): If a graph is minimal imperfect,
then it is a hole, or an antihole.

Since a co-NP characterization exists already, there could be doubts about whether this
conjecture is interesting enough. However, its investigation may be justified by the closed
relation it could have with the recognition of perfect graphs. It is of course a nice structural
property interesting for its own sake.

Since the proof of the Strong Perfect Graph Conjecture occured to be difficult, researchers
of the field have turned toward proving it for subclasses of graphs, and developped algo-
rithms for recognizing subclasses of perfect graphs. A relatively small number of papers
deals with the Strong Perfect Graph Conjecture in general.

Let us summarize one direction of general results, and on the way we define some notions.
In the sequal we shall suppose that the reader is familiar with these notions and statements,
and we shall use them without reference.

Lovasz’s theorem on partitionability(1972b), (1984):

Minimal imperfect graphs have aw + 1 vertices;

It follows then by an easy computation, that

deleting an arbitrary vertex in a minimal imperfect graph, the remaining graph can be
partitioned into o w-cliques, and also into w a-stable-sets.

Graphs G with aw + 1 vertices and the property that deleting an arbitrary vertex the
remaining graph can be partitioned into a w-cliques, and also into w a-stables are called
partitionable, or (a,w) graphs.

Since partitionable graphs are easily seen to be imperfect, the above theorem of Lovasz
provides a NP-characterization of imperfectness. It also implies Lovész’s Perfect Graph
Theorem stating that '

A graph is perfect if and only if its complement is perfect.

Padberg’s corollaries(1974): Let G be an (a,w) graph. Let us mention four properties
proved by Padberg which will be the most important for us:

a.) For every w-clique K there exists a unique a-stable set disjoint from it, let us denote
it by S(K); for every a-stable set S, there exists a unique w-clique disjoint from it, denote
it by K(S).

b.) For every v € V(G), G — v has one unique partition into w-cliques, and one unique




into a-stable sets. The former partition is the cliqgue-partition of G — v, its
are the clique classes of G — v, whereas the latter partition is the coloration of

s elements are the color classes of G — v.

» v € V(G) is contained in a a-stable sets, namely
K is a clique-class of G — v }, and w w-cliques, namely
S is a color-class of G — v }.

paper the representation of a set with a vector will always mean its characteristic
a vertex-set.

set of w-cliques of a minimal imperfect graph is linearly independent.
’s remark on transversals:
1 (1976), (1984) has made a crucial remark in the interior of a proof:

nimal imperfect graph G there is no set of vertices whose cardinality is a +w —1
sects every a-stable set and every w-clique.

an immediate consequence just of the perfectness of subgraphs with (a —1)(w —
rtices.

rhose cardinality is o +w —1 and intersects every a-stable set and every w-clique
lled a small transversal.

erization of unique colorability

h which has one unique partition into w = w(G) stable sets, is called uniquely
. Deleting a vertex from a minimal imperfect graph we get a uniquely colorable
raph (Padberg). The significance of uniquely colorable perfect graphs, and their
o the Strong Perfect Graph Conjecture was first recognized by A. Tucker (1984).
onjectures about the relation of what he called “sequential colorings” and unique

, and pointed out the role such a relation could play in a proof of the Strong
aph Conjecture.

roach was further developped in Fonlupt, Seb6 (1990), where a good character-
iniquely colorable perfect graphs is given, and the following separation of the
‘two parts is exhibited:

Prove the existence of “combinatorial forcings” in uniquely colorable perfect

®- Prove that a minimal imperfect graph with “enough combinatorial forcings”




1 to all graphs G — z (z € V(G)), where G is the minimal imperfect graph of Problem 2,
one gets a sufficient number of forcings to apply the answer to Problem 2.

Thus the more particular the forcings in Problem 1 are, or the weaker the condition of
Problem 2 is, the closer we are to the SPGC.

The main goal of this work is to make a step forward in Problem 2.

Let G be an arbitrary graph. Let us say that Ky (z#y€V(G),KCVG))isa
forcing (to color z and y to the same color in every w-coloration), if both KUz and KUy
are w-cliques. We shall say that z and y are forced, if there exist forcings 7, K; z,, z2Kox;,
ooy T31 K124, T = 21, y = 4. Indeed, if X(G) = w(G), and z, y are forced, then clearly,

= and y must have the same color in every w-coloration of G.

Forcings of the complement of a graph will be called co-forcings, and pairs of vertices
forced in the complement will be called co-forced.

Chvital (1976), (1984), Giles, Trotter Tucker (1984), Tucker (1984) can be reformulated
as statements proving that minimal imperfect graphs with some forcings are holes and
antiholes. These reformulations, and some other statements of the kind appear in Bacsé
(1989).

S.E. Markossian, G.S. Gasparian and A.S. Markossian’s result (1986) is a breakthrough
in this direction: |

If in G two adjacent vertices are forced, then obviously, X(G) > w(@), in particular G is
not perfect. But does G contain a hole or an antihole ?

Ina hoie, any two adjacent vertices are co-forced, and any two vertices at distance two
are forced. Markossian and Gasparian and Markossian (1986) prove that this statement
can be reversed:

Theorem 1.1 If a minimal imperfect graph G and its complement both have two forced
vertices which are adjacent, then G is a hole or antihole.

The key-result of the present work is the following generalization:
Theorem 1.2 If a minimal imperfect graph G has two forced vertices which are adjacent,
then G is a hole or antihole.

For a proof of the SPGC it suffices now to prove that a minimal imperfect graph or its
complement have adjacent forced vertices.

We prove Theorem 1.2 in Section 2. This provides a new, short proof of Theorem 1.1
itself. (In Markossian and Gasparian and Markossian’s solution an ordered sequence of a
different forcings, and w different co-forcings is essential, their proof is quite involved, and
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L 1ses an exhaustive case checking; the proof in Section 2 makes use of one forcing and two

o-forcings only, and exploits these in 2 simple way.)

.. The other pole of this paper is a study of the w — 1-cliques of a minimal imperfect
b raph, with the goal of understanding forcings better, and getting closer to the conjectures
L:elow. The main results about w — 1-cliques are sketched in Section 4. We could still not
hrove the existence of at least one forcing in a minimal imperfect graph, which would be a
b rcakthrough we think, but an interesting structure seems to come up: we shall call some
stricted kind of w — 1-cliques intervals, and our goal is to prove that intervals arise as
b.c intersection of w-cliques. (The name “nterval” comes from the fact that specializing
‘,(lem to “webs” they are exactly the w — 1-cliques forming intervals, and the properties
e shall prove also remind intervals.) This turns out to be a rich notion: in Section 4 we
'k out the relations between vertices, intervals and w-cliques. Our main tool for this
frk will be Theorem 1.2. We shall also prove and then use a new relation between unique

Horability and forcings (that is some results on Problem 1), which may be interesting for

.3 Let G be partitionable and suppose K is an w-clique, S is an a-stable,
U S and its complement are uniquely colorable, then G is a hole

roof of this theorem can be found at the end of Section 3.

he results of the paper lead us into a new range of simple reformulations of the Perfect

boh Conjecture, which we summarize in Section 9.

us finish this introduction with two conjectures, which imply together the Strong

Graph conjecture, and which are the main motivation for the present research.
st is a weakening of a conjecture of Tucker (1984), see also Fonlupt, Sebd (1990).
cond would sharpen the results of the paper.

becture 1 If G is a uniquely colorable perfect graph such that a(G)w(G) = V(G)
e set of its w-cliques is linearly independent, then it has a forcing.

ture 2 IfGisa partitionable graph which has both a forcing and a co-forcing,
also has a small transversal.




2. Critical edges and the Perfect Graph Conjecture

An edge e € E(G) is called critical, if o(G — €) = & + 1. This means exactly that there
exists S, |S| = a — 1 such that 2Sy is a co-forcing.

If the pair (z,y) is a critical edge of the complement we shall call it a critical co-edge.
(There exists then a unique w — 1-clique K so that 2Ky is a forcing.)

Throughout this section we suppose that G g{ an (a,w) partitionable graph.

Markossian, Gasparian and Markossian (1'9/8,8 hxgade several simple but important ob-
servations about critical edges. Let us stat of them:

(2.1) Ifzoz,,...,zx—12k are critical edges, k < w, then {zy,...,zx} is a clique.

Indeed, let z;_; Siz; be the coforcings corresponding to these critical edges (i = 1,..., k).
Then {zg,...,zx} U S U...US; is a proper subset of the vertices of G, because k + 1 +
k(a —1) = ka +1 < wa + 1. But a proper subset of an (a,w)-graph has a partition into
at most a w-cliques , and coforced vertices must be in the same clique-class, whence they
are adjacent, as claimed.

(2.2) I zSy is a co-forcing, then there exists a unique w-clique K, containing z and not
containing y, and K; = K(SUy).

Proof. Clearly, an w-clique K, containing z is disjoint from S. I in addition y ¢ K,

then K, N(SUy)=0.
.

Let us first prove that Theorem 1.2 is a special case of the following Theorem 2.1 .
Indeed, if there are co-forced non-adjacent vertices, then it is easy to see from (2.1) that
there exists a path (zo,...,2,), where z;_,12; ({ = 1,...,a) are critical edges. Applying
(2.1) again, we immediately get that zo Kz, is a forcing, where K = {z;,...,24—1}. This
forcing and the two critical edges £z, o—174 satisfy the condition of the theorem below.

THEOREM 2.1 Suppose G is an (a,w) graph, and it has no small transversal. If there
exists vy, v2 € V(G) and an w-clique K such that vy K'v, is a forcing, moreover there exist
u1, uz € K (not necessarily distinct), such that ujvy, usve are critical edges, then G is a
hole or an antihole.

Proof. Let ujS1v1, u2S2v2 be the two co-forcings corresponding to the two critical edges
of the theorem. If u; = uy, then by (2.1) w = 2. (Because v1v2 ¢ E(G), but there is a
path consisting of critical edges between them.) Thus G is a hole.

Suppose now u; # u, throughout the proof.
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Let S be the family of a-stable sets containing u;, different from S; U u;, and not a color
E class of G — up. We have |S| =a - 2.

Case 1 There exists S € S such that S\ u; is not a subset of 53 U S;.

Let then s € (S\u1)\(S1US2), and let @ be the clique class of G — s for which v, € Q.
[(Equivalently, s € S(Q), v € Q.)

et T := (S\ul)U(Q\vz)le.
NS # 0, because otherwise S would be a color class of G —v;. |T| = a+w — 2 follows.

We first show that every w-clique R different from K(S) has a non-empty intersection
jith T. Indeed, since RN S # @, this is obvious if u; ¢ R; if u; € R, then either v; € R
d we are done, or v; ¢ R, and then by (2.2) R = K(S;Uwv;) = K Uv;. But then
€ KNT: u; € K by assumption; uz € @ \ v2 C T, because otherwise S(Q) = Sz U us
| contradiction with s € S(Q) in the definition of Q.

%.econd, we show that every a-stable set U different from S; U v2 has a non-empty
ersection with T. Indeed, s € S(Q)NT. K U # S(Q), then (Q \ vz) U v, intersects it,
t if @ is the unique stable set (see (2.2)) containing v, and not containing v;. But

table set is just Sy U vs.

.iqce S # Sz Uvg, K(S) and S; U vp are not disjoint. Adding their intersection to T we
2 small transversal, a contradiction. Thus Case 1 cannot hold.

t then Case 1 can also not hold if we interchange the indices 1 and 2. The only case

remains:

e 2 Every a-stable set which contains u; or uz and is not a color class of G — u; or
is a subset of S; U.S; U {u;,usz}.

be the graph induced by S; US2 U {u;,u2}. By the assumption, $; U Sz U {u1,uz}
fins all the o-stable sets containing u; except one, and the same is true for u;. Thus
H has at least 2(a — 1) a-stable sets.

ow that this is possible only if @ = 2. Let H be the graph induced by $;US,. Since
! artite, it is perfect, whence it can be partitioned to a cliques, that is, there exists a
-matching M = {z1y1,...,ZaYa} in H. (We implicitly used here the Perfect Graph
B, or Konig’s theorem about matching’s in bipartite graphs. To use the latter note
#H) = a implies that the minimum cardinality of a transversal is also a.)

X{ziy:} (¢ = 1,...,@). (xi is 1 in z; and y;, and 0 otherwise.) Since every
set of H contains exactly one of z; and y;, the vectors x; — x: (! =2,...,a) are




G is linearly independent (Padberg), we get that
H has at most « + 1 a-stable sets,

Comparing this with the trivial lower bound above, we get that 20 — 2 < & + 1, that is
a < 3.

Suppose a = 3. Let S, S ,5” be the three a-stable sets containing u;, where S’ is a color
class of G — uy, and S" =Sy Uu;. Let T := (SUKUw;)\ uy. T=a+w-2.

Since by assumption S C S; U S, U {u1,u2}, we have SN S2#0. SNS, # 0 can also be
supposed: if SN S; = @, then [SN S| =2, and u1Sous is a co-forcing; but then u1 S1us
is not a co-forcing (because of (2.2) and the unicity of the a-stable disjoint from a given
w-clique), and interchanging the indices 1 and 2 we have SNS; # 0, 5N S, # 0.

It follows that T intersects every a-stable set except possibly S'. (Note that S(K Uvy) =
Sz Uw,.) It also intersects every w-clique except K(S). (The unique clique containing u;
and not containing v; is K U vg.)

Since §' # §, §' and K (S) are not disjoint. Adding their intersection to T we get a
small transversal. This contradiction proves a < 2. Thus G is an antihole.
[}

Let us note that linear algebra can be avoided here at the price of making the proof
longer.

3. Unique colorability and critical edges

Although the main stream of the paper is to study Problem 2, in this Section we wish
to give some particular answers to Problem 1. A general answer can be found in Fonlupt
and Sebé (1990), but that cannot be sticked together with Theorem 1.2 to prove SPGC.
We would like to provide forcings in uniquely colorable graphs. For some particular graphs
we will succeed. These graphs will play a role in the following two sections.

Let us first mention a general relation between the rank 7(G) of the set of w-cliques of a
graph, perfectness and unique colorability, which is the trivial implication of a characteri-
zation of perfectness and unique colorability in Fonlupt, Sebd ( 1990).

(3.1) Let G be arbitrary. If x(G) = w(G), thenr(G) < n—w+1, and if in addition equality
holds, then G is uniquely colorable.

Indeed, let x,, ..., Xw be the characteristic vectors of the color classes in an w-coloration.
Then the vectors y; — X25-++,X1 — Xw are all orthogonal vectors to the w-cliques (like in

the proof of Theorem 2.1, Case 2), and they are linearly independent. If there exists
another coloration, then let Xw + 1 be a color class in this coloration, which is different
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i (¢ =1,...,w). It can be easily seen that x; — xw + 1 is linearly independent from

X2, -y X1 — Xw}, and it is also orthogonal to the w-cliques.
following statement is a key observation for proving theorems 1.3 and 4.1:

) If G is partitionable and K is an w-clique such that G — K is uniquely colorable,

1e critical edges of G whose both endpoint is in K form a spanning tree of K.

in addition there exists a critical edge as, a € K, s ¢ K, then the critical edges of
form a path through all vertices of K U s.

ne of the endpoints of this path is s, let us denote the other by t. s(K \t)t is a

‘heart of the proof is the following lemma:

na: Under the conditions of (3.2) the graph whose vertex set is K and whose edges
e critical edges induced by I, is connected.

Let {X;, X2} be an arbitrary partition of I, and x; € X; z2 € X5. The coloration
- 1 consists of S, of |X;| — 1 color classes intersecting X;, and |X;| color classes
cting X,. Similarly, the coloration of G — z; consists of S, of | X3| — 1 color classes
cting X3, and |X;| color classes intersecting X;. Thus, since by assumption the
tion of these two colorations to G — I\ is the same, there exists an o — 1-stable A,
€ X1, a; € X, such that AU a, is a color class of G — z;, and AU a; is a color
f G — z,. Hence a;a; is a critical edge.

have proved that there is a critical edge between the classes of any partition of K,
proves the lemma.

in be easily proved in various ways that the graph in the lemma cannot contain
it. A lemma of Giles, Trotter and Tucker (1984), see also Tucker (1984)) means
7 that the critical edges form a forest in general. Their proof is tricky but simple,
e special case we neeed is even easier. We use their idea in the following proof:

of (3.2). We first prove (3.2)a : Suppose indirectly that C is a circuit consisting
7 critical edges, V(C) C K. Let vy,...,vr be the vertices of this circuit so that
3+ sUn=157-1Vn, Sy are co-forcings. It follows from (2.2) that S; U v, is a
lass of G — v;. Replace S; U v, by S; U v, in the partition into a-stable sets
tion) of G — v;. We get a coloration of G — v,. In the same way as before, S; Uvs
lor class in this coloration.



t+1=1, and finally we get another coloration of G — v1. This coloration cannot be the
same as the one we started with, because that would mean that we pPermuted entire color
classes. (K cannot contain a color class, because it is a clique.)

Thus the critica] edges induced by K form a forest, By the Lemma they form a tree,
and a.) is proved. :

- Note that the extremities of the Path provided by (3.2)b are non-adjacent co-forced
vertices. (If they were adjacent, K U s would form an w + 1-clique, see (2.1).)

Since S is a stable set, s € Q for every forcing of the form 81Qs2, 81,82 € S. Thus such
forcings remain forcings in G — . Hence the critical co-edges induced by S'\ s will be the
same in G — s as in @G- they form a tree. But forced pairs of vertices have the same color

in the perfect graph G — s, implying that § \ s is the subset of a color-class 4 of G — g,
Since 4 is also ap a-stable, 4\ S consists of one vertex, let us denote jt by a. as is a

path of K U s, where the endpoints of this path are s and ¢. Thys s and ¢ are co-forced.
By (3.2)c.) S(K\t)tis a forcing, in particular s and ¢ are non-adjacent.

We proved that @ has two non-adjacent co-forced vertices. Since the conditions are
“self-complementa.ry”, we also have two adjacent forced vertices. Thus Theorem 1.1 can
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b 4. w— 1-cliques in minimal imperfect graphs

~ In this section we are going to study w — 1-cliques with the goal of getting closer to
rcmgs Therefore we are not interested in arbitrary w — 1-cliques, only in those which
an participate in forcings, that is, might arise as the intersection of two w-cliques. Un-
ﬁrtuna,tely we cannot prove the existence of such w — 1-cliques, that is the existence of
b forcing (we think this would be a decisive breakthrough concerning Problem 1, and the
PGC) Since we want to have existing objects, we define a more general notion, which,
1 .the Perfect Graph Conjecture is true is what we want; it defines existing objects; it is
: trictive enough to provide an interesting structure.

We suppose all over this section that G is partitionable.
e shall say that an w — 1 element subset of an w-clique is an interval, if it is a class in
tition into (o — 1 pieces of ) w — 1-cliques of G — K U S(K), for some w-clique K.

Q is an w-clique and I C @ is an interval, then z € V(G) with {z} = @ \ I will be

d an eztremity of I or of Q. The same terminology is used for the intervals of the

plement G of G. (That is an a — 1 element subset of an a-stable will be called interval,
a color class of a graph of the form G — K U S(K).)

‘f:is easy to check that K \ z is an interval (K is an w-clique, z € K), if and only if there
l s an a-stable set S with SN K = {z}, and SN S(K) # 0. This will be used without
rence.

1l turn out that some local structural properties of intervals and of their extremities
uivalent to the SPGC.

Every w — 1-clique is contained in at most two w-cliques.

ed, if K is an w — 1-clique, and = € K is arbitrary, then in the coloration of G — z

are exactly two color classes disjoint from I. Denote these two a-stables by S; and

 other clique than K(S7) or K(S2) can contain K:

a color class of G — z but S # S, S # Sz, then SN K # 0, and K(S) is disjoint

his set, whence it does not contain K; if S is not in the coloration of G — z at all,
: K(S), whence it does not contain K again. (4.1) is proved.

hat in exactly the same way, every w — i-clique is contained in at most ¢ + 1

Every w-clique has at least two extremities.




intersecting S(K). These intersect K in different points, which are all extremities of
intervals.

The following statement is also an easy exercise, we leave it to the reader.

(4.3) Every vertex of G is the extremity of at least two w-cliques.

(4.1) and (4.2) imply that there exist at least n different intervals. (Furthermore, every
w-clique can be “represented” by a different interval contained in it .. 2

For holes, antiholes (and more generally for “webs”) equality holds in these statements.
Conversely:

Theorem 4.1 If G has an w-clique with exactly two extremities, and there is no small
transversal in G, then G is a hole or an antihole.

Sketch of the Proof. Let K be an w-clique with exactly two extremities a;, a;. This means
exactly, (according to the equivalent definition of intervals noted above), that all a-stable
sets T, TN S(K) # 0, T # S(K), contain a; or a;. In particular, the number of such
a-stable sets is at most 2(a — 1). (At least one « stable set containing a; is disjoint from
S(K): the color class of a; in G — as.) Since the a-stable sets are linearly independent,
we get: 7(G — S(K)) > n — 20 +1.

Applying (3.1) to G — S(K) (n — a replaces n, o replaces w) we get equality here, and
we also get that G — S(K) is uniquely colorable.

With some work one can also prove that there exists a critical edge from a; to S(K).
Thus, the conditions of (3.2)b are satisfied, and it follows by (3.2)c that G has adjacent
forced vertices.

Now, the condition of Theorem 1.2 is satisfied, and we are done.
L J

Note the similarity between the proof of Theorem 1.3 and 4.1. However, the condition
here is not self-complementary, so we have only adjacent forced vertices, and Theorem 1.2
had to be used.

Theorem 4.2 If G has a vertex which is the extremity of exactly two w-cliques, and
there is no small transversal, then G is a hole or an antihole.

Note the kind of polarity relation between (4.2) and (4.3) and between Theorem 4.1 and
4.2. (This can be given a precise sense: Tucker has noted that the intersection graph of a
partitionable graph is also partitionable.) However, we cannot prove one statement from
the other, and Theorem 4.1 seems to be much more difficult: we use Theorem 1.2 in an
essential way in the proof, whereas this is not necessary in the (here omitted) proof of
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Theorem 4.2 . The reason why we cannot prove one of these statements from the other is
Zthat we do not know whether the polarity relation keeps small transversals.

Reformulations of the Strong Perfect Graph Conjecture

', The goal of this section is to collect new reformulations of the SPGC which follow from
e results of the paper. '

We distinguish two levels of reformulations: to prove the SPGC from the second level
ta.tements, Theorem 1.2 seems to be essential, whereas the first level statements imply
SPGC more easily.

, Anyone of the following statements is equivalent to the Strong Perfect Graph Conjecture:
“st level

f G is minimal imperfect, then for every w-clique K, G — K is uniquely colorable;

i G is minimal imperfect, then the number of intervals is |[V(G)|;

: G is minimal imperfect, then the set of intervals is linearly independent;

f G is minimal imperfect, then every interval has two extremities;

ﬂG is minimal imperfect, then every w-clique has two extremities;

G is minimal imperfect, then every vertex is the extremity of two intervals;

-G 1s minimal imperfect, then there exists a vertex which is the extremity of two intervals;
;znd level

:.' G is minimal imperfect, then there exists an w-clique K, such that G — (K U S(K)) and
bs complement are uniquely colorable;

G 1s minimal imperfect, then there exist two adjacent forced vertices (or more generally,
Vo co-forcings and one forcing like in Theorem 2.1) in G or G;

G is minimal imperfect, then there exists a forcing Ky such that G — (K U {z,y}) is
,: iquely colorable;

G is minimal imperfect, then there exists a forcing x Ky such that every clique intersect-
K also intersects z or y.

is minimal imperfect, then there exists an interval which has exactly two extremities.
{Can any of these be proved for a subclass for which the SPGC is open ?

nowledgment: I am indebted to Frédéric Maffray and Myriam Preissmann for many
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