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A very short proof of Seymour's theorem, stating that in bipartite graphs the minimum 
cardinality of a t-join is equal to the maximum cardinality of an edge-disjoint packing of t-cuts, 
is given. 

Let G be a graph and t : V ( G ) - ,  {0, 1}, where t(V(G)) is even. (If X~_ V(G), 
then t ( X ) : = E  { t (x):xeX}. )  A t-join is a set F ~ E ( G )  with d~(x)=t(x) 
(mod 2), Vx e V(G). (dF(x) denotes the number of edges of F incident with x, 
where loops count twice.) t-joins contain Chinese postman tours, matchings and 
minimum weight paths as a special case. (el. [1, 7]). 

If X c  V(G), let 6 ( X ) =  {xy e E(G): y qX, x eX} .  If t (X)~ 1 (mod 2), then 
6(X) is called a t-cut, t-cuts contain plane multicommodity flows as a special case 
[8]. For basic definitions concerning graphs we refer to [4]. 

Let ~(G, t)=min{lF: F ~E(G),  F is a t-join}, and v(G, t) =max(ICl: C is a 
family of disjoint t-cuts}. It is easy to see that r(G, t) >I v(G, t). 

Theorem (Seymour [8]). I f  G is bipartite, then ~(G, t) = v(G, t). 

If G is an arbitrary graph, then replacing every edge by a path of length two, 
we get a bipartite graph for which Seymour's theorem can be applied. The 
resulting minimax theorem for G was proved earlier by Lov~sz [3]. Both Lov~isz' 
and Seymour's proofs use rather sophisticated linear programming techniques and 
are quite involved. In [2] Frank, Seb6 and Tardos presented a short proof for a 
sharper theorem, using a new technique. The extension of this technique has led 
to a Gallai-Edmonds type structure theorem for t-joins [6]. The present note is 
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based on the recent observation that the method used in [6] to prove this 
structure theorem, gives rise to very short proofs for some of its corollaries. 

Let us introduce some notations and terminology: 

F o r a 4 : b e V ( G ) ,  t~'b(x)=--[t(x) i f x e V ( G ) \ { a , b }  
I t ( x ) + 1  i f x e { a , b }  (mod2). 

The contraction of an edge e =xy e E(G) in (G, t) means deleting e and 
identifying x and y and defining t(vxy) =-- t(x) + t(y) (rood 2) where vxy is the new 
vertex that arises; F(x) is the set of neighbours of x; an (a, b)-path (a, b ~ V(G)) 
means a simple path in G between a and b. If P is a path P(x,  y) (x, y ~ V(P)) 
denotes its subpath between x and y. 

The following simple observations will be used without reference in the sequel: 
A t-join F is minimum if and only if for every circuit C, IF n CI <~ IF\CI, [5]. 

If F~ is a minimum h-join and F2 is a minimum tE-join, then for each circuit C in 
F~ AF2, IcnFd = I cn  F I. 

If F is a minimum t-join then for every a #: b e V(G) there exists a minimum 
t~'b-join F '  and an (a, b)-path P such that F = F '  A P. (This follows by observing 
that for any minimum t~'b-join F", F A F" is the union of an (a, b)-path P and 
circuits C ~ , . . . ,  Ck which are pairwise edge-disjoint. Since both F and F" are 
minimum, the circuits have the same number of edges in the two joins. Thus, 
F' = F" A (C~ U .... U Ck) is alSO a minimum t~'b-join and F = F '  A P holds.) 

Proof of Seymomas theorem. Let the function t differ from the 0-function and 
a :/: b ~ V(G) be such that lr(G, t a'b) is minimum. (If t ~ 0 the theorem is trivial.) 

Claim. If F is a minimum t-join, then dF(a) = dF(b) = 1. 

Let the minimum ta'b-join F '  and the (a, b)-path P be such that F = F '  A P. 
Then dF,(a)=dF,(b)=O, since if b b ' e F '  say, then F' \bb '  is a t~'b'-join, a 
contradiction with the choice of a and b. Since dp(a)= d~,(b)= 1 the claim is 
proved. 

Contract every edge of 6(b) to get (G*, t*). It is enough to prove that 
F*:=F\6(b)  is a minimum t*-join of G* since then the claim implies 
r(G*, t*) = F \ 6 ( b ) [  = I F I -  1 - r ( G ,  t)  - 1 and Seymour's theorem follows by 
induction. (iS(b) is a t-cut disjoint from E(G*).) 

Suppose indirectly, that K c E(G*) is a circuit in G* with: [K n F* I > IK\F*I. 
Then IK n F*[ >/IK\F*I + 2 follows, because G* is bipartite. K corresponds in 
G to an xl, x2-path (xl, x2eF(b) )  and since F is a minimum t-join, 
I(ru{bx ,bx2})nFl< l(KU{bx ,bx2})XFI . As a consequence we. have 
equality in the last two inequalities, and bxl, bx 2 ¢ F. The latter equality implies 
that T = F  A (K U {bxl, bx2}) is also a minimum t-join. However, dr(b)= 3 
contradicting the claim. [] 
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Note that the sharper theorem of Frank-Seb6-Tardos [2] can be proved in the 
same way. 
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