NOTE

A QUICK PROOF OF SEYMOUR'S THEOREM ON \boldsymbol{t}-JOINS

András SEBÖ*
Eötvös Loránd University and Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary

Received 10 December 1985
Revised 13 May 1986

Abstract

A very short proof of Seymour's theorem, stating that in bipartite graphs the minimum cardinality of a t-join is equal to the maximum cardinality of an edge-disjoint packing of t-cuts, is given.

Let G be a graph and $t: V(G) \rightarrow\{0,1\}$, where $t(V(G))$ is even. (If $X \subseteq V(G)$, then $t(X):=\sum\{t(x): x \in X\}$.) A t-join is a set $F \subseteq E(G)$ with $d_{F}(x) \equiv t(x)$ $(\bmod 2), \forall x \in V(G) .\left(d_{F}(x)\right.$ denotes the number of edges of F incident with x, where loops count twice.) t-joins contain Chinese postman tours, matchings and minimum weight paths as a special case. (cf. [1, 7]).

If $X \subseteq V(G)$, let $\delta(X)=\{x y \in E(G): y \notin X, x \in X\}$. If $t(X) \equiv 1(\bmod 2)$, then $\delta(X)$ is called a t-cut. t-cuts contain plane multicommodity flows as a special case [8]. For basic definitions concerning graphs we refer to [4].

Let $\tau(G, t)=\min \{\mid F: F \subseteq E(G), F$ is a t-join $\}$, and $v(G, t)=\max \{|C|: C$ is a family of disjoint t-cuts $\}$. It is easy to see that $\tau(G, t) \geqslant v(G, t)$.

Theorem (Seymour [8]). If G is bipartite, then $\tau(G, t)=v(G, t)$.
If G is an arbitrary graph, then replacing every edge by a path of length two, we get a bipartite graph for which Seymour's theorem can be applied. The resulting minimax theorem for G was proved earlier by Lovász [3]. Both Lovász' and Seymour's proofs use rather sophisticated linear programming techniques and are quite involved. In [2] Frank, Sebö and Tardos presented a short proof for a sharper theorem, using a new technique. The extension of this technique has led to a Gallai-Edmonds type structure theorem for t-joins [6]. The present note is

[^0]based on the recent observation that the method used in [6] to prove this structure theorem, gives rise to very short proofs for some of its corollaries.

Let us introduce some notations and terminology:

$$
\text { For } a \neq b \in V(G), \quad t^{a, b}(x) \equiv\left\{\begin{array}{ll}
t(x) & \text { if } x \in V(G) \backslash\{a, b\} \\
t(x)+1 & \text { if } x \in\{a, b\}
\end{array} \quad(\bmod 2) .\right.
$$

The contraction of an edge $e=x y \in E(G)$ in (G, t) means deleting e and identifying x and y and defining $t\left(v_{x y}\right) \equiv t(x)+t(y)(\bmod 2)$ where $v_{x y}$ is the new vertex that arises; $\Gamma(x)$ is the set of neighbours of x; an (a, b)-path $(a, b \in V(G))$ means a simple path in G between a and b. If P is a path $P(x, y)(x, y \in V(P))$ denotes its subpath between x and y.

The following simple observations will be used without reference in the sequel: A t-join F is minimum if and only if for every circuit $C,|F \cap C| \leqslant|F \backslash C|$, [5].

If F_{1} is a minimum t_{1}-join and F_{2} is a minimum t_{2}-join, then for each circuit C in $F_{1} \triangle F_{2},\left|C \cap F_{1}\right|=\left|C \cap F_{2}\right|$.

If F is a minimum t-join then for every $a \neq b \in V(G)$ there exists a minimum $t^{a, b}$-join F^{\prime} and an (a, b)-path P such that $F=F^{\prime} \Delta P$. (This follows by observing that for any minimum $t^{a, b}$-join $F^{\prime \prime}, F \Delta F^{\prime \prime}$ is the union of an (a, b)-path P and circuits C_{1}, \ldots, C_{k} which are pairwise edge-disjoint. Since both F and $F^{\prime \prime}$ are minimum, the circuits have the same number of edges in the two joins. Thus, $F^{\prime}=F^{\prime \prime} \Delta\left(C_{1} \cup \cdots \cup C_{k}\right)$ is also a minimum $t^{a, b}$-join and $F=F^{\prime} \Delta P$ holds.)

Proof of Seymour's theorem. Let the function t differ from the 0 -function and $a \neq b \in V(G)$ be such that $\tau\left(G, t^{a, b}\right)$ is minimum. (If $t \equiv 0$ the theorem is trivial.)

Claim. If F is a minimum t-join, then $d_{F}(a)=d_{F}(b)=1$.

Let the minimum $t^{a, b}$-join F^{\prime} and the (a, b)-path P be such that $F=F^{\prime} \Delta P$. Then $d_{F^{\prime}}(a)=d_{F^{\prime}}(b)=0$, since if $b b^{\prime} \in F^{\prime}$ say, then $F^{\prime} \backslash b b^{\prime}$ is a $t^{a, b^{\prime}}$-join, a contradiction with the choice of a and b. Since $d_{P}(a)=d_{p}(b)=1$ the claim is proved.

Contract every edge of $\delta(b)$ to get $\left(G^{*}, t^{*}\right)$. It is enough to prove that $F^{*}:=F \backslash \delta(b)$ is a minimum t^{*}-join of G^{*} since then the claim implies $\tau\left(G^{*}, t^{*}\right)=F \backslash \delta(b)|=|F|-1=\tau(G, t)-1$ and Seymour's theorem follows by induction. ($\delta(b)$ is a t-cut disjoint from $E\left(G^{*}\right)$.)

Suppose indirectly, that $K \subset E\left(G^{*}\right)$ is a circuit in G^{*} with: $\left|K \cap F^{*}\right|>\left|K \backslash F^{*}\right|$. Then $\left|K \cap F^{*}\right| \geqslant\left|K \backslash F^{*}\right|+2$ follows, because G^{*} is bipartite. K corresponds in G to an x_{1}, x_{2}-path $\left(x_{1}, x_{2} \in \Gamma(b)\right)$ and since F is a minimum t-join, $\left|\left(K \cup\left\{b x_{1}, b x_{2}\right\}\right) \cap F\right| \leqslant\left|\left(K \cup\left\{b x_{1}, b x_{2}\right\}\right) \backslash F\right|$. As a consequence we. have equality in the last two inequalities, and $b x_{1}, b x_{2} \notin F$. The latter equality implies that $T=F \Delta\left(K \cup\left\{b x_{1}, b x_{2}\right\}\right)$ is also a minimum t-join. However, $d_{T}(b)=3$ contradicting the claim.

Note that the sharper theorem of Frank-Sebö-Tardos [2] can be proved in the same way.

Acknowledgments

I would like to express my thanks to Bill Cook, András Frank and Éva Tardos for their suggestions.

References

[1] J. Edmonds and E.L. Johnson, Matching, Euler tours and the Chinese postman, Math. Programming 5 (1973) 88-124.
[2] A. Frank, A. Sebö and E. Tardos, Covering directed and odd cuts, Math. Programming Study 22 (1984) 99-112.
[3] L. Lovász, On two minimax theorems in graph theory, J. Combin. Theory 21 (1976) 96-103.
[4] L. Lovász, Combinatorial Problems and Exercises (Akadémiai Kiadó, 1979).
[5] Mei Gu Guan, Graphic programming using odd or even points, Chinese Math 1 (1962) 273-277.
[6] A. Sebö, On the structure of odd joins, J. Combin. Theory, to appear.
[7] A. Sebö, On the Chinese postman problem: algorithms, structure and applications. Discrete Appl. Math., to appear.
[8] P. Seymour, On odd cuts and plane multicommodity flows, Proc. London Math. Soc. 342 (1981) 178-192.

[^0]: * Supported by the joint project "Algorithmic Aspects of Combinatorial Optimization" of the Hungarian Academy of Sciences (Magyar Tudományos Akadémia) and the German Research Association (Deutsche Forschungsgemeinschaft, SFB 21)

