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A very short proof of Seymour’s theorem, stating that in bipartite graphs the minimum
cardinality of a ¢-join is equal to the maximum cardinality of an edge-disjoint packing of ¢-cuts,
is given.

Let G be a graph and ¢: V(G)— {0, 1}, where #(V(G)) is even. (If X c V(G),
then t(X):=X {t(x):xe X}.) A tjoin is a set Fc E(G) with dg(x)=t(x)
(mod 2), Vx € V(G). (dr(x) denotes the number of edges of F incident with x,
where loops count twice.) z-joins contain Chinese postman tours, matchings and
minimum weight paths as a special case. (cf. [1, 7]).

If XcV(G), let 6(X)={xyeE(G):y¢X,xeX}. If (X)=1 (mod 2), then
6(X) is called a t-cut. t-cuts contain plane multicommodity flows as a special case
[8]. For basic definitions concerning graphs we refer to [4].

Let 7(G, t) = min{|F: F c E(G), F is a t-join}, and (G, t) =max{|C|: C is a
family of disjoint #-cuts}. It is easy to see that (G, t) = v(G, 1). '

Theorem (Seymour [8]). If G is bipartite, then 1(G, t) = v(G, t).

If G is an arbitrary graph, then replacing every edge by a path of length two,
we get a bipartite graph for which Seymour’s theorem can be applied. The
resulting minimax theorem for G was proved earlier by Lovisz [3]. Both Lovasz’
and Seymour’s proofs use rather sophisticated linear programming techniques and
are quite involved. In [2] Frank, Seb6 and Tardos presented a short proof for a
sharper theorem, using a new technique. The extension of this technique has led
to a Gallai-Edmonds type structure theorem for #-joins [6]. The present note is
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based on the recent observation that the method used in [6] to prove this

structure theorem, gives rise to very short proofs for some of its corollaries.
Let us introduce some notations and terminology:

R I A

(mod 2).
The contraction of an edge e=xye E(G) in (G,t) means deleting e and
identifying x and y and defining #(v,,) = t(x) + t(y) (mod 2) where v,, is the new
vertex that arises; I'(x) is the set of neighbours of x; an (a, b)-path (a, b € V(G))
means a simple path in G between a and b. If P is a path P(x, y) (x, y e V(P))
denotes its subpath between x and y.

The following simple observations will be used without reference in the sequel:
A t-join F is minimum if and only if for every circuit C, |F N C|<|F\C|, [5].

If F, is a minimum ¢;-join and F, is a minimum ¢,-join, then for each circuit C in
FAE, |[CNE|=|CNE].

If F is a minimum ¢-join then for every a # b € V(G) there exists a minimum
t*P-join F’ and an (a, b)-path P such that F = F’ A P. (This follows by observing
that for any minimum ¢*®-join F”, F A F" is the union of an (a, b)-path P and
circuits C,, . .., C, which are pairwise edge-disjoint. Since both F and F” are
minimum, the circuits have the same number of edges in the two joins. Thus,
F'=F"A(CU---UGC,) is also a minimum ¢*°-join and F = F’ A P holds.)

Proof of Seymour’s theorem. Let the function ¢ differ from the O-function and
a #b € V(G) be such that (G, t*?) is minimum. (If ¢ =0 the theorem is trivial.)

Claim. If F is a minimum ¢-join, then dx(a) = dz(b) = 1.

Let the minimum ¢*’-join F’ and the (a, b)-path P be such that F=F' A P.
Then d.(a) =dg(b)=0, since if bb' e F' say, then F'\bb’' is a t**-join, a
contradiction with the choice of a and b. Since dp(a) =d,(b) =1 the claim is
proved.

Contract every edge of 8(b) to get (G*, t*). It is enough to prove that
F*:=F\6(b) is a minimum ¢*-join of G* since then the claim implies
1(G*, t*)=F\8(b)|=|F|-1=1(G, t)—1 and Seymour’s theorem follows by
induction. (6(b) is a z-cut disjoint from E(G*).)

‘Suppose indirectly, that K = E(G*) is a circuit in G* with: |K N F*|>|K\F*|.
Then |K N F*|=|K\F*| +2 follows, because G* is bipartite. K corresponds in
G to an x;,x,-path (x,,x,eI'(b)) and since F is a minimum ¢-join,
(KU {bx,, bx,}) N F| <|(KU {bx,, bx,})\F|. As a consequence we. have
equality in the last two inequalities, and bx,, bx, ¢ F. The latter equality implies
that T=F A (KU {bx,, bx,}) is also a minimum ¢-join. However, d;(b)=3
contradicting the claim. O
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Note that the sharper theorem of Frank—-Sebd-Tardos [2] can be proved in the
same way.
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