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Abstract. A timetable has to be constucted for ! identical machines, m users and n disjoint hours 
under the following conditions: 
a / E a c h  machine has its working hours, a subset of the n disjoint hours. 
b / T o  each user belongs a number, the number of hours he would like to work and also the subset 

of horn's he is able to work on a machine. 
c / T h e  users have other wishes: the set of hours is the ordered set of the hours of the week, and 

some of the users would like Ion g intervals of time, some others may want their time to be 
uniformly distributed within the week, etc. 

With the help of well known graph theoretic means, a good characterization for the feasibility of the 
basic problem defined by a / a n d  b /  and a quick algorithm to solve this problem can be given. We 
will also show how some other requirements arising in practice can be built in our model (e.g. those 
mentioned in c/). This model can be considered as the common formulation of a class of problems 
arising in practice. 

O. I N T R O D U C T I O N  

In the  I B M  3031 c o m p u t i n g  center  of  the  H.A.S.  (H unga r i a n  A c a d e m y  of  Sciences)  the  t ime  
reques t s  of  d i sp lay  - t e r m i n a l  users  s igni f icant ly  su rpass  the  t o t a l  a m o u n t  of  ava i lab le  t e rmina l  
t ime .  T h e  U.S. e m b a r g o  res t r i c t ions  allow a t  mos t  5 d i sp lay  t e rmina l s  in the  conf igura t ion ,  and  
each of  these  work 13 hours  a day. T h e  users be long to different  ins t i tu t ions ,  and  mos t  of  t h e m  
come f rom a long way  off, therefore  they  have are  able  to  use t he  t e rmina l s .  Th i s  p a p e r  is t he  
resul t  of  the  research  t h a t  a imed  a t  m a k i n g  a schedule  for th is  c o m p u t i n g  center  for weekly use. 

T h e  s a m e  m o d e l  can  be  used to  p l an  consulting hours for cl ients  a t  offices, or customers' 
timetables at  se rv ic ing  en terpr i ses ,  etc.. .  

Genera l ly ,  t he  p r o b l e m  is f o rmu la t ed  as follows: Given  a set  T of  iden t i ca l  t e rmina l s ,  a set  U 
of  users  and  a set  H o f  d is jo in t  hours  ITI = £, [UI = m,  IHI = n, a t i m e t a b l e  is to  be  cons t ruc ted .  
We first  give an  in formal  desc r ip t ion  of  the  bas ic  cons t ra in t s  (w i thou t  precisely  defining wha t  a 
t i m e t a b l e  is),  the  formal  desc r ip t ion  will follow af ter  some s impl ica t ions :  
0 / E a c h  user  in each hour  can work at  mos t  al 1 t e rmina l ,  and  each t e r m i n a l  in each hour  

can serve a t  mos t  1 user.  
1 / A  func t ion  f~ : T --~ 2 H is given.  Te rmina l  t E T is func t ion ing  in hour  h E H if  and  

only  if h E f~(t). 

2 / A  func t ion  r : u -- .  2 u is given.  User u E U is r eady  to  work in hour  h E H if  and  
only  if h E r ( u ) .  

3 / A  func t ion  r : U --* N ( N )  is the  set  of  pos i t ive  integers)  is given, r ( u )  (u E U) is the  t ime  
request of  user  u, i.e. the  n u m b e r  of  hours  user  u has  to work at  a t e rmina l .  
T h e  o the r  cond i t ions  will be  cons idered  la ter .  

Th i s  is no t  the  mos t  genera l  mode l  we mus t  and  call  t r e a t  (e.g. we do no t  need all  t e r m i n a l s  
to  be equal ,  i t  is enough to  have for each user  a subse t  o f  t e rmina l s  equa l ly  good  for h im) .  Bu t  
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this is the fundamental model that  shows the main ideas. However, the generalizations will also 
be mentioned in Part 4. 

The above formulation is to emphasize the connection to the classical "class - teacher timetable 
problem" (see e.g. [1] or [3]): if the teachers are identical, i.e. for each class the number of hours 
spent at school is given, but in the timetable the distribution of this number among the different 
teachers is arbitrary, then the user - class and terminal - teacher correspondences make clear 
that  the two problems are the same. (Our problem is not purely a special case, as the classical 
problem did not allow such a request that  a class has to spend "either 1 hour with teacher A or 
1 hour with teacher B", which can happen if the teachers A and B are equal. Such "disjunctive" 
contraints will also be discussed in Part 4.) Note that  the classical problem was proved in [3] 
to be NP - complete in general, and solvable in polynomial time in the special case, when all 
the teachers are always free. (The latter fact has already been mentioned in the earlier paper of 
de Werra in [8].) Our approach could also be used as a heuristic tool to approximate the NP - 
complete problem: in Part 1. we give a quick algorithm that  solves the basic problem defined in 
1./, 2./ /and 3 . / o r  in (0.1), (0.2), (0.3) below more formally, but the results of Part 3. and some 
remarks of Part 4. concerning the case when differences may occur between the terminals can 
also help in using the results of Part 1. as a heuristic tool for the construction of general class - 
teacher timetables. However, the author has no computational experience in this direction yet. 

The formulation of 1 . / can  be much simplified: the set T and the function f2 can be replaced 
by a single function t : H --* N, where t(h) (h • H) is the number of terminals functioning in 
hour h. /t(h) = [{z • T :  h • f2(z)}/ As the terminals are equal, t gives enough information 
about the availability of terminals, so T and f2 can be completely omitted from the model. We 
formalize now what we mean by timetable. 

Definition 0.1 

The timetable - problem defined by the sets U, H and the functions F : U --~ 2 H, r : U 
N,  t : H ~ N will be denoted by P(U,H,F,r , t ) .  A timetable for P(U,H,F,r , t )  is a function 
r : U x H --* {0, 1} tha t  satisfies (0 .1 ) ,  (0 .2 ) ,  (0 .3 )  : 

(0.a) h) = 1 h • r(u) (u • u, h • H) 
(0.2) E h) < r(u) 

hEH 
(0.3) E h) t(h) 

uEU 
If (0.2) is satisfied with equality for all u • U, then r will be called a complete timetable. If a 

complete timetable exists, we shall say that  P(U, H, F, r, t) is a feasible problem. 

Remark 0.2 

If r is a timetable, it is easy to see that  the users can be placed to the terminals in T to satisfy 
0 / a n d  1/. The user - terminal timetable can even be constructed so that consecutive hours os a 
user are effectuated without a change of terminals. The checking of these easy statements is left 
to the reader. 

Definition 0.3 

The value of the timetable problem is defined by max ~ ~ r(u, h) where the maximum is 
r h E H u E U  

taken over all timetables r for P(U, H, F, r,t). Let us fix U, H; F , t  and denote by t,(r) the value 
of the problem P(U, H, F, r,t). A maximal timetable r is one with ~ ~ r(u,  h) = u(r) u(r) < 

hEH uEU 
y]~ r(u) is obvious from (0.2), and equality is satisfied if and only if P(U, H, F, r,t) is feasible. 

uEU 
The paper consists of 4 parts. In part 1. we give a necessary and su~cient condition (a "good 

characterization") for P(U, H, F, r,t) to be feasible. We also give a polynomial algorithm for the 
optimization of a weighted version of the problem. The results are direct applications of network 
flow theory. 

In parts 2., 3 ,  4. the basic conditions (0.1), (0.2), (0.3) are completed by other important 
constraints. The aim of the paper is to construct timetables satisfying all these conditions. 
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In part  2. we investigate the case when the problem P(U, H, I', r, t) is not feasible. Defining 
the notion of "fairness" we show how the requestfunction r can be "fairly" modified so as to yield 
a feasible problem. The value v(r)  of the problem should not be decreased by the modification. 
This is one reason why the notion of "fairness" must depend on the problem structure, and so it 
needs a mathematical  background. 

In part  3. we give a general method of modifying already existing timetables so that  they satisfy 
other constraints. We use "minimal path" algorithms to design suitable cyclic permutations of 
the users. This method e.g. partly solves the problem of the users who require several consecutive 
hours without break. It may also help the lgorithms of this paper to provide good heuristics for 
more difficult t imetable problems. 

In part  4. we sketch the solution methods for some restrictions and generalizations of the 
problem, which arise in practice, or prove the "intractibility" in the sense used by Garey and 
Johnson in [10]. (E.g. the users may have preferences on some of the terminals or may want to 
give their requests for each day of the week, etc.) 

Network flows are the main tools in this paper: 
Alternating chains are used for various goals throughout the paper, and a subroutine that  finds 

minimal paths between two points of a graph is used in part  3. 
Network flow theory as heuristic tool for some types of timetable problems or a means to solve 

scheduling problems has been used by many authors (see e.g. [1], [2], [6]). Here we borrow some 
ideas of matching theory to give exact solutions to the type of t imetable problems we investigate. 
The results of part  1. may be considered as modifications and generalizations of theorems in [2], 
but  despite the similarity of the tools our model has no strong connection with [1] or [6]: in these, 
class - teacher relations play the main role, while we have user - time relations in the centre. 

The APL codes of the algorithms are put together to form a package that  solves weekly the 
user - terminal / t ime problem at the computing centre of the H.A.S. They have 0((n + m) 3) 
as worst case performance with a 0(n2m) behaviour at running, without any risk of failure to 
produce a timetable, which seems to be rare among exact solutions to timetable problems arising 
in practice. 

Notation and terminology 

In the paper we shall use graphs and digraphs as a tool. We mainly use the notation and 
terminology of [9]: The vertex set of a (di)graph G will be denoted V(G), the edge set E(G);  
The  notation for the degree of x E V(G) will be dG(x);FG(x) is the set of neighbours of x. 
(de(x) = ]FG(x)];FG(x) = {y E V(G) : (x,y) E E(G)})  and FG(x) = U FG(x) (X C V(G)); 

xEX 
the sequence (Xl , . ,xk)  is a walk if (xi,xi+l) E E(G) (i = 1, ... ,k - 1) the walk is closed if 
Xl -- xk, otherwise open; If Xl , . . .  ,xk are distrinct, then the walk ( x l , . . .  ,xk) is called a path, 
and if x l , . . .  ,xk-1 are distrinct but Xl = xk, then it is called a circiut for graphs and a cycle for 
digraphs. If e E E(G), then G\e is the graph with V(G\e) -- V(G), E(G\e) -- E(G)\e. 

1. G O O D  C H A R A C T E R I Z A T I O N  AND A L G O R I T H M  
F O R  T H E  BAS IC  P R O B L E M  

In this part  of the paper we sketch an algorithm that  either constructs a complete timetable 
or proves that  it does not exists, and in the latter case too, builds up a maximal timetable. If 
a weight function w(u, h) (u E U, h E H) is given, the timetable with maximal weight, i.e. with 

y~ r(u, h) w(u, h) maximal, is also determined. The results also follow from the minimal 
hEH uEU 
cost maximal flow algorithm and are closely related to theorems on " f -  factors" (see eg. in [9]) or 
Ore's theorem for directed graphs. The reader aquainted with the bases of flow theory or at least 
with the elements of the matching theory of bipartite graphs may skip most arguments in this 
par t  of the paper. As the notions and ideas are quite common, occasionally we shall be informal. 
We are going into details only because these details will be used and referred to in parts  2., 3. 
and 4 ,  and where this is not the case, we just give all informal explanation. 

The main results of this part are THEOREM 1.2, 1.8 and 1.12. 
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Definition 1.1 

The request r (u ,Y)  of u s e r  u • U in Y C H is defined by r (u ,Y)  = max{r(u)  - I F ( u ) \ Y I , 0 }  
Obviously 

r(u) = r(u, H)Vu • U. 

In fact, it is easy to see that  user u must have at least r(u, Y)  hours in Y on a feasible timetable 
but not necessarily more. Thus the only if part of the following tehorem is obvious. 

Theorem 1.2 

P(U, H, F, r, t) is feasible if and only if for all Y C H 

(*) E r(u,Y) < E t(h) 
uEU hEY 

(If r(u) = t(h) = 1 Vu E U, Vh E H this gives the "Kfnig - Hall theorem".) 

PROOF. The only if part is obvious as the left hand side is the sum of the requests and the 
right hand side is the total amount of hours available for work in Y. To prove the if part, let us 
consider the bipartite graph G With V(G) = U U H,E(G)  = {(u,h)  : h e F(u)} (As Fa(u)  = 
r (u )  Vu E U, we shall write F(u) for Fa(u) . )  A timetable r defines a subgraph T of G with 
V(T) = V(G), E(T) = {(u, h ) :  r(u,  h) = 1}, having the following properties: 
(1.1) E(T) C E(G) (equivalent to (0.1)) 
(1.2) dT(u) <_ r(u) (equivalent to (0.2)) 
(1.3) dr(h) < t(h) (equivalent to (0.3)) 
((0.1), (0.2) and (0.3) are references to definition 0.1 part 0.) Moreover r is a complete timetable 
if and only if (1.2) is satisfied with equality for all u • U. Algorithm I. below is an algorithm that  
either. 
(i) constructs T with properties (1.1.); (1.2.) with equality and (1.3.), or:. 
(ii) constructs H* C H with property (1.4.): 

r(n, H*) > ~ t(h) (see proposition 1.6. below) 
uEU hEH* 

(1.4.) 

Now if (P, U, H, F, r, t) is not feasible, then (i) does not hold, thus (ii) holds, consequently ( , )  
does not hold for Y = H*. [] 

Definition 1.3 

Let the edgas of the graph G be coloured with two colours, red and blue. A path (or walk) 
( z l , . . .  ,xk) is called alternating if: 

(zi, zi+l) is blue ::~ (xi+l, zi+2) is red 

(xl, zi+l) is red =¢, (xi+l, zi+2) is blue 

We call an alternating path red - red or red - blue or blue - blue or blue - red depending on the 
colour of its first and last edge. (E.g. if both the first and the last edges are red, then it is a red 
- red alternating path.) From now on the word timetable will be used sometimes for a subgraph 
T satisfying (1.1.), (1.2.), (1.3.). 

The following algorithm is essentially the same as the so called "Hungarian method" (see [9]. 

Algorithm I 

illustration on figure 1.a and 1.b 

Input 

U, H, F,r,t  (see part 0.) 
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Output 

U'H*, r 
Assignment commands are denoted by " ,--- " 

Step 0 
Consider the graph G determined by U, H, r as defined in the proof of Theorem 1.2. Colour 

some edges of G in red so that the graph T consisting of the red edges should satisfy (1.1.), (1.2.), 
(1.3.). ( T might be the empty graph, but the more edges are now coloured in red, the shorter 
running time we can expect.) Colour the rest of the edges in blue. 

Remark 

A user u E U (or hour h E H) will be called saturated if dT(u) = r(u) dT(h) - t(h)), 
otherwise unsaturated. The essence of this algorithm is to look for blue - blue alternating paths 
from unsaturated users to unsaturated hours: interchanging the colours of such an "increasing 
alternating path" (1.1.), (1.2.), (1.3.) are still satisfied (with E(T) = { red edges }), and the 
number of red edges is increased by 1. If there is no such path, we shall deduce that (ii) holds. 
Increasing alternating paths will be found by a standard labelling process. 

A blue/red/neighbour of a point z E V(G) is a point y E V(G) with (z, y) E E(G) and (z, y) 
a b lue / r ed / edge .  ((x, y) E E(G) is red if and only if (z, y) E E(T), otherwise blue.) 

Step I 

Lu +- {u E U : dT(u) < r(u)} - { unsaturated users }, and assign the label "0" to the points 
of Lu 

Step 
If Lv = 0 

1 if (z,y) E E(T); 
STOP :r(z,y) = 0 otherwise 

U* = 0; H* = 0 

Step 8 

Assign a label to all unlabelled points of It that have a blue neighbour in Lu. Let the label be 
equal to an arbitrary neighbour in Lv. Let LH be the set of points we labelled in this step. 

H* *-- H* U LH 

Remark 

A label can be formalized to be a function ~ with £(z) E H U {0} if z E U and £(x) E U if 
z E H. The set of ' labelled" points in U and H is always U* and H* resp. Lv will always consist 
of the newly labelled points of U and LH of those of H. 

S~ep 4 

If Lx ~ 0 - LH f] {h E H : dT(h) < t(h)} GO TO Step 5. 
If LH f) {h E H : dT(h) < t(h)} ~ 0 (i.e. an unsaturated hour is labelled) GO TO Step 6. 
If 

I 1  if (z,y) E E(T) 
LIt = 0 STOP : r(x, y) = 0 otherwise 

Step 5 

Assign a label to all unlabelled points of U that have a red neighbour in LH. Let the label 
be equal to one of the neighbours in LH. Let Lv be the set of points we labelled in this step; 
U* *- U* O Lv GO TO Step 2. 
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U = { A , B , C , D }  H - {1,2,3} 
r(A)  = r(B)  = r(D) = 1; r(C) = 2 
t ( 1 )  - t ( 2 )  - 2;  t ( 3 )  - I 

Step 6 

Choose h0 E H* N {h E H : dT(h) < t(h)}. The label given to h0 is some ul E U* which itself 
has a label h2 E H* O {0} etc. A path P between h0 and some u* E U s with label "0" i.e. with 
tiT(U*) < r(u*) is thus determined. It follows from Step 3. and Step 5. that  P is a bluec-  blue 
alternating path. Interchange the colour on the edges on P;  Redefine T with E ( T )  = { red edges 
} (Or equivalently drop the red edges of P from, and take the blue edges of P to T); GO TO 
Step 1. 

= blue edge 

= red edge 

A 
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Figure 1.a. 

A 
Figure 1.b. 

Figure 1.a. shows an initial timetable (Step 0.) Step 1.: Lu = U* = {D}; H* = 0 
£(u) denotes the label of u E U. 
Step 2., 3.: ~(1) = l(3) - D ; g *  = LH = {1,3} 
Step 4., 5.: l (A) = £(B) = 1;g(C) = 3 

Lv  -" { A , B , C } ;  U* = { A , B , C , D }  

Step 2., 3.: g(2) = A; LH --- {2}; H* = {1,2,3} 
Step 4., 5.: £(2) = A; £(A) - 1; g(1) = D; £(D) = 0; (D, 1,A,2) is a blue - blue hit. path 
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Figure 1.b. shows the situation after interchanging the colours. A feasible timetable is con- 
structed and the algorithm stops at Step 2. because of Lu - O. 

Remark 1.5 

After each occurance of Step 4. either U* gets larger or the number of red edges increases 
by 1 or the algorithm stops. Thus it stops after c(n + m) IE(H)I number of steps. When the 
algorithm has stopped, U*andH* have the following properties (see figure 1.): 

Vh E H* : dT(h) = t(h); V u e U I U * :  dT(u) = r(u) (1.5.) 

for if h E H with dT(h) < t(h) is labelled, then Step 6. follows Step 4., and after Step 6. the 
labelling begins again, tiT(U) = r(u) follows from Step 1. 

If u E U*,h E H and (u,h) E E(G) is a blue edge ((u,h) E E(G)\E(T)) ,  then by Step 3. 
h E H* i.e. 
(1.6.) u E U*, h E H\H* =~ (u, h) is not a blue edge, and similarly from Step 5. 
(1.7.) u E U\U*, h e H* =~ (u, h) is not a red edge. If U* ¢ 0, then obviously (see Step 1.) 
(1.8.) E dT(u)< E r(u) 

uEU* uEU* 

Proposition 1.6 

Consider the sets U*, H* after the algorithm has stopped. Then 
(i) U* = 0 if and only if r is a complete timetable. 
(ii) U* ¢ 0 if and only if (1.4.) holds. 

PROOF. (1.1.), (1.2.), (1.3.) are satisfied all along algorithm I. When it stops, U* = 0 if and only 
if (1.2.) is satisfied with equality (see Step 1.), thus (i) is proved. 

To prove (ii) first remark that (1.6.) and (1.7.) together imply 

dT(h) = ~ (tiT(u) -Ira(u)kH*l) 
hEH* uEU* 

(1.9.) 

for (1.7.) implies that the number of red edges adjacent to H* is equal to the number of red 
edges from U* to H* and (1.6.) implies that all the IrG(u)kH*l edges from u E U* to H\H* are 
red, thus from U to H* there are dT(u) - IrG(u)\H*l red edges. 

Suppose now that U* ¢ 0. Apply first (1.5.) and (1.9.), then (1.8.) and definition 1.1.: 

t(h) = ~ dT(h) = ~ (dr(u) -Ir(u)kH*l) < 
hEH* hell* uEU* 

_< ~ (rCu)- Ir(u)\H*l) < ~ r(u,H*) < 
uEU* uEU* 

<- Z r(u,H*). 
uEU 

(The last two inequalities are in fact equalities: if u E U*, then r(u) - ]F(u)\H* I > 0 thus 
r(u, H*) - r(u) - Jr(u)\H*l, and if u • U*, then r(u) - Ir(u)\H*l < 0, whence r(u, H*) - 0 [see 
definition 1.1.]). 

"(1.4.) =~ U* ¢ 0', is trivial as (1.4.) implies there is no complete timetable =~ for all T that 
satisfies (1.1.), (1.2.), (1.3.) there exists u E U with dT(u) < r(u) thus U* ¢ 0 at Step 1. at any 
time. 
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Remarks 1.7 

1. Ore's theorem (see e.g. [7]) gives a good characterization for an arbitrary directed graph to 
have a subgraph with given lower and upper bounds for the in - and outdegrees in each point. 
It follows readily from Ore's theorem that P(U, H, F, r, t) is feasible if and only if Vx C U : 

r(u) < ~ min{IX t3 r~(h)l , t(h)} 
uEX hEH 

which is another necessary and sufficient condition. Theorem 1.2. and this statement can easily 
be proved from each other. Ore's theorem is a special case of the Ford - Fulkerson "max flow 
rain cut" theorem (see [7]). As alternating chains are the special case of "flow improving chains" 
for 0 - 1 capacities, algorithm I. has nothing surprising in it. 

2. We shall, however, need the above formulation of the algorithm and mainly the pair of sets 
(U*, H*). It has the heuristic meaning that the users in U* want to work too much in the hours 
of H*, and this is what prevents the existence of a complete timetable. These sets will play an 
important role in the future. 

3. In the proof of proposition 1.6. we have only used (1.5.) through (1.8.). Thus if we have 
sets U*,H* and a timetable T satisfying (1.5.) through (1.8.), then we know that T is maximal. 

If the condition of theorem 1.2. does not hold, then min{ ~ t(h) - ~ r(u,Y)} is negative. 
Y E H  hEY uEU 

The inequality 

u(r) < E r(u) + m. in{~"~, tCh) - E ( r ( u , Y ) }  (1.10.) 
- -  Y C H  

uEU hEY uEU 

is obvious. On the other hand, the graph T constructed by algorithm I. (after stopping) has 

IE(T)I= E r ( u ) + (  E t ( h ) -  E r(u,Y)) 
uEU hEH* uEU* 

(1.11.) 

edges and satisfies (1.1.), (1.2.), (1.3.). (1.11.) can easily be proved using (1.5.) through (1.8.) 
with similar calculations as in the proof of (ii) in proposition (1.6.) (1.10.) and (1.11.) together 
prove the following theorem: 

Theorem 1.8 

u(r) = ~_, r(u)+ min{ ~ t(h) - ~ r(u,Y)) .  Tile timetable constructed by algorithm I. is 
uEU Y C H  hEY uEU 

maximal. 
Theorem 1.2. follows easily from theorem 1.8., as its condition is equivalent to 

m i n { E  t ( h ) -  Z r(u,Y)} =0 and in this case 
YEH 

hEY uEU 

by theorem 1.8., we have ~(r) = ~ r(u). In the following we shall often write P(G, r, t) instead 
ufi U 

of P(U,H,F,r,t) and we shall call T that satisfies (1.1.), (1.2.), (1.3.) a timetable for P(G,r,t). 
(It is a complete timetable if (1.2.) is satisfied with equality.) This convention does not cause any 
problem, as {U, H, r} and G as well as T and r uniquely determine each other. 

In the proof of (ii) of proposition 1.6. and in the justifying argument for (1.11.) which play 
the main role in the proof of theorem 1.2. and 1.8. respectively, we referred to the structure of 
G,T,U*,H* reflected in (1.5.) through (1.8.). In fact we do not need to know that U* and H* 
emerge in algorithm I., the existence of U*, H* with properties (1.5.) through (1.8.) are su~icient 
to prove the maximality o fT : this fact will be important to us to recognize maximal timetables: 
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Theorem 1.9 

Let T be a timetable for P(G, r, t). Colour the edges e E E(T) red and the edges e E E(G)\E(T) 
blue. If there exist sets U* C U and H* C H with (1.5.) - (1.8.), then P(U, H, F, r, t) is not 
feasible, moreover IE(T)[ = y(r) ,  i.e. r is a maximal timetable for P(U, H, F, r, t). 

Of course, the converse is also true: if r is maximal, then either it is eomlete, i.e. (1.2.) holds 
with equality, or it is not, and then there exist sets U*, H* with (1.5.) - (1.8.). (Naturally (1.5.) 

- (1.8.) could be written in therms of 7" and F instead of T and G). 
We have already remarked that  at the end of algorithm I. U* = {u E U : r(u, H*) > 0}. In 

fact U* does not depend on algorithm L We shall need the following characterization, wich shows 
that it only depends on the problem P(U, H, F, r,t). 

Proposition 1.I0 

Consider U* at the end of algorithm I. U* -- {u E U : v(r(")) - u(r)} where 

r ( x ) - I  i f x = u  
rC~)(z) = r(z) if z E U x ~ u. 

Or equivalently u E U\U* if and only if v(r (u)) = p(r) - 1. 

PROOF. If u E U\U*, then deleting a red edge adjacent to u, the red edges satisfy (1.1.), (1.2.), 
(1.3.) with r(u) instead of r, and T\e instead of T. As U*, H* and T satisfy (1.5.) - (1.8.) (see 
remark 1.5.), it follows that  U*, H* satisfy (1.5.) - (1.8.) replacing T by T\e and r by r(u). Thus 
by theorem 1.9. IE(T)\e[ = v(r(U))(T\e is maximal for P(U, H, F, r (u), t)) i.e. y(r (u)) = u(r ) -  1. 

If u E U*, then u is a point labelled once in step 5. (or step 1.) If u is unsaturated (i.e. it 
was labelled in step 1.), then clearly ~(r (u)) = u(r). If u is saturated, then it was labelled in 
step 5., thus there exists a blue - red alternating path P from some unsaturated point i to u. 
Interchanging the colour of the edges of P, the number of red edges does not change while (1.1.), 
(1.2.), (1.3.) are true with r replaced by r (u) i.e. a timetable for P(U, H, F, r (u), t) is constructed. 
Hence ~(r(")) - -  l/(r). 

In the implementation we also use the weighted version of algorithm I.  and theorem 1.8. We 
summarize the results without proofs: 

Definition 1.11 

Let w : U x  H ~ Nu{0}. Z Z r( u, h )w( u, h ) is the value of the timetable r. If r* i s a  
hEH uEU 

timetable with 

Z Z v*(u,h) w(u,h) = max E Z v(u,h) w(u,h) 
hEH uEU hEH uEU 

(where 7" runs over all timetables), then we shall call it optimal timetable (for w). The integer 
w(w) = ~ ~ r*(u, h)w(u,h) is the optimum value; If w(u, h) > 0 ~ h E V(u), we say that  

hEH uEU 
w is compatible (with r or with G). Obviously a maximal timetable is optimal for the weight 
function 

1 if h E r ( u )  
Wo(u,h) = 0 if h E H \ r ( u )  

Theorem 1.12 

= win(  E + E .(h)t(h) + E m x(O, h) - - where the 
uEH hEH uEU hEH 

minimum on the right hand runs over all functions ~ : U --* NU{0} and ~ : H ~ NU{0}. We omit 
the proof as it will not be needed later. This is a "duality theorem", and the experienced reader 
can easily prove it using the weighted version of the max - flow - win - cut algorithm (see [7]). In 
the implementation we generalized the Egerv&ry - Kuhn primal - dual algorithm (see [7]), and the 
generalized algorithm has the same complexity. For the ease A = r(u) - t(h) (Vu E U, Vh E H) 

CN4t4A 21:l-J* 
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theorem 1.12. gives the Egerv~ry - Kuhn theorem (see [7]). Theorem 1.12. can also be given 
interesting "economic" interpretations. 

In part 4. we shall consider the question of the choice of w in life. For obvious reasons we 
require that  an optimal timetable should be maximal as well (i.e. optimal for both w and too), 
so w must have a special structure. It cannot be left to the users to define w, and one must be 
very careful to determine it in a reasonable way. 

2. FAIR REDUCTION OF THE REQUESTS 

In this part we investigate the case when algorithm I. stops with proving that there exists no 
complete timetable. We give a mathematical definition of the notion of "fairness", a definition 
we find to be a natural description of our ethic sense. We then give an algorithm that constructs 
a fair timetable showing also the converse, i.e. that all fair timetables axe given by our algorithm. 
First we need some definitions and lemmas. 

Let us suppose that for each u E U a monoton nondecreasing function p, : {0, 1,... , r,} --~ N 
is given. The function value pu(d)(O < d < rud is integer) has the heuristic meaning of measuring 
how user u is "favourized" if the receives d hours in the timetable. Fairness will mean some sort 
of "uniformity" or "balance" in the distribution of time, and we need the functions pu(u E U) to 
give a measure: a strict uniformity would prevent flexibility with regard to the needs, merits etc. 
We suppose that all these differences are comprised in Pu and the fairest solution would be one 
with 

Pi(di) =pj(djVi, j E U(di = E r(i,h) 
hEH 

is the time received by user i ). Of course, generally this is not possible. Moreover the set 
{_d = (dx, . . .  ,dn) : d is the degree sequence of a timetable } depends on the structure of the 
function r or equivalently on the graph G. Thus the notion of "fairness" must also depend on G. 

We first define an ordering on U x N. 

Definition 2.1 

Let us write (u i ,d l )  < (u2,d~) (ui E U, di E N 0 <_ di <_ r~ i =  1,2) and read user ua with dx 
hours is less favoured than user us with d2 hours if both of the following conditions hold: 

1/dl < rl 

2/put(dx + 1) - p1,~(d2 - I) < pu2(d2) -put(dl) 

Proposition 2.2 

a / I f  (Ul,dl)  < (u2,d2), then p,l(dx) < pu2(d2) 
b / <  is a partial ordering, i.e. an irreflexive, transitive antisymmetric relation. 

PROOF. Both a /  and b / a r e  immediate using 1/ and 2 / a n d  the monotonity of the functions 
pu,(i  = 1,2).  [] 

Ezample 2. 3 

Let A and B be two users, rA = re  = 3 and the functions PA and Pa as on figure 2. 
User B with I hour is not less favoured than user A with 2 hours, but (B,2)  < (A,3) because 

1 = pB(3) - pA(2) < pA(3) -- pB(2) = 2. 

That is even i.fpA(dA) < pB(dB) holds, we do not say that user A is less favoured, unless the 
difference between them decreases if we take I hour from B and give it to A, or the difference does 
not change sign. In other words, (A,dA) < (B, dlj) if and only if pA(dA) < pa(de),  and there 
is some other way to distribute dA + dB hoers between A and B more fairly, i.e. with smaller 
[pA(dA) - -ps (dB) [ . ) In  the example it is fairer if B receives 3 hoers and A receives 2 hoers than 
conversely. 
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Definition ~.4 

For given G, r, t we say that d : U ---, N is a distribution if there exists a timetable T for 
P(G,r , t )  with d(u) = dT,(u). The distribution is fair if 
1 / T  is maximal 
$/ (ux ,  d(ul)) < (us, d(us)) implies that d' with 

d(u)+  1 i f u = u l  

d' (u)  = d (u)  - i i f  u = us 

d(u) otherwise 

is not a distribution. 

3 

° 

9 .  

4 

9 

3 
Figure 2. 

Remark ~.5 

Condition 1/might appear exaggerated, but in light of proposition ~.6. below, there is no reason 
to give up maximality. Condition ~/  means that in a fair distribution there should not be users 
who could give I hour to less favoured users. 

Proposition ~.6 

I f  Tx is an arbitrary timetable, then there exists a maximal timetable Ts with 
dT,(u) ~_ dT,(U)VU E U. 

PROOF. Colour the edges of T1 red, and starting from this, use algorithm I. to obtain a maximal 
timetable. Denote this latter one 7"2. Obviously, dT2(U) > dTl(U)Vu E U because changing the 
colours along alternating paths does not decrease the degree of any point, r3 

We describe now the reduction algorithm which is based on proposition 1.10., and then show 
that the fair distributions are exactly those determined by this algorithm. 

Algorithm H 

Input: G, r, t 
Output: d : U ~ N fair distribution. 
Step 0.: Call algorithm I. The result is a maximal timetable T, and U* C U. 
Step 1.: If U* = 0, 

then GO TO Step 5. 
else GO TO Step 2. 

Step 2.: Choose u E U* with 

pu(dT(u)) + pu(dT(u) -- 1) -- ~ x p i ( d T ( i )  + pi(dT(i) -- 1) 

GO TO Step 3. 
Step 3.: 
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a / I f  r(u) > dT(u), GO TO Step 4. 
b / I f  r(u) = dT(u), then u E U* implies the existence of a blue - red alternating 

path from some point with r(u) > tiT(U). Interchange the colours of this path: 
GO O Step 4. 

Step 4.: r(u) ~ r(u) - 1 and modify the labelling according to the modofieation of the request 
function and possibly T. (Determine U*. If r(u) > dT(u) still holds, then U* is not 
changed.) 

GO TO Step 1. 
Step 5.: d(u) ~ r(u) (Vu E U) 

STOP. 

Remark 

The quantity we take the maximum of in Step 2. might appear strange. However, even 
heuristically it is natural that both pu(dT(u)) and pu(dT(u) -- 1) must influence who we take one 
hour from, as pu(dT(u)) is the actual favour of user u and pu(dT(u) - 1) is the favour he will 
have if one hour is taken from him. 

Theorem 2. 7 

d determined by algorithm II. is a fair distribution. Conversely, if d is a fair distribution, then 
d results of algorithm II. with some choice of u E U in Step 2. 

PROOF. First we prove that d is a fair distribution. "1/" of definition 2.4. is obvious as we never 
decreased IE(T)I and proposition 1.10. gives a precise justification why we did not have to. (It 
says that taking one hour from u E U* does not decrease v.) Now suppose (A, d(A)) < (B, d(B)), 
and let us prove "2/" of definition 2.4. (A, d(A)) < (B, d(B)) means (see definition 2.1.): 
(2.1.) d(A) < r(A) 
(2.2.) pA(d(A) + 1) - pa(d(B) - I) < pA(d(A)) - pn(d(B)). 

From (2.1.) follows that at least in one oeeurance of Step 2. A is the chosen user u E U*. Let 
a t* be the degree function dT just before the last such oeeurance of A. We have: 
(2.3.) pA(d*(A)) + pA(d*(A) - 1) _> p~(d*(z)) + p~(d*(x) - 1) 
for all z E U*, because A is the chosen user in Step 2., and 
(2.4.) dk(A) = d(A) + 1 
because it is the last occurance of A in Step 2. Substitute (2.4.) in (2.3.), and substitute p~(d(x)) 
for px(d~(z)) using d*(r) > d(x) and the monotony of Px. After rearranging: 
(2.5.) pA(d(A) + 1) - pm(d(x) - 1)) >_ px(d(x)) - pA(d(A)) 
for all u E U*. Comparing (2.5.) with (2.2.) we get the result that B ~ U* in the step we 
are considering. It follows that B ~ U* for all the rest of the algorithm, and this implies 
d(B) = d*(B). But then, erasing a red edge at B, and putting d ( B )  *-- d*(B) - 1, aV(x) = d*(x) 
otherwise, (1.5.) through (1.8.) are satisfied for the modified timetable and request function, 
which, applying Theorem 1.9., means the maximality of the timetable defined by the red edges. 
Thus v(d') = v(d) - 1. Let 

d ( u ) + l ,  i f u = A  

d" = d( u ) - l, i f u = B .  A s d " < d ' ,  

d(u), otherwise 

we have just proved v(d") < v(d') < v(d) - 1, and comparing this with 
Y~ d"(u)= ~ d(u)= v(d) 

uEU uEU 
we have that d" is not a distribution. We have proved that 2 / o f  definition 2.4. is also satisfied, 
thus d is a fair distribution, and the first part of the theorem is proved. 

Now let d be an arbitrary fair distribution. We sketch the proof of the fact that d can occur 
as the output for algorithm II. Let algorithm II. run with the modification that having several 
choices in Step 2. we choose u E U* with dT(u) > d(u). If this is always possible, then d is the 
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output of the algorithm. Suppose indirectly that at some stage this is not possible, i.e. U* ~ 0 
and the sets 

M1 := {z E U*: b=(dT(z)) + b=(dT(Z) - 1) = max bu(dT(U)) + bu(dT(u) - 1)} 
uEU* 

and M2 := {z E U* : tiT(u) > d(u)} are disjoint. ( dT denotes the degrees in the considered 
step.) M2 # 0 because M2 = 0 would mean tiT(U) = d(u) if u E U*, and this would imply dT = d 
(use proposition 1.10. and the fact that d is a distribution to prove this), in contradiction with 
U* ~ 0. M1 ~ 0 is obvious, and dT(u) = d(u) if u E M1. Let A E M2 and B E M1 be arbitrary. 
As A E M2 : 
(2.6.) r(A) > dw(A) > d(A) and as A ~ M1, and 
(2.7.) pB(d(B)) + pB(d(B) - 1) = pB(dT(B) - pB(dT(B) - 1) > pA(dT(A)) + pA(dT(A) -- 1) >_ 
pA(d(A) + 1) + pA(d(A)). 
(2.6.) and (2.7.) imply (A, d(A)) < (B, d(B)) although we can choose u = B in the following 
step 2. From this easily follows that  d ~ with 

+ 1 

d'(x) = d ( z -  1) 

d(z) 

i f x = A  

if z = B is also a distribution 

otherwise 

which is a contradiction with the supposition that  d is a fair distribution. (It contradicts 2 / o f  
definition 2.4.) The theorem is proved. 

Re~qar~8 

1 / I n  the implementation we use the function Pu (r) = lu + r(u 6 U, r E N) where gu 6 N is a 
number depending on the parameters of user U (i.e. on how reliable he is in using his terminal 
time, how much CPU time he usually uses, etc.) The smaller ~t, is the better it is for user u. 

For this special case theorem 2./. can be strengthened: It is true that  there is essentially only 
one fair distribution. The following statements are true: 
a / T h e r e  are numbers du(u E U) such that  for all fair distribution d either d(u) = du or 

d( . )  = + 1. 
b / T h e r e  exists a partition {P~ : 1 < i < p} of the users and a set of numbers 

ki : 1 < i < p so that  £, + du is constant in each Pi, and in every fair distribution d : 

[{u E Pi : dCu) = d, + 1}1 - k, (i = 1 , . . .  ,p) 

This means that  only one hour may depend on luck and in every fair distribution the same 
number of "lucky" users are chosen from sets of equally favoured users. Differences of favours 
measured by tu + du are due to the problem structure and cannot be helped unless we take some 
hours from favoured users and give in to nobody, which is obviously not reasonable. 

In this special case, the fair distributions give the lexicographical minimum (out of all distri- 
butions), of the sequence d(ut), d(u2),... , d(um) with d(ul) > d(u2) >_ ... >__ d(um)* 

2. In the general case both the set of distributions thatcan arise as the output  of the algorithm 
and the set of fair distributions are equal to the local lexicographical minimums of the series 

p.,(d(ul)),... ,p..,(d(u,.)) (p . , ( d . , )  > . . .  > p..(d.,.) 

on the set of all distributions. Unfortunately, in general there are several local optima, but in 
the case pu(r) = tu + r, there is only one. 

3. Algorithm II. can be replaced by a modification of algorithm I. that  searches for improving 
alternating paths from users with minimal pu(dT(u))+pu(dT(U)+ 1)*. This remark makes possible 
in many cases to speed up the algorithm. (This is a remark of P. Kas'). 

* The remarks on lexicographical ordering and that  on the alternative for algorithm II. (see 
1. and 3.) are due to P~ter Kas from the network flow group of the Computer and Automation 
Institute whom I am very grateful for his contributions. 
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n 

4. Let us consider the functions f : In ---* R where In = {z = (zl . . . .  , z . )  : ~"] zi = 1}, and 
1 

suppose f is convex, symmetric and has its minimum in the point ( ~ , . . . ,  ~) .  Let 

{(: ,-) 
D ' ~  ' * ' '  ' 17~ 

it----1 

: tu = pu(d(u) )anddand  is a distribution} 

Then the fair  distributions minimize f on D in the case pu(r)tu + r (and are local maximums 
in the general case.) Taking the special case pu(r) = r and f ( z l , . . .  , z , )  = - H ( z l , . . .  , z , )  
where H i s  the Shannon entropy or f ( z l , . . .  , z , )  = 7] ( z i  - z j )  2 we can interpret our result _as 

i#j 
the maximization of the entropy function or the minimization of the latter function on the set of 
distr~utions. This is another way of saying that the fair distributions distribute the time "the 
most equally" or in the "most balanced" way among users. 

3. MODIFICATION OF TIMETABLES 

In this part we suggest a method to modify existing timetables in order to satisfy additional 
constraints. In the implementation we use this method to produce several consecutive hours for 
users who need it. 

If we have a set of pairs (u i ,h i ) ( i  = 1, 2 . . . . .  s) so that hi # hj (i # j ) ,  (ui ,hi )  • T (i = 
1, . . .  ,s) then we could look for permutations r of the set {1,. . .  ,s} with (ut( i ) ,hi)  • r(i = 
1 , . . . ,  s). Then 7" = (T \ { (u i ,  hi):  i = 1 , . . . ,  s}) U {(u=(0, hi ) :  i = 1, . . .  , s} is also a timetable, 
and we are looking for T ~ with "better properties" than T. In the following heuristic arguments 
such a timetable T ~ will be called a t~ernmtation of the timetable T. The main idea is the 
following: we search among permutations of a timetable a more advantegeous timetable, but as 
general permutations would be too time consuming to consider, we restrict ourselves to cyclic 
permutations. Then we use cyclic permutations one after the other. Since all permutations can 
be written as the product of cyclic permutations, we restrict generality only by expecting from 
each cyclic permutation to improve the timetable, i.e. those "good" permutations which are not 
the product of "good" cyclic permutations are not conssidered. 

We shall define a digraph on H that reflects the possible and the desired changes. Then we shall 
look for a cycle in this digraph. The cycle defines a cyclic permutation along which we effectuate 
the changes. Then we redefine the digraph, and begin the procedure again. The algorithm will 
end up when there are no more cycles in the defined digraph. 

Such an approach in not without problems: on figure 3. el represents a "desired" change and 
e2 a "possible" change. 

IAI 
Figure 3. 

If both el and e2 are contained in a pernmtation, and el has the goal of making 2 consecutive 
hours for user A, then this goal, is not reached. To avoid this kind of difficulty we shall require 
that to each user there should belong only one change in each permutation. We shall also require 
from the permuted timetable all the good properties of the original one. (e.g. optimality with 
respect to the given weight function.) 
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To describe a method that  fulfills these requirements we shall need a more precise formulation 
of the problem. 

Suppose a timetable T for the problem P(G, r, t) and a weight function w : U x H -+ N U {0} 
are given ( w is compatible with G). 

Definition 8.1 

We say that  a digraph ft belongs to user u e U (according to T)  if V(ft) C r (u)e  = (h~, h~) • 
E(f t )  

hi • rT (u ) (C  r a ( u ) ) ,  h2 e r a ( u ) \ r r ( u )  (3.L) 

w(u, hi) <_ w(u, h~) (3.2) 

((3.1.) means that  according to T u works in the starting point of each e • E(f t )  but  does not 
work in the endpoint, and (3.2.) means that  a change along e cannot decrease the objective value 
of u.) 

To each user u we shall associate two digraphs that  belong to him: a "wish - graph" and a 
"dot ted  graph". A wish - are (ha, h~.) will represent a "required" change, i.e. one that  improves 
the situation of u if "nothing else is changed for u". On the other hand, a dotted edge (hi,  h2) 
belonging to u will mean that  it is indifferent for u whether he works in hour hi or h2 : 

Definition 3.2 

We say that  the pair of digraphs Wu,Du are a wish graph and a dotted graph belonging to 
u E U i f :  
a/Wu and D~, belong to u according to T 
b / i f  (al, bl), (a2, b2) • E(W~) U E(D,) and w(u, a l )  = w(u, a2), then 

(al,b2),(a2,bl) • E(Wu) U E(Du) 
Moreover, if (ax,bl) • E(W~,) holds too, the either (al,b:) • E(Wu) or (a2,bl) • E(Wu) 

The first part  of b / m e a n s  that  Wu tO Dr, is the union of a complete directed biparti te graph and 
of isolated points. 

The requirements of definition 3.2. are satisfied or "almost" satisfied in the applications that  
have the heuristic meaning we intended to describe: e.g. the second part  of b / r eq u i r e s  that  in 
case (al,bl),(a2, b2) • E(u)tO E(Du) either b.~ should be bet ter  than al or bl should be bet ter  
than a2 for u, but  this is quite natural because (al,bl) • E(Wu) means either that  al is not 
good enough for u or bl is very good for u. On the other hand, a /  and b /  are very important  
conditions of the usability of our method: 

Let for each u • U the pair of wish and dotted graphs Wu, Du belonging to u be given, and 
d e n o t e W =  [.J Wu, D = [,.J Du, e • E(W) will be called wish- edge a n d e  E E(D) dotted 

uEU uEU 
edge. If C = ( x l , . . .  , x , )  is a cycle and C' = ( x i , x i + l , . . .  , z j )  is also a cycle, then C ~ will be 
called a subcyele of C. Let A~ = W~ tO D~, A = U A, .  We state now the main result of this 

uEU 
part  of the paper: 

Theorem 3.3 

If T is optimal for P(G, r, t) and w, then all cycles that contain at least one wish - edge have 
a subcycle that  also has at least one wish - edge and at most one edge in each Au(u E U). 

Corollary 3.~ 

Tile cycle that  has the minimal number of edges among the cycles that have at least one wish 
edge has at most one edge in each Au. 

The proof of theorem 3.3. is based on lemma 3.5. below. Let us remark that  to a walk 
P(hl , . . .  , h,) in the digraph A there corresponds a red - blue alternating walk 
(hi,  Ul, h2, u2, hu-1, us-t, ha) where (hi, hi+l) E Aui. This follows from the fact that  A = U At, 

uEU 
and thus 3ul E U : (hi,hi+x) E A, , .  On the other hand, " Aui belongs to ui " means that  
hi E FT(Ul), hi+l E FG(ul)\FT(Ul) whence tile walk is red - blue (see definition 3.2.). 
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Lemma $.5 

If  T is an optimal t imetable and (hi ,  ut ,  h2, u2, .. • , u , -1 ,  h , )  is a closed red - blue alternating 
walk that  satisfies 

w(hi, ui) <_ w(ui, hi+l),  then 

ui = uj implies 

w(h,, u,) = w(h , uj) = w(u,, = w(u i,  hj+ ) 
( see figure 4.) 

(3.3.) 

u} 

Figure 4. 

PROOF. As T is optimal, (3.3.) is always satisfied with equality. Suppose indirectly tha t  e. g. 
w(hi ,u i )  - w(ui ,hi+l)  - Wl < w2 - w(h j ,u j )  - w(uj ,h j+t) .  We may suppose i < j without 
restricting generality. Then ui = uj implies that  

P' = (ui, hi+l, Ui+l, h i+l , . . .  , h.i, u i) 

is also a closed alternating walk.Interchanging the colours of P '  we increase the weight of the 
timetable, contradicting the optimality of T. 

Proof of theorem 3.$ 

Let C - (hi ,  . . . .  hj)  be a cycle in A that  contains a wish - edge. If 3u E U and i < j such 
that  

(h l ,h i+l) ,  (h/,  h i+l)  G A~, we prove that  C (3.4.) 

has a proper subcycle in A that  has a wish edge, and from this the s tatement  follows. 
We know that  (ht ,ht+l)  e A(ut)  for some u G U (t = 1,2 . . . .  ,s)  and ( h , , h l )  e Au, for some 

u,  E U. Then  (hi,  ul ,  h2, u2 , . . .  , h,)  is a closed alternating walk, and by our assumption (3.4.) 
we have u~ = uj = u. We have also w(ht ,ut )  < w(ut ,ht+l)  as A t  belongs to ut (see (3.2.) in 
definition 3.1. ). Thus the conditions of lemma 3.5. hold. By lemma 3.5. w(u, hi) = w(u, hi). 
But then, as Wu and D~ are a wish - graph and dotted graph, and A~ = Wu U D~, we have 
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by (3.4) and definition 3.2. that both (hi,hi+x) e E(Au) and hi ,hi+l)  e E(Au) hold. CI = 
(hx, . . .  ,h i ,h i+t , . . .  ,h,)  and C2 = (hi+l , . . .  ,hi,hi+l) are subcycles of C and all edges of C, 
except C1 or C2. Thus if both (hi, hi= 1) and (h I , hj +1) are dotted, then the wish - edge(s) of C is 
(are) contained by either (71 or C2 and the statement is proved. On the other hand, (hi,hi+l) and 
(hi, hi+x) satisfy (3.4.), so if at least one of them is a wish - edge, then by part b / o f  definition 
3.2. we know that at least one of (hi,hi+l) and hi,hi+l) is a wish - edge too. The former is 
contained by (71 and the latter by C2. thus either C1 or C2 (or both) contains a wish edge in any 
case .  

Corollary 3.4. also provides an algorithm to construct suitable timetables: the minimal cycle 
that has a wish - edge is easy to construct with the help of any algorithm that is capable of 
finding the minimal path between two points of a graph ( see e.g. [7.] or [8.]). We suggest an 
improving algorithm based on this fact: 

Algorithm III 

Step O: 

Step h 

Step 2: 

Step 3: 

Step 4: 

lary 

Construct a timetable T, optimal for 
P(G, r,t) and w. 

GO TO Step 1. 
Define the wish - graph Wu and the dotted graph Du for each user u E U so that 
definition 3.2. should be satisfied. Determine W = U Wu, D = U Du and A = WtJD. 

uEU uEU 
GO TO Step 2. 
Look for a minimal cycle in A that has an edge in W. 
GO TO Step 3. 
If a cycle C is found, GO TO Step 4. 
If there is no such cycle, STOP. 
Execute the changes corresponding to the arrows of C. Let T be the new timetable. 
(T arises by interchanging the colours on the corresponding alternating circle, see Corol- 

3.4. and lemma 3.5.) 
GO TO Step 1. 

Since T is an optimal timetable, and IV,, Du belong to u E U (see definition 3.1.), in step 4. 
the new timetable is also optimal: it follows from (3.2.) and the optimality of T that actually 
w(ui, hi) = w(hi, ui+l) (see Lemma 3.5.). So at each occurance of Step 1. we have to decide again 
and again which are the arrows that express wishes, and which are those that are indifferent (are 
not inconvenient) for the users. This is the most time consuming step in the implementation ( 
although its complexity is also bounded by 0((n + re)a)). 

The algorithm stops when there is no more improving cycle. Althoungh we cannot tell anything 
stronger (e.g. design a quantity that would be optimized by this algorithm), we hope our 
approach will be justified in the next part of the paper: we have reason to think that even 
the simplest exact optimization requirements would probably require a much greater order of 
complexity. 

4. MISCELLANEOUS 

In this part we briefly summarize the analysis of different modifications and generalizations 
of the problem that arose in practice, and finally we tell a few words on the computational 
experience. 

Complexity analisys has played a great role in the solution of our problem: here polynomiality 
and NP completeness have a very actual, practical meaning. An NP completeness proof means 
that we have reason to think that the methods we use are no more applicable for the considered 
modification or generalization. Thus, complexity analysis made possible to avoid losing time for 
intractable generalizations, and enabled us to concentrate on compromises between tractability 
and the number and quality of the fulfilled tasks. 
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We list now the various additional constraints we may want to require from our timetable: 
1. Minimization of the number of one - hour work sessions or the minimizations or the 

minimization of the number of interruptions 
These problems (i.e. the corresponding "decision problems") are NP - complete: several well 

- known NP - complete scheduling problems are easily reduced to simple special cases of these 
problems (E.g. in [10] SEQUENCING ON ONE PROCESSOR can be reduced to the special case 
ITI = 1.) So we content ourselves with the method described in part  3., which aims at reaching 
a state tha t  cannot be improved by cyclic permutations. After several months of computational 
experience in real life use we can conclude that  this approach completely satisfies the practical 
needs. 

2. Is it possible to expand the results to the more general model when to each u E U a system 
of sets Hu = { H ( u , 1 ) , . . . , H ( u ,  su)} (H~,,j C H) and a vector ru = (r(u,x),. . .  ,Ru , , , )  is given 
that means that the request of u for H(u,i) is r(u,i) ? (E.g. the question is wether requests of 
the following type are permitted: "I want 9 hours, 2 of which must be in the first part  of the 
week, 4 hours while disc B is on, and the last 2 hours in the afternoon.) The SET PACKING 
problem can easily be reduced even to the special case [U I = 2.* (SET PACKING is the integer 

programme Ax < 1, x E {0,1} n, min ~ x i , A  is a 0 - 1 
i=1  

matrix of size mxn.  It is NP-complete, see [10].) 
In practice, however, the special case 

Vu E U : H~,i [q Hu,j = 0 (i # j )  (4.1) 

is sufficient to be considered and this can be solved with our methods in polynomial time. It 
makes possible e.g. detailed requests for each day of the week or for mornings and afternoons, 
and each user may have his own division of the week to disjoint parts. 

Let us remark that  if we let a new user u E U 1 < i ~ su correspond to each pair (u, i) ,  
t h e n *  I f A  = (aijrnxn is a 0 -  1 matrix, denote Ai = {1 _< j _< n : aij = 1} and let U = 
{ u , v } , H  = {1 , 2 , . . .  ,n} ,Hmi  = Ai ,r , , i  = ] A i ] -  1 (i = 1 , . . .  ,m)  and H ,  = H , r ,  = c(c E R i s  
a given number.) For these data  a complete timetable exists if and only if there exists a solution 

rt 

z with Az = 1, ~ z / =  c. the generalized problem is reduced to the original one. Of course, this 
i=1  

t ransformation increases considerably the size of the problem. Tha t  is why we do not use this 
transformation, but  we have modified tile labelling technique instead, in such a way that  it can 
hold such refined requests as well, without considerable increase in computing time. 

3. Some users may want to work in groups, i.e. the users of the group do not want to have 
two terminals at a time (e.g. they cannot logon at the same time or prefer to have a terminal 
for much time instaed of many terminals for less time). If a user can participate in several 
groups, the problem is NP - complete (reduction is again from SET PACKING), but if each user 
belongs to at most one group, flow methods can be applied to this case ease, and even to the 
generalization when the requirement is that  each group must have at most £ terminals at a time. 
From a practical point of view, disjoint groups are completely satisfying. 

4. How to solve the problem when there is a difference between the terminals? (This problem 
had to be solved, because there is a second terminal room with different terminals: teletypes 
and 2 kinds of displays.) If each user has a time request for each terminal, the problem is NP - 
complete. (It is the same as TIMETABLE DESIGN in [10].) But if each user has only one global 
t ime request and a subset of terminals equally convenient for him, then an extended network 
flow model solves the problem with the same order of complexity. We do not use, however, this 
approach, because it could cause injustice in the distribution of terminals. We use user - terminal 
weights instead, for each h E H and solve a weighted user - terminal marriage problem for each 
h E H. The weights are carefully defined, and we also take into consideration that  users do not 
want to change terminals if they work for several hours. 

5. Disks: In the IBM 3031 computing centre of the H.A.S. the quantity of disks and disk - 
drives is an even tighter bottleneck than the quantity of terminals, they are also affected by the 
embargo restrictions. Most users store their programmes on disks that  are on line only when one 
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of their owners has a terminal. There are two disk - drives and many disks, and each disk gives 
storage room for many users. As there are five terminals, the coordination of the disks with the 
terminal time of their owners may cause problems. In each time peroid several users using the 
same disk should work. Therefore a disk - time timetable has to be constructed. 

If the user - time timetable 7" is ready, the disktime problem is the same as the user - t ime 
one: if disk d is used by users Ud C U, then define 

and 

w(d, h) - I { u  ~ Ud: 7"(u, h) - 1}1 (4.2.) 

I 
r(d) = U {h:  T(u,h) = 1)1 (4.3.) 

u~CU) I 
Disks play the role of users and disk - drives the role of terminals, and the weights w(d, h) are 
chosen so that  an optimal timetable 6 for this problem gives the exact maximum of the total 
number of coordinated triples, i.e. of triples (u, d, h) with 

v(u, h) = 1, 6(d, h) = 1, h E Ud. 

However, it is not reasonable to construct a user - time timetable first: this t imetable will not 
t ry  to put  to the same time periods users who need the same disk. On the other hand, the disk - 
t ime timetable can not be made before the user - time timetable, since w(d, h) and r(d) cannot 
be defined without ~'. 

We use the compromise of a first stochastic user - time timetable, then a disk - time timetable 
with 

w(d,h) = M(l (u  ~ Ud: r(u,  h) - 1}1 ) (4.4.) 

r(d) = M(I U {h: h) = 1}1) (4.5.) 
uEUd 

where 7-(u, h) is a random variable, and M denotes the mean value. The random variable v is 
defined by supposing that  for user u E U all subsets of F(u) having r(u) elements are equally 
probable (or the probability is proportional with the weight of the sets). From this supposition the 
mean values (4.4.) and (4.5.) can be calculated by elementary means, and a first disk timetable 
~f is constructed with these data. Then we modify the weight function so that  w(u, h) has to be 
increased if there exists d E D with u E Ud and 6(d, h) = 1 (but still we have to be careful, see 
6. below). Then we construct the optimal timetable v for P(U, H, F , r , t )  and w.7- redefines the 
data  of the disks with (4.2.) and (4.3.), so at the end of all, we construct the definitive disk - 
t imetable with these new data. 

6. Definition of the weight function : In the implementation the users can design there sorts 
of weights for each hour: 1 / " I  am not fi'ee ill hour h ", 2 / " I  am free in hour h ", 3 / " H o u r  h 
is very convenient for me". The weights themselves cannot be confined to the users as it would 
cause "inflation" . We define the weight function so that  the optimal solution must be maximal, 
too, i.e. optimal for the weight function 

1 i f w ( u , h ) > 0  (i.e. (u,h) ES(G))  
wo(u,h) = 0 if w(u,h) = 0 (i.e. (u,h) f! E(G)) 

as well. We do this because we think that tlle number of hours the users work at terminals should 
not depend on the weight function: it would not be reasonable if a user who has great weights 
received more time. 

It is easy to see that  if we want the users to have s different weights, then if the weights are 
chosen from the set 

{s]Ul.IHI, slUl.lH[ + 1 . . . . .  slUl.IHI + s - 1}, 

our conditions are satisfied: an optimal solution is optimal for w0 too. Here IUI.IHI can be 
replaced by maz{IUI, IHI). (This remark is proved by analyzing the algorithm, and is useful in 
reducing the running time of the primal - dual method that  solves the weighted version of the 
problem (see chapter 1.)) 
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I M P L E M E N T A T I O N  AND C O M P U T A T I O N A L  E X P E R I E N C E :  

An implemantation of the results was coded in APL language under CMS operating system on 
the IBM 3031 computer, and for the IBM 3031 computing centre of the H. A. S. Lgszl6 Kirgly, 
from the Software Department of the institute, prepared user interfaces which make comfortable 
for users to tell the necessary information and read the timetable. 

The output of the whole system is a user - terminal/time timetable and a user/time timetable 
for a week's use. 

The input of the algorithm is provided by L. Kirgly's programme, which - besides the data 
given by the users - takes into consideration the data concerning the computing centre (the 
working hours of the computer, the number of working terminals, etc) and some data of users 
provided by a monitor programme that enables the calculation of the " £~ " - s (see part 2.). 

The transformation of the timetable to make several consecutive hours for users who ask for it 
(see part 3.) takes some minutes of CPU - time, all the rest of the algorithm runs for less than 
one minute. The behaviour of the algorithm in practice seems to be linear in the number of users 
and quadratic in time. 

Last but not least, I wuold like to thank my collegues in the discrete programming group of the 
Department of Applited Mathematics, and P.Kas fot their useful remarks. I am mostly indebted 
to Lgszl6 Kirgly from the user support group of the IBM 3031 who helped this work with his 
questions and ideas made possible the realization of the results. 
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