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We prove new results for approximating the graph-TSP and some related problems. We
obtain polynomial-time algorithms with improved approximation guarantees.

For the graph-TSP itself, we improve the approximation ratio to 7/5. For a generaliza-
tion, the minimum T -tour problem, we obtain the first nontrivial approximation algorithm,
with ratio 3/2. This contains the s-t-path graph-TSP as a special case. Our approximation
guarantee for finding a smallest 2-edge-connected spanning subgraph is 4/3.

The key new ingredient of all our algorithms is a special kind of ear-decomposition
optimized using forest representations of hypergraphs. The same methods also provide
the lower bounds (arising from LP relaxations) that we use to deduce the approximation
ratios.

1. Introduction

The traveling salesman problem is one of the most famous and notoriously
hard combinatorial optimization problems [8]. For 35 years, the best known
approximation algorithm for the metric TSP, due to Christofides [7], could
not be improved. This algorithm computes a solution of length at most 3

2
times the linear programming lower bound [33]. It is conjectured that a
tour of length at most 4

3 times the value of the subtour relaxation always
exists: this is the ratio of the worst known examples. In these examples
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the length function on pairs of vertices is the minimum number of edges of
a path between the vertices in an underlying graph. This natural, purely
graph-theoretical special case received much attention recently, and is also
the subject of the present work.

Notation and Terminology. All graphs in this paper are undirected.
They can have parallel edges but no loops. For a graph G we denote by
V (G) and E(G) its sets of vertices and edges, respectively. For X⊆V (G) we
write δ(X) for the set of edges with exactly one endpoint in X. We denote
by G[X] the subgraph induced by X. By the components of G we mean the
vertex sets of the maximal connected subgraphs (so the components form a
partition of V (G)). By 2G we denote the graph arising from G by doubling
all its edges, and a multi-subgraph of G is a subgraph of 2G.

If G is a graph and T ⊆V (G) with |T | even, then a T -join in G is a set
F ⊆E(G) such that T ={v∈V (G) : |δ(v)∩F | is odd}. Edmonds [10] showed
how to reduce the minimum (in fact, minimum weight) T -join problem to
weighted matching, and thus it can be solved in O(|V (G)|3) time [15].

Definition 1.1. A T -tour in G is a T -join F in 2G such that (V (G),F ) is
connected.1 If T = ∅, F will be called a tour. The minimum cardinality of
a T -tour in G is denoted by OPT(G,T ), and the minimum cardinality of a
tour by OPT(G)=OPT(G,∅).

The metric closure of a connected graph G is the pair (Ḡ, c̄), where Ḡ
is the complete graph with V (Ḡ) = V (G), and c̄({v,w}) is the minimum
number of edges in a v-w-path in G.

Problems. The graph-TSP can be described in any of the following ways.
Given a connected graph G, find

– a shortest Hamiltonian circuit in the metric closure of G; or
– a minimum length closed walk in 2G that visits every vertex at least

once; or
– a minimum cardinality tour in G.

It is easy to see and well-known that these formulations are equivalent;
this is the unweighted special case of the “graphical TSP” (see [9]). We also
consider two related problems. In the minimum T -tour problem, the input
is a connected graph G and a set T ⊆ V (G) of even cardinality, and we
are looking for a minimum cardinality T -tour in G. The case T = ∅ is the
graph-TSP. The case |T |= 2, say T = {s, t}, has also been studied; we call
it the s-t-path graph-TSP. (By “Euler’s theorem” a subset of E(2G) is an

1 In a preliminary version of this paper, we used the term “connected-T -join”.
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{s, t}-tour if and only if its edges can be ordered to form a walk from s to t
that visits every vertex at least once.)

Note that more than two copies of an edge are never useful. However,
the variants of the above problems that do not allow doubling edges have
no approximation algorithms unless P = NP. To see this, note that in a 3-
regular graph any tour without doubled edges is a Hamiltonian circuit, and
the problem of deciding whether a given 3-regular graph is Hamiltonian is
NP-complete [17].

A relaxation of the graph-TSP is the 2-edge-connected subgraph problem.
Given a connected graph G, we look for a 2-edge-connected spanning multi-
subgraph with minimum number of edges. We denote this minimum by
OPT2EC(G). A solution F will of course contain two copies of each bridge,
and may at first contain parallel copies of other edges too. However, the
latter can always be avoided: if an edge e is not a bridge but has two copies,
either the second copy can be deleted from F , or the two copies form a cut
in F and, since e is not a bridge in G, there is another edge f between the
two sides of this cut; the second copy of e can then be replaced by f . Hence
an equivalent formulation asks for a 2-edge-connected spanning subgraph,
called 2ECSS, with minimum number of edges, of a given 2-edge-connected
graph G. Note that any tour in a 2-edge-connected graph G gives rise to a
2ECSS of G with at most the same number of edges.

Previous Results. All the above problems are NP-hard because the 2-
edge-connected subgraphs of G with |V (G)| edges are precisely the Hamil-
tonian circuits. A ρ-approximation algorithm is a polynomial-time algorithm
that always computes a solution of value at most ρ times the optimum. For
all our problems, a 2-approximation algorithm is trivial by taking a span-
ning tree and doubling all its edges (for TSP or 2ECSS) or some of its edges
(for T -tours).

For the TSP with arbitrary metric weights (of which the graph-TSP is a
proper special case), Christofides [7] described a 3

2 -approximation algorithm.
No improvement on this has been found for 35 years, but recently there has
been some progress for the graph-TSP.

A first breakthrough improving on the 3
2 (by a very small amount) for a

difficult subproblem appeared in Gamarnik, Lewenstein and Sviridenko [16];
they considered the graph-TSP for 3-connected cubic graphs. This result has
been improved to 4

3 and generalized to all cubic graphs by Boyd, Sitters,
van der Ster and Stougie [4], who also survey other previous work on special
cases. However, for general graphs there has not been any progress until
2011.
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Then Oveis Gharan, Saberi and Singh [27] gave a (3
2−ε)-approximation

for a tiny ε > 0, using a sophisticated probabilistic analysis. Mömke and
Svensson [24] obtained a 1.461-approximation by a simple and clever poly-
hedral idea, which easily yields the ratio 4

3 for cubic (actually subcubic)
graphs, and will also be an important tool in the sequel. Mucha [26] refined
their analysis and obtained an approximation ratio of 13

9 ≈1.444.

The graph-TSP was shown to be MAXSNP-hard by Papadimitriou and
Yannakakis [28].

Several of the above articles apply their method to the s-t-path graph-
TSP as well, but we found no mention of the minimum T -tour problem.
However, we note that the natural adaptation of Christofides’ [7] idea pro-
vides a 5

3 -approximation algorithm for minimum weight T -tours for any
non-negative weight function c on E(G). This was shown for the special
case |T |= 2 by Hoogeveen [18], but works in general as follows. Let F be
the edge set of a minimum weight spanning tree, and T ′ such that F is a
(T4T ′)-join. Let J ′ be a minimum weight T ′-join. Then the disjoint union
F

.
∪J ′ (taking edges appearing in both sets twice) is a T -tour, and its cost is

at most 5
3 times the optimum. To see this, note that c(F ) is at the most the

optimum. We now show that c(J ′)≤ 2
3c(J), where J is a minimum weight

T -tour. Indeed, F
.
∪ J is a T ′-join, and can be partitioned into three T ′-

joins: (V (G),F ) is connected and thus contains a T ′-join J1, (V (G),J) is
connected and thus contains a T ′-join J2, and J3 := (F \J1)

.
∪ (J \J2) is a

T ′-join. We conclude that 3c(J ′)≤c(J1)+c(J2)+c(J3)=c(F )+c(J)≤2c(J).

An, Kleinberg and Shmoys [2] improved on Christofides’ algorithm for
the s-t-path version, obtaining an approximation ratio of 1.619 (for general
weights)2. They also obtained a 1.578-approximation algorithm for the s-t-
path graph-TSP.

For the 2ECSS problem, Khuller and Vishkin [19] gave a 3
2 -approximation

algorithm, and Cheriyan, Sebő and Szigeti [6] improved the approximation
ratio to 17

12 . Better approximation ratios have been claimed, but to the best
of our knowledge, no complete proof has been published. For the weighted
generalization (which we do not consider in this paper), i.e. the problem of
finding a minimum weight 2ECSS of a given graph with nonnegative edge
weights, the 2-approximation algorithm by Khuller and Vishkin [19] is still
the best known.

2 This was recently improved to 1.6 by Sebő [30]. See also Vygen [31] for a more detailed
survey of the recent TSP approximation algorithms and more references.
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Our Results and Methods. We describe polynomial-time algorithms
with approximation ratio 7

5 for the graph-TSP, 3
2 for the minimum T -tour

problem (including the s-t-path graph-TSP), and 4
3 for the 2ECSS problem.

The classical work of Christofides [7] is still present: the roles of the edges
in our work can most of the time be separated to working for “connectivity”
or “parity”. We begin by constructing an appropriate ear-decomposition, us-
ing a result of Frank [13] in a similar way as Cheriyan, Sebő and Szigeti [6].
For the graph-TSP, ear-decompositions can be combined in a natural way
with an ingenious lemma of Mömke and Svensson [24], which corrects the
parity not only by adding but also by deleting some edges, without destroy-
ing connectivity. This fits together with ear-decompositions surprisingly well.
However, this is not always good enough. It turns out that short and “pen-
dant” ears need special care. We can make all short ears pendant (Section 2)
and optimize them in order to need a minimum number of additional edges
for connectivity (Section 3). This subtask, which we call earmuff maximiza-
tion, is related to matroid intersection and actually to the particular case of
forest representations of hypergraphs. We use our earmuff theorem and the
corresponding lower bound (Section 4) for all three problems that we study.
We present our algorithms in Section 5.

Let us overview the four main assertions that are animating all the
rest of the paper: a key result that will be used as a first construction
for our three approximation results is that a T -tour of cardinality at most
3
2OPT(G,T )+1

2ϕ−π (and at most 3
2OPT2EC(G)−π≤ 3

2OPT(G)−π if T =∅) can be
constructed in polynomial time (Theorem 7), where ϕ and π are “the number
of even and the number of pendant ears in a suitable ear-decomposition”.
We postpone the precise details until Subsection 2.3, where the main opti-
mization problem we have to solve is also explained. Section 3 is technically
solving this optimization problem. The solution is used in Theorem 7 and
in the lower bounds proving its quality. In the particular case T = ∅ this
construction provides a tour, which can also be used for a 2ECSS.

Then for our three different approximation algorithms we have three dif-
ferent second constructions for the case when π is “small”. A simple induc-
tive construction with respect to the ear-decomposition (Propositions 2.1
and 2.3) provides a T -tour of cardinality at most 3

2OPT(G,T )− 1
2ϕ+π. We

see that the smaller of the two T -tours has cardinality at most 3
2OPT(G,T )

(Theorem 8).
If T = ∅, our second construction applies the lemma of Mömke and

Svensson [24] to our ear-decomposition, obtaining the bound 4
3OPT(G)+ 2

3π

(Lemma 5.3). Therefore the worst ratio is given by π= 1
10OPT(G), when both

constructions guarantee 7
5OPT(G) (Theorem 10). We could use this bound
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for 2ECSS as well, but here a simple induction with respect to the number
of ears obeys the stronger bound 5

4OPT2EC(G)+ 1
2π, and so π= 1

6OPT2EC(G)

provides the worst ratio of 4
3OPT2EC(G) (Theorem 11).

Preliminaries. The natural LP relaxation of the 2ECSS problem is the
following:

LP(G) := min
{
x(E(G)) : x ∈ RE(G)

≥0 , x(δ(W )) ≥ 2 for all ∅ 6= W ⊂ V (G)
}
,

where we abbreviate x(S) :=
∑

e∈S xe as usual. Obviously we have:

Proposition 1.2. For every connected graph G:

OPT(G) ≥ OPT2EC(G) ≥ LP(G) ≥ |V (G)|.

For the minimum T -tour problem, LP(G) is not a valid lower bound; we
need a more general setting. For a partition W of V (G) we introduce the
notation

δ(W) :=
⋃

W∈W
δ(W ),

that is, δ(W) is the set of edges that have their two endpoints in different
classes of W.

Let G be a connected graph, and T ⊆V (G) with |T | even. The following
takes an analogous role to LP(G) for T -tours:

LP(G,T ) := min
{
x(E(G)) : x ∈ RE(G)

≥0 ,

x(δ(W )) ≥ 2 for all ∅ 6= W ⊂ V (G) with |W ∩ T | even,

x(δ(W)) ≥ |W| − 1 for all partitions W of V (G)
}
.

Note that LP(G,∅)=LP(G). We obviously have as well:

Proposition 1.3. For every connected graph G and T ⊆ V (G) with |T |
even:

OPT(G,T ) ≥ LP(G,T ) ≥ |V (G)| − 1.

The bound can be tight as every spanning tree is a T -tour, where T is
the set of its odd degree vertices. Surprisingly, in our lower bounds we will
be satisfied by the relaxation of LP(G,T ) in which “|W∩T | even” is replaced
by “W ∩T =∅”.

As a last preliminary remark we note that in all our problems, we can
restrict our attention to 2-vertex-connected graphs because we can consider
the blocks (i.e., the maximal 2-vertex-connected subgraphs) separately:
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Proposition 1.4. Let G1 and G2 be two connected graphs with V (G1)∩
V (G2) = {v}. Let G := (V (G1)∪V (G2),E(G1)∪E(G2)), and let T ⊆V (G),
|T | even. Let Ti be the even set among (T∩V (Gi))\{v} and (T∩V (Gi))∪{v}
(i = 1,2). Then OPT(G,T ) = OPT(G1,T1) + OPT(G2,T2), OPT2EC(G) =
OPT2EC(G1) + OPT2EC(G2), and LP(G,T ) = LP(G,T1) + LP(G,T2). In partic-
ular, any approximation guarantee or integrality ratio valid for (G1,T1) and
(G2,T2) is valid for (G,T ).

Proof. The T -tours in G are precisely the unions of a T1-tour of G1 and a
T2-tour of G2. The same holds for 2ECSS.

We finally observe that the set of facet-defining constraints of LP(G,T )
is the union of the sets of facet-defining constraints of LP(G1,T1) and
LP(G2,T2). This implies LP(G,T )=LP(G1,T1)+LP(G2,T2).

2. Ear-Decompositions

An ear-decomposition is a sequence P0,P1, . . . ,Pk, where P0 is a graph con-
sisting of only one vertex (and no edge), and for each i∈{1, . . . ,k} we have:

(a) Pi is a circuit sharing exactly one vertex with V (P0)∪·· ·∪V (Pi−1), or
(b) Pi is a path sharing exactly its two different endpoints with V (P0)∪·· ·∪

V (Pi−1).

P1, . . . ,Pk are called ears. Pi is a closed ear if it is a circuit and an open
ear if it is a path. A vertex in V (Pi)∩ (V (P0)∪ ·· · ∪V (Pi−1)) is called an
endpoint of Pi, even if Pi is closed. An ear has one or two endpoints; its
other vertices will be called internal vertices. The set of internal vertices of
an ear Q will be denoted by in(Q). We always have | in(Q)| = |E(Q)| − 1,
while |V (Q)| is |E(Q)|+1 or |E(Q)| depending on whether Q is an open or
closed ear. If P and Q are ears and q∈ in(Q) is an endpoint of P , then we
say that P is attached to Q (at q).

P0,P1, . . . ,Pk is called an ear-decomposition of the graph P0+P1+· · ·+Pk :=
(V (P0)∪·· ·∪V (Pk),E(P1)∪·· ·∪E(Pk)). It is called open if all ears except
P1 are open.

A graph has an ear-decomposition if and only if it is 2-edge-connected.
A graph has an open ear-decomposition if and only if it is 2-vertex-
connected. The number of ears in any ear-decomposition of G is |E(G)|−
|V (G)|+1. These definitions and statements are due to Whitney [32].

We call |E(P )| the length of a path or of an ear P . An l-path is a path
of length l, and an l-ear is an ear of length l; an l-ear for l > 1 is said to
be nontrivial. Minimizing the number of nontrivial ears is equivalent to the
2ECSS problem because deleting 1-ears maintains 2-edge-connectivity.
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Given an ear-decomposition, we call an ear pendant if it is nontrivial and
there is no nontrivial ear attached to it.

2.1. Even, Short, and Clean Ears

For an ear P let ϕ(P )=1 if |E(P )| is even, and ϕ(P )=0 if it is odd. For a
2-edge-connected graph G, ϕ(G) denotes the minimum number of even ears

in an ear-decomposition of G, that is, the minimum of
∑k

i=1ϕ(Pi) over all
ear-decompositions of G. This parameter was introduced by Frank [13], who
proved that this minimum can be computed in polynomial time.

Another kind of ears that plays a particular role is 2-ears and 3-ears. We
will call these short ears. Unlike the number of even ears, we do not know
how to minimize the number of short ears efficiently. However, they can be
useful in other ways (cf. Section 3). All short ears occurring in this paper
will be open, except possibly for the first ear. Given also T ⊆V (G) with |T |
even, we call an ear P clean and write γ(P )=1 if P is short and in(P )∩T =∅;
otherwise we write γ(P )=0.

We will construct T -tours, and in our algorithms we will also add T -joins
for parity correction similar to Christofides. One way to construct these, to
be analyzed now, is to consider the ears of an ear-decomposition in reverse
order and pick edges in a greedy way, satisfying parity conditions locally.
This will in general not yield optimal T -tours or T -joins, but it allows us to
prove simple upper bounds.

Let G be a 2-edge-connected graph with an ear-decomposition, T ⊆V (G),
|T | even, and P a pendant ear. Then P is subdivided into subpaths by the
vertices of in(P )∩T . Let us color these subpaths blue and red alternatingly.
To obtain a T -join in G, we could take the edges of the red subpaths and
add them to an S-join (where we define S appropriately) in the subgraph
induced by V (G)\ in(P ). For a T -tour in G, we can take E(P ), double the
edges of the red subpaths, and proceed as before. In this case we can in
addition delete one pair of parallel edges if there is one.

This yields the following bounds.

Lemma 2.1. Let G be a 2-edge-connected graph with an ear-decomposi-
tion, and T ⊆ V (G), |T | even. Let P be a pendant ear. Then there exist
F ⊆E(P ), F ′ ⊆E(2P ) and S,S′ ⊆ V (G)\ in(P ) such that |S| and |S′| are
even and:

(a) |F |≤ 1
2 | in(P )|+ 1

2ϕ(P ), and F ∪J is a T -join in G for every S-join J in
G− in(P ).

(b) |F ′|≤ 3
2 | in(P )|+ 1

2ϕ(P )+γ(P )−1, and F ′∪J ′ is a T -tour in G for every
S′-tour J ′ in G− in(P ).
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Such sets F and F ′ can be computed in O(| in(P )|) time.

Proof. The vertices of in(P )∩T subdivide P into subpaths, alternatingly
colored red and blue. Let ER and EB denote the set of edges of red and blue
subpaths, respectively; w.l.o.g., |ER| ≤ |EB|. Let TR and TB be the set of
vertices having odd degree in (V (P ),ER) and (V (P ),EB), respectively. Note
that {ER,EB} is a partition of E(P ), and TR∩in(P )=TB∩in(P )=T∩in(P ).

Let S := T∆TR and F := ER. Then F and S satisfy the claims in (a)
because |F |≤b1

2 |E(P )|c= 1
2(| in(P )|+ϕ(P )).

For (b) let S′ := T∆TB. We distinguish two cases. If ER = ∅, then let
F ′ :=EB=E(P ). Then |F ′|= |E(P )|= | in(P )|+1≤ 3

2 | in(P )|+1
2ϕ(P )+γ(P )−1.

If ER 6=∅, then let F ′ result from E(P ) by doubling the edges of ER and
then removing one arbitrary pair of parallel edges. Using (a) we have

|F ′| = |E(P )|+ |ER|−2 = | in(P )|+ 1 + |F |−2 ≤ 3

2
| in(P )|+ 1

2
ϕ(P )−1.

Proposition 2.2 (Frank [13]). Let G be a 2-edge-connected graph, and
T ⊆V (G), |T | even. Then there exists a T -join of cardinality at most

1

2
(|V (G)|+ ϕ(G)− 1).

Proof. Let P0, . . . ,Pk be an ear-decomposition with ϕ(G) even ears. Apply
Lemma 2.1(a) to the ears Pk, . . . ,P1 (in reverse order). Summing up the
obtained inequalities, we get the claim.

The number |V (G)|+ϕ(G)− 1 is even, since an even ear adds an odd
number of vertices. The bound of the Proposition is tight for every 2-edge-
connected graph G in the following sense:

Theorem 1 (Frank [13]). Let G be a 2-edge-connected graph. Then there
exists T ⊆V (G), |T | even, such that the minimum cardinality of a T -join is
1
2(|V (G)|+ϕ(G)−1). Such a T and an ear-decomposition with ϕ(G) even
ears can be found in O(|V (G)||E(G)|) time.

Now we prove a similar statement to Proposition 2.2 for T -tours:

Proposition 2.3. Let G be a 2-edge-connected graph and an ear-decom-
position of G with ϕ(G) even ears, among which there are π2 2-ears. Then
for every T ⊆V (G), |T | even, a T -tour with at most

3

2
(|V (G)| − 1) + π2 −

1

2
ϕ(G)

edges can be found in O(|E(G)|) time.
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Proof. Apply Lemma 2.1(b) to the nontrivial ears in reverse order. Summing
up the obtained inequalities, we get a T -tour with at most 3

2(|V (G)|−1)+
1
2ϕ(G)−l edges, where l is the number of nontrivial ears that are not short.
Note that l is at least the number of even ears that are not short, that is,
at least ϕ(G)−π2. The claim follows.

2.2. Nice Ear-Decompositions

We need ear-decompositions with particular properties:

Definition 2.4. Let G be a graph. An ear-decomposition of G is called
nice if

(i) the number of even ears is ϕ(G);
(ii) all short ears are pendant;

(iii) internal vertices of different short ears are non-adjacent in G.

The following is essentially Proposition 4.1 of Cheriyan, Sebő and Szigeti [6]:

Lemma 2.5. For any 2-vertex-connected graph G there exists a nice
ear-decomposition, and such an ear-decomposition can be computed in
O(|V (G)||E(G)|) time.

P

Q

(a)

P

Q
u v

(b)

P

Q

v(c)

P

Q
v

(d)

P Q

(e)
q

P Q

(f)

P Q

p q
(g)

P Q

p q
(h)

Figure 1. Proof of Lemma 2.5. Squares and circles represent distinct vertices;
moreover, vertices represented by circles are internal vertices of short, pendant ears.

Grey edges become 1-ears.

Proof. Take any open ear-decomposition with ϕ(G) even ears. This can be
done by Proposition 3.2 of Cheriyan, Sebő and Szigeti [6]. (Its proof, briefly:
start with Theorem 1, then subdivide an arbitrary edge on each even ear,
apply Theorem 5.5.2 of Lovász and Plummer [23] to construct an open odd
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ear-decomposition of this 2-connected factor-critical graph; finally undo the
subdivisions.)

We will now satisfy the conditions (ii) and (iii) by successively modifying
the ear-decomposition. Each of the operations that we will use decreases the
number of nontrivial ears, and does not increase the number of even ears.
Moreover pendant ears vanish or remain pendant in each operation.

First we make all 2-ears pendant. If a 2-ear P is not pendant, let Q be
the first nontrivial ear attached to it (Figure 1(a)). Then we can replace P
and Q by the ear Q+e and the 1-ear e′, where {e,e′}=E(P ), and e is chosen
so that Q+e is open. The new nontrivial ear Q+e can be put at the place
of Q in the ear-decomposition.

Next we make all 3-ears pendant. As long as this is not the case, we do
the following. Let P be the first non-pendant 3-ear, and let Q be the first
nontrivial (open) ear attached to P . Let in(P ) = {u,v}, and let v be an
endpoint of Q. If the other endpoint of Q is u, then we can form an ear R
with E(R)=E(Q)∪E(P )\{{u,v}} (Figure 1(b)). Otherwise we form R by Q
plus the 2-subpath of P ending in v (Figure 1(c),(d)). We replace P and Q
by R and a new 1-ear. The new nontrivial ear R has length at least 4; it can
be open or closed. It can be put at the place of Q in the ear-decomposition.
Since P was the first non-pendant 3-ear, we maintain the property that no
closed ear is attached to any 3-ear.

Now all short ears are pendant. This also implies that there are no edges
connecting internal vertices of 2-ears: otherwise one could replace the two
(pendant) 2-ears and the 1-ear connecting them by an open pendant 3-ear
and two 1-ears (Figure 1(e)), reducing the number of even ears by two.

We still have to obtain property (iii). If there is an edge e that connects
the internal vertex of a 2-ear P with an internal vertex q of a 3-ear Q, let Q′

be the 2-subpath of Q with endpoint q. Form a new open 4-ear R by Q′, e,
and one edge of P (Figure 1(f)). We replace P , Q, and the 1-ear consisting
of e by R and two new 1-ears. The new nontrivial ear R is pendant, so it
can be put at the end of the ear-decomposition, followed only by 1-ears.

Finally, if there is an edge e = {p,q} that connects internal vertices of
two different 3-ears P and Q, we form a new 5-ear R by the edge e and the
2-subpaths of P and Q ending in p and q respectively (Figure 1(g),(h)). We
replace P , Q, and the 1-ear consisting of e by R and two new 1-ears. Note
that R can be open or closed, but it is always pendant, so it can be put at
the end of the ear-decomposition, followed only by 1-ears.

Since the number of nontrivial ears decreases by each of these operations,
the algorithm will terminate after less than |V (G)| iterations. At the end,
the ear-decomposition is nice.
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2.3. How to Switch to Nicer Ears?

Our approximation algorithms will begin by computing a nice ear-
decomposition. Lemma 2.1(b) indicates that clean ears are more expensive
than others. We will make up for this by “optimizing” them, in order to
serve best for connectivity.

An eardrum in G is the set M of components of an induced subgraph in
which every vertex has degree at most 1. Let VM :=

⋃
M be the vertex set of

this subgraph. That is, M contains only one-element and two-element sets,
and the two-element sets are the only edges in G[VM ].

Given a nice ear-decomposition and T ⊆V (G) with |T | even, we say that
M is the eardrum associated with the ear-decomposition and T if M is the
set of components of the subgraph induced by the set of internal vertices of
the clean ears. (Note that clean ears are short by definition. Hence, due to
conditions (ii) and (iii) of Definition 2.4, M is indeed an eardrum.)

Consider a graph G with a nice ear-decomposition, and let M be the
eardrum associated with it and the given set T ⊆ V (G). So M contains a
1-element set {v} for each clean 2-ear, where v is the internal vertex of the
2-ear, and a 2-element set {v,w} for each clean 3-ear where {v,w} is the set
of internal vertices of the 3-ear. Let again VM =

⋃
M . Note that VM ∩T =∅.

There may be 1-ears connecting VM and V (G)\VM , and these can be used
to replace some of the clean ears by “more useful” clean ears of the same
length.

Proposition 2.6. Let G be a 2-edge-connected graph, and T ⊆V (G) with
|T | even. Let a nice ear-decomposition be given, and let M be the eardrum
associated with it and T . For f ∈M let Pf be the ear with f as set of internal
vertices, and let Qf be any path in G in which f is the set of internal vertices.
Then replacing the ears (Pf )f∈M by the ears (Qf )f∈M and changing the set
of 1-ears accordingly, we get a nice ear-decomposition again with the same
associated eardrum.

Proof. Since all 2-ears and 3-ears were already pendant, no new pendant
short ears, except of course the ears Qf that replace Pf (f ∈M), can arise
by this change. Moreover, no vertex of VM can be an endpoint of any path
Qf (f ∈M). Hence the new ear-decomposition is also nice, and the eardrum
associated with the ear-decomposition and T remains the same.

We will choose the paths Qf (f ∈ M) such that (V (G),
⋃
f∈M E(Qf ))

has as few components as possible. We will show how in the next section.
Let us denote this minimum by c(G,M). Then adding c(G,M)−1 edges to
the |M |+ |VM | edges of

⋃
f∈M E(Qf ) yields a connected spanning subgraph
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in which all vertices in VM have even degree. It is not difficult to see (and
we will show it in Corollary 4.2 below) that there is no such subgraph with
fewer edges.

In the following section we will solve this optimization problem for an
arbitrary eardrum in G, although we will apply it only to the eardrum
associated with the initially computed nice ear-decomposition and T .

3. Earmuffs

Let G be a graph and M an eardrum in G. For each f ∈M , let Pf be the
set of (|f |+1)-paths in G in which f is the set of internal vertices. In other
words, for |f | = 2 (or |f | = 1), Pf is the set of possible 3-ears (or 2-ears)
containing f as middle edge (or the unique element of f as middle vertex,
respectively). As explained in Subsection 2.3, we want to pick an element
Pf ∈ Pf for each f ∈M such that we need to add as few further edges as
possible to the graph (V (G),

⋃
f∈M E(Pf )) in order to make it connected.

Ideally, if this graph is a forest, then |V (G)|−1−|M |− |VM | further edges
suffice. This motivates the following definitions:

Definition 3.1. Let G be a graph and M an eardrum in G. For f ∈M let
Pf denote the set of paths P in G with in(P )=f . An earmuff (for M in G)
is a set of paths {Pf : f ∈F}, where F ⊆M and Pf ∈Pf for f ∈F , such that
(V (G),

⋃
f∈F E(Pf )) is a forest.

A maximum earmuff is one in which |F |, its size, is maximum, and this
maximum is denoted by µ(G,M). See Figure 2 for an illustration.

We show now that a maximum earmuff can be computed in polynomial
time. This can be reduced to matroid intersection (as explained in Section
3.1), and in fact to a more elementary special case (see Section 3.2): for-
est representative systems. Although general matroid intersection provides
a quicker proof of polynomial-time solvability, it is worthwhile to exploit the
properties of this special case: it leads to a faster algorithm and a more intu-
itive way of representing dual solutions (which will provide a lower bound).

3.1. Maximum Earmuffs by Matroid Intersection

Earmuffs are the common independent sets of two matroids. On the one
hand, the sets Pf (f ∈ F ) partition the set

⋃
f∈F Pf . Therefore, the sub-

sets of
⋃
f∈F Pf that contain at most one element of each partition class

form a partition matroid (see, e.g., [14]). On the other hand, the subsets of
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vertex in VM

vertex in V (G)\VM

maximum earmuff

other edges

sets in dual solution
(cf. Theorem 6)

Figure 2. An eardrum, a maximum earmuff, and an optimum dual solution

⋃
f∈F Pf whose union is a forest form the cycle matroid of a graph (see be-

low). Hence earmuff maximization reduces to matroid intersection, and so
it can be solved in polynomial time [11].

The following special form of matroid intersection (where one of the ma-
troids is a partition matroid) is easier to use for our purpose:

Theorem 2 (Rado [29]). Let E be a finite set and r the rank function of
a matroid on E. Let E1,E2, . . . ,Ek⊆E. Then

max
{
r({e1, . . . , ek}) : ei ∈ Ei (i = 1, . . . , k)

}
= min

{
r

(⋃
i∈I

Ei

)
+ k − |I| : I ⊆ {1, . . . , k}

}
.

It is an easy and well-known exercise to deduce this from the matroid in-
tersection theorem [11]. Therefore one can find a set attaining the maximum
in polynomial time using the matroid intersection algorithm.

In order to apply Rado’s Theorem directly, we represent each path P ∈Pf
(f ∈M) by the set eP ∈

(
V (G)\VM

2

)
of its two endpoints. Let r be the rank

function of the cycle matroid of the complete graph on V (G) \VM . If we
write Ef :={eP : P ∈Pf} for f ∈M , then

µ(G,M) = max{r({ef : f ∈M}) : ef ∈ Ef (f ∈M)}.

Hence we can find a maximum earmuff in polynomial time.
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3.2. Maximum Earmuffs and Forest Representatives

This section provides an alternative (more elementary and faster) solution
to the earmuff maximization problem.

Let U and M be finite sets, and let Uf ⊆U for f ∈M . Then (ef )f∈M is

called a forest representative system for (Uf )f∈M if ef ∈
(Uf

2

)
for all f ∈M ,

ef 6=ef ′ for f 6=f ′, and the graph (U,{ef : f ∈M}) is a forest.
For our application, let M be an eardrum in G, and let U :=V (G)\VM 6=∅.

We will denote by Uf the set of endpoints of paths in Pf (f ∈ M). We
now show that it is sufficient to compute a forest representative system for
(Uf )f∈F for a maximum possible subset F of M .

Lemma 3.2. µ(G,M) is the maximum cardinality of a subset F ⊆M for
which (Uf )f∈F has a forest representative system. Given a forest represen-
tative system, we can compute an earmuff of the same size in O(|V (G)|2)
time.

Proof. Given an earmuff {Pf : f ∈F} (with F ⊆M and Pf ∈Pf for f ∈F ),
then {ePf

: f ∈F} is a forest representative system for (Uf )f∈F .
Conversely, let {ef : f ∈F} be a forest representative system for (Uf )f∈F .

We will successively replace each ef (f ∈F ) by the edge set of a path Pf ∈Pf
and maintain a forest.

So let f ∈ F . Since ef ∈
(Uf

2

)
, say ef = {u,v}, there are paths P,Q∈Pf

such that u is an endpoint of P and v is an endpoint of Q.
If |f |=1, say f={a}, then a is adjacent to u (in P , and thus in G) and

to v (in Q, and thus in G). So let Pf be the 2-path with vertices u,a,v in
this order.

If |f |=2, suppose that the vertices of P are u,a,b,w in this order. Note
that v is adjacent to a or b (in Q, and thus in G).

If v is adjacent to b, then let Pf be the 3-path with vertices u,a,b,v in this
order. If v is adjacent to a, then consider the path R with vertices v,a,b,w
in this order. Since the edge ef (as every edge in a forest) is a bridge, at
least one of the paths P and R can be chosen as Pf so that replacing ef by
E(Pf ) does not create a circuit.

We will show how to find a maximum forest representative system effi-
ciently. We begin with the following min-max theorem:

Corollary 3.3 (Lovász [21]). Let U and M be finite sets, and let ∅ 6=Uf ⊆
U for f ∈M . Then the maximum cardinality of a subset F ⊆M for which
(Uf )f∈F has a forest representative system equals

min

{
|M |−

∑
W∈W

(
|{f ∈M : Uf ⊆W}|−(|W |−1)

)
: W is a partition of U

}
.
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This is a variant of Corollary 1.4.6 of Lovász and Plummer [23], where
bipartite matchings are used in the proof, convertible to an algorithm. It
also follows directly from Rado’s Theorem:

Proof. The inequality “≤” follows from the fact that for every partition W
of U and each W ∈W at most |W |−1 of the f ∈M with Uf ⊆W can be
represented, and the sets {f ∈M : Uf ⊆W} are pairwise disjoint for different
sets W ∈W because all Uf are nonempty.

For the other direction, apply Theorem 2 to the sets
(Uf

2

)
(f ∈M) and the

cycle matroid of the complete graph on U . We get a forest representative
system of size r

(⋃
f∈F

(Uf

2

))
+ |M | − |F | for some F ⊆ M . Let W be the

set of components of the graph
(
U,
⋃
f∈F

(Uf

2

))
. We have r

(⋃
f∈F

(Uf

2

))
=∑

W∈W(|W | − 1) and |F | ≤
∑

W∈W |{f ∈ M : Uf ⊆ W}| because, by the
definition of W, for every f ∈F there is a W ∈W with Uf ⊆W .

We give now an elementary and algorithmic proof of the nontrivial in-
equality of Corollary 3.3, giving rise to an efficient algorithm.

Let F ⊆M such that (Uf )f∈F has a forest representative system (ef )f∈F .
A set W ⊆ U will be called F -closed if |{f ∈ F : Uf ⊆W}| = |W | − 1. For
any F -closed set W , the graph (W,{ef : f ∈F,Uf ⊆W}) is a tree. Therefore
the union of two F -closed sets with nonempty intersection is also F -closed.
Moreover, every singleton is F -closed. We conclude that the set of maximal
F -closed sets is a partition of U .

If F is a maximum subset of M such that (Uf )f∈F has a forest repre-
sentative system, then this partition certifies maximality, as we shall prove
now.

Lemma 3.4. Let U and M be finite sets, and let Uf ⊆ U for f ∈M . Let
F ⊆M and a forest representative system (ef )f∈F for (Uf )f∈F be given, and
let g∈M \F . Then one can

– either find a forest representative system (e′f )f∈F∪{g} for (Uf )f∈F∪{g}
– or conclude that Ug is contained in an F -closed set

in O(
∑

f∈M |Uf |) time.

Proof. Let EF := {ef : f ∈ F}, and consider the forest (U,EF ). Let C be
the set of components of (U,EF ). Let T := {f ∈M : Uf 6⊆C for all C ∈ C}.
Consider the digraph D on the vertex set M that contains an edge (f,f ′) if
and only if f ∈M \T , f ′∈F , and there exist u,v∈Uf such that ef ′ lies on
the unique u-v-path in (U,EF ). We call f reachable from g if there exists a
directed path P from g to f in D.
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Claim 1. If there is a t ∈ T that is reachable from g, then F ∪{g} has a
forest representative system.

To prove this, let P be a shortest directed path from g to t ∈ T in D.
Let g=f0,f1, . . . ,fk= t be the vertices of P in this order. Set e′f :=ef for all

f ∈F \{f0, . . . ,fk}.
Let e′t be a pair {ut,vt} such that vt is not in the same component of

(U,EF ) as ut. For each arc a= (fi,fi+1) of P we have ui,vi∈Ufi such that
efi+1

(but no efj with j>i+1) lies on the unique ui-vi-path in (U,EF ), and
we set e′fi := {ui,vi}. A straightforward induction shows that (U,{ef : f ∈
F \{fj+1, . . . ,fk}}∪{e′fj , . . . ,e

′
fk
}) is a forest for all j=k,k−1, . . . ,0. For j=0

this means that (U,{e′f : f ∈F ∪{g}) is a forest, and Claim 1 is proved.

Claim 2. If no element of T is reachable from g, then Ug is contained in an
F -closed set.

Indeed, if R is the set of vertices that are reachable from g in D, and
R∩T =∅, then let W :=

⋃
{Uf : f ∈R}. Since (W,{ef : f ∈R\{g}}) is a tree,

|R|= |W | holds, so W is F -closed.

The two Claims directly imply an algorithm: we perform a BFS search
from g in D. To do this efficiently, we fix an element r∈Ug (we may assume
that Ug is nonempty), compute the components of (U,EF ), and orient the
component C containing r as an arborescence rooted at r. We work with a
queue Q that we initialize so that it contains only g, and do the following
until we reach an element of T or cannot continue because Q is empty.

Remove the first element f from Q. For all u∈Uf , check whether u∈C
(if not, f ∈T , and we are done) and traverse the u-r-path in (U,EF ) (always
following the incoming arc in the arborescence) as long as we visit edges
that we have not visited before. For each such edge ef ′ we insert f ′ at the
end of the queue Q and store that f was the predecessor of f ′.

Note that the set of visited edges always forms a tree containing r. If
f ′ enters the queue with predecessor f , then (f,f ′) is an arc of D. The
correctness and the claimed running time follow.

Theorem 3. Let U and M be finite sets, and let Uf ⊆ U for f ∈ M . A
maximum subset F ⊆M with a forest representative system for (Uf )f∈F
can be computed in O(|M |

∑
f∈M |Uf |) time.

Proof. We may assume Uf 6=∅ for all f ∈M . Let M ={g1, . . . ,gn}. We run
the greedy algorithm, beginning with F0 =∅. For j=1, . . . ,n we apply Lemma
3.4 to Fj−1, Mj :={g1, . . . ,gj}, and gj . We either augment Fj :=Fj−1∪{gj},
or we set Fj :=Fj−1. In each case we have a forest representative system of
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(Uf )f∈Fj
and the property that Uf is contained in an Fj-closed set for all

f ∈Mj \Fj . So each Uf (f ∈Mj \Fj) is also contained in an element of W,
where W is the set of maximal Fj-closed sets, and we have

|Mj \ Fj | =
∑
W∈W

|{f ∈Mj \ Fj : Uf ⊆W}|.

Since all elements of W are Fj-closed, this implies

|Mj \ Fj | =
∑
W∈W

(
|{f ∈Mj : Uf ⊆W}| − (|W | − 1)

)
.

By the trivial inequality of Corollary 3.3, this implies that Fj is a maximum
subset of Mj with a forest representative system.

This is an algorithmic reformulation of the following result of Lorea [20]
(see Frank [14] for a direct proof): given a hypergraph, the sets of hyperedges
that have a forest representative system form the independent sets of a
matroid.

Now we have all that we need. Let M be an eardrum in G, let U :=
V (G)\VM 6=∅, and denote by Uf the set of endpoints of paths in Pf (f ∈M).
For ∅ 6=W ⊆V (G)\VM we define the surplus of W as sur(W ) := |{f ∈M : Uf ⊆
W}|−(|W |−1). In particular, if Pf 6=∅ (and thus |Uf |≥2) for all f ∈M and
|W |=1, then sur(W )=0. We conclude:

Theorem 4. Let G be a graph and M an eardrum in G with Pf 6= ∅ for
all f ∈M . Then a maximum earmuff can be computed in O(|V (G)||E(G)|)
time, and its size is

µ(G,M) = min

{
|M | −

∑
W∈W

sur(W ) : W is a partition of V (G) \ VM
}
.

Proof. Follows directly from Lemma 3.2, Corollary 3.3, and Theorem 3.

4. Lower Bounds

To prove the approximation guarantees of our algorithms, we need several
lower bounds.

Theorem 5 (Cheriyan, Sebő and Szigeti [6]). Let G be a 2-edge-
connected graph. Then

Lϕ(G) := |V (G)|+ ϕ(G)− 1 ≤ LP(G).

In particular, every 2-edge-connected spanning subgraph of G has at least
Lϕ(G) edges.
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Proof. By Theorem 1 there exists a T ⊆ V (G) with |T | even such that
1
2Lϕ(G) is the minimum cardinality of a T -join in G. By a well-known result
due to Edmonds and Johnson [12] and Lovász [22], this implies that there
exists a multiset of Lϕ(G) T -cuts containing every edge at most twice. By
summing the inequalities x(δ(W ))≥2 for all these cuts, we obtain LP(G)≥
Lϕ(G).

Consequently Lϕ(G) ≤ OPT2EC(G), and this can indeed be seen more
easily: it holds since the number of even ears is at most the number of
nontrivial ears in any ear-decomposition.

Recall that LP(G) is not a valid lower bound for the minimum cardinality
of a T -tour, nor are Lϕ(G) and |V (G)|. We use Proposition 1.3 and our
“earmuff theorem” (Theorem 4) to establish another lower bound:

Theorem 6. Let G be a connected graph, T ⊆V (G) with |T | even, and M
an eardrum in G with VM ∩T =∅ and Pf 6=∅ for all f ∈M . Then

Lµ(G,M) := |V (G)| − 1 + |M | − µ(G,M) ≤ LP(G,T ).

In particular, every T -tour in G has at least Lµ(G,M) edges.

Proof. We use Theorem 4. Let W be a partition of V (G)\VM such that

µ(G,M) = |M | −
∑
W∈W

sur(W ).

Let I be the subset of M containing those sets f for which Uf ⊆W for

some W ∈W. Consider the partition Ŵ of V (G) that contains

– the set W ∪
⋃
f∈M : Uf⊆W f for each W ∈W;

– the set {x} for each x∈f ∈M \I.

Next, consider the following multiset S of nonempty proper subsets of V (G):

– for each x∈f ∈I, take the set {x};
– for each f ∈I, take the set f .

See Figure 2 for an illustration. Note that singletons in I appear and are
counted twice in S. Each of the sets of S induces a cut. None of these cuts
contains an edge of δ(Ŵ). Moreover, no edge belongs to more than two of
these cuts.

Therefore every feasible solution x of LP(G,T ) satisfies

x(E(G)) = x(δ(Ŵ)) + x(E(G) \ δ(Ŵ))
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≥ x(δ(Ŵ)) +
1

2

∑
S∈S

x(δ(S))

≥ |Ŵ| − 1 + |S|
= |W| − 1 + |VM |+ |I|
= |W| − 1 + |VM |+

∑
W∈W

(sur(W ) + |W | − 1)

= |V (G)| − 1 +
∑
W∈W

sur(W )

= Lµ(G,M).

For the special case T =∅ we note:

Corollary 4.1. Let G be a 2-edge-connected graph and M an eardrum in
G with Pf 6=∅ for all f ∈M . Then

Lµ(G,M) ≤ LP(G).

In particular, every 2-edge-connected spanning subgraph of G has at least
Lµ(G,M) edges.

Proof. This follows from Theorem 6 and LP(G,∅)=LP(G).

The following statement will not be explicitly used but may be worth
mentioning: it shows a problem close to ours but solvable in polynomial
time.

Corollary 4.2. Let G be a 2-edge-connected graph, and T ⊆ V (G) with
|T | even. Let a nice ear-decomposition be given, and let M be the eardrum
associated with it and T . Then Lµ(G,M) is the minimum number of edges
of a connected spanning subgraph of 2G in which every vertex of VM has
even degree.

Proof. Let (Pf )f∈F be a maximum earmuff for M in G, and for f ∈M \F
let Pf be the ear with internal vertices f . Taking all the |M |+|VM | edges in⋃
f∈M E(Pf ) results in a subgraph of G with |V (G)|−|VM |−|F | components,

and every vertex of VM has even degree. Adding |V (G)|−|VM |−|F |−1 edges
of G−VM makes the graph connected. We have used |M |+ |VM |+ |V (G)|−
|VM |−|F |−1=Lµ(G,M) edges in total.

For the converse, Proposition 1.3 and Theorem 6 establish OPT(G,T )≥
LP(G,T ) ≥ Lµ(G,M) for all T ⊆ V (G) with T ∩ VM = ∅. Thus also the
minimum is at least Lµ(G,M).

The construction in the first part of this proof will be repeated in the
first part of the proof of Theorem 7.
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5. Approximation Algorithms

All our approximation algorithms begin by computing a suitable ear-
decomposition:

Lemma 5.1. Let G be a 2-vertex-connected graph, and T ⊆V (G) with |T |
even. Then G has a nice ear-decomposition containing a maximum earmuff
for the eardrum associated with it and T . Such an ear-decomposition can
be computed in O(|V (G)||E(G)|) time.

Proof. Lemma 2.5 provides us with a nice ear-decomposition. Let M be the
eardrum associated with this ear-decomposition and T . Compute a maxi-
mum earmuff (Qf )f∈F (F ⊆M) for M in G (cf. Theorem 4). Let (Pf )f∈F
be the original ears containing the elements of F . Change now the current
ear-decomposition by replacing the ears (Pf )f∈F by (Qf )f∈F . By Propo-
sition 2.6, the new ear-decomposition is nice, and the associated eardrum
remains the same. Moreover, the new ear-decomposition contains a maxi-
mum earmuff for M .

5.1. 3/2-Approximation for T -Tours

Before describing our three approximation algorithms, we first prove a the-
orem for T -tours that will be applied for all the three problems in the case
when there are many pendant ears. “Many” is not the same quantity though
for the three problems.

We have the important inequality Lµ(G,M)≤ LP(G,T )≤ OPT(G,T ), for
all T . For T = ∅ this provides a lower bound for OPT(G) and OPT2EC(G)
as well. Lϕ(G) is also a lower bound for OPT2EC(G) and consequently for
OPT(G), but not for OPT(G,T ) in general. Nevertheless the following will
prove useful also for computing T -tours.

Theorem 7. Let G be a graph and T ⊆V (G) with |T | even, given with a
nice ear-decomposition of G containing a maximum earmuff for the eardrum
M associated with it and T . Then a T -tour of cardinality at most Lµ(G,M)+
1
2Lϕ(G)−π can be constructed in O(|V (G)|3) time, where π is the number
of pendant ears.

Proof. Let VM =
⋃
M be the set of internal vertices of clean ears. Define

VD to be the set of internal vertices of pendant but not clean ears, and
VI = V (G) \ (VD ∪ VM ). Note that G[VI ] is 2-edge-connected. Let ϕM be
the number of clean 2-ears, ϕD the number of even pendant ears that are
not clean, and ϕI =ϕ(G[VI ]) the number of remaining even ears. Note that
ϕ(G)=ϕI +ϕD+ϕM .
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First, let E1 denote the union of the edge sets of the clean ears. Since these
contain a maximum earmuff, (VM ∪VI ,E1) has |VI |−µ(G,M) components.
Note that |E1|= 3

2 |VM |+
1
2ϕM .

Second, we add a set E2 of |VI |−µ(G,M)−1 edges of G[VI ] such that
(VM ∪VI ,E1∪E2) is connected.

Third, we apply Lemma 2.1(b) to all the remaining π−|M | pendant ears.
For each such ear P we add the corresponding edge set F ′. Let E3 denote
the union of these sets. Now by Lemma 2.1, (V (G),E1∪E2∪E3) is connected,
and for each such ear P we added at most 3

2 | in(P )|+ 1
2ϕ(P )−1 edges (since

γ(P )=0), so in total |E3|≤ 3
2 |VD|+

1
2ϕD−(π−|M |).

Finally, we have to correct the parities of the vertices in VI . Let T0 be the
set of vertices v∈VI for which |(E1∪E2∪E3)∩δ(v)| does not have the correct
parity (odd if v∈T and even if v /∈T ). We add a minimum cardinality T0-join
E4 in G[VI ]; recall that this graph is 2-edge-connected. By Proposition 2.2,
|E4|≤ 1

2(|VI |+ϕI−1).
Now we have a T -tour with at most |E1|+ |E2|+ |E3|+ |E4| edges, which

can be bounded as follows by substituting the bounds for each of these sets,
and recalling ϕI +ϕD+ϕM =ϕ(G):

|E1|+ |E2|+ |E3|+ |E4|

≤ 3

2
|VM |+

1

2
ϕM + |VI | − µ(G,M)− 1 +

3

2
|VD|

+
1

2
ϕD − (π − |M |) +

1

2
(|VI |+ ϕI − 1)

=
3

2
|V (G)| − 1 + |M | − µ(G,M) +

1

2
(ϕ(G)− 1)− π

= Lµ(G,M) +
1

2
Lϕ(G)− π.

When the number of pendant ears is large, we will use this theorem for all
the three problems. For the complementary case three different approaches
will be needed for our three approximation algorithms. Our first approxi-
mation algorithm deals with the minimum cardinality of a T -tour:

Theorem 8. There is a 3
2 -approximation algorithm for the minimum T -

tour problem. For any connected graph G and T ⊆ V (G) with |T | even, it
finds a T -tour of cardinality at most 3

2LP(G,T ) in O(|V (G)|3) time.

Proof. We may assume that G is 2-vertex-connected (Proposition 1.4). We
construct a nice ear-decomposition that contains a maximum earmuff for
the eardrum M associated with it and T (using Lemma 5.1). Let π be the
number of pendant ears.
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If π≥ 1
2ϕ(G), we use Theorem 7 to find a T -tour of cardinality at most

Lµ(G,M) +
1

2
Lϕ(G)− π ≤ Lµ(G,M) +

1

2
(|V (G)| − 1),

which is at most 3
2LP(G,T ) according to Theorem 6 and the second inequality

of Proposition 1.3.
If π ≤ 1

2ϕ(G), then we apply Proposition 2.3. Since π2 ≤ π, where π2 is
the number of 2-ears, we get a T -tour of cardinality at most

3

2
(|V (G)| − 1) + π − 1

2
ϕ(G) ≤ 3

2
(|V (G)| − 1).

By Proposition 1.3, this is at most 3
2LP(G,T ), and LP(G,T )≤OPT(G,T ).

The result is tight as Figure 3 shows.

s t

Figure 3. Example showing that the computed T -tour is not necessarily shorter than
3
2

times the optimum. For each k∈N, we have a graph G with 8k+5 vertices and 12k+5
edges. Two vertices are labeled s and t; they form the set T ={s, t}. The figure shows the

case k=3. Note that there is a Hamiltonian s-t-path, and hence
LP(G,T )=OPT(G,T )=8k+4. Also note that ϕ(G)=2 because G is not factor-critical.
Suppose that we choose the ear-decomposition that begins with the circuit of length

8k+4 and then has one pendant 2-ear (in the center). Then π=1= 1
2
ϕ(G), so we have

two choices in our algorithm. If we use Theorem 7, then our algorithm first takes the
2-ear and then adds edges to obtain a spanning tree, e.g., the one with thick edges. Then
there are four vertices (shown as squares) whose degrees have the wrong parity, and we

need another 4k+2 edges to correct the parities. So we end up with a T -tour with
12k+6 edges. If we use Proposition 2.3 instead, we could also end up with 12k+6 edges.

5.2. 7/5-Approximation for the Graph-TSP

Our algorithm for the graph-TSP will first construct a nice ear-decomposi-
tion containing a maximum earmuff, then removes the 1-ears and computes
a tour within each block of the resulting graph. Here we distinguish two
cases. If there are many pendant ears, we get a short tour by Theorem 7.
If there are few pendant ears, we use the following concept of Mömke and
Svensson [24]:
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Definition 5.2 (Definition 3.1 of Mömke and Svensson [24]). Given
a connected graph G, a removable pairing of G is a pair (R,P) of sets such
that

– R⊆E(G);
– for each P ∈P there are three distinct edges e,e′,e′′∈E(G) and a vertex
v∈V (G) with e,e′,e′′∈δ(v) and P ={e,e′}⊆R;

– for any two distinct pairs P,P ′∈P we have P ∩P ′=∅;
– if S⊆R and |S∩P |≤1 for all P ∈P, then (V (G),E(G)\S) is connected.

We will call the elements of P simply pairs.

We need the following very nice lemma and include a variant of the proof:

Theorem 9 (Lemma 3.2 of Mömke and Svensson [24]). Let G be a
2-vertex-connected graph and (R,P) a removable pairing. Then G has a tour
of cardinality at most 4

3 |E(G)|− 2
3 |R|. Moreover, such a tour can be found

in O((|V (G)|+ |P|)3) time.

Proof. An odd join in a graph G is a T -join in G where T is the set of odd
degree vertices of G. For any odd join F in G that intersects each pair P ∈P
in at most one edge, we construct a tour from E(G) by doubling the edges
in F \R and deleting the edges in F ∩R. This tour has |E(G)|+c(F ) edges,
where we define weights c(e) = 1 for e ∈E(G)\R and c(e) =−1 for e ∈R,
and c(F )=

∑
e∈F c(e).

To compute an odd join of weight at most 1
3 |E(G)|− 2

3 |R|, intersecting
each pair at most once, we construct an auxiliary graph G′ as follows. For
each pair P ={{v,w},{v,w′}}∈P we add a vertex vP and an edge {v,vP } of
weight zero, and replace the two edges in P by {vP ,w} and {vP ,w′}, keeping
their weight.

G′ is 2-edge-connected. Hence the vector with all components 1
3 is in the

convex hull {
x ∈ [0, 1]E(G′) : |F | − x(F ) + x(δ(W ) \ F ) ≥ 1

for all W ⊆ V (G′) and F ⊆ δ(W ) with |δ(W ) \ F | odd
}

of incidence vectors of odd joins of G′, and even in the face Q of this polytope
defined by x(δ(vP )) = 1 for all P ∈ P. So Q contains the incidence vector
of an odd join J ′ in G′ of weight at most 1

3c(E(G′)) = 1
3 |E(G)|− 2

3 |R|. By
contracting the zero-weight edges, such a J ′ corresponds to an odd join J in
G intersecting each pair at most once and having weight at most 1

3 |E(G)|−
2
3 |R|. To find such a J ′ and hence such a J , we add a large constant to all
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weights of edges incident to vP for all P ∈ P, and find a minimum weight
odd join in G′ with respect to these modified weights.

We apply this in the following way:

Lemma 5.3. Given a 2-vertex-connected graph G and an ear-decom-
position in which all ears are nontrivial, a tour of cardinality at most
4
3(|V (G)|−1)+ 2

3π can be found in O(|V (G)|3) time, where π is the number
of pendant ears.

Proof. In order to apply Theorem 9, we define a removable pairing. For each
non-pendant ear we define a pair of two edges of the ear that share a vertex
that is an endpoint of another nontrivial ear. For each pendant ear we add
any one of its edges to R. This defines a removable pairing with |R|=2k−π,
where k is the number of ears. Note that |E(G)| = |V (G)|+ k− 1. From
Theorem 9 we get then a tour of cardinality at most 4

3(|V (G)|+k−1)−
2
3(2k−π)= 4

3(|V (G)|−1)+ 2
3π.

Theorem 10. There is a 7
5 -approximation algorithm for the graph-TSP.

For any connected graph G it finds a tour of cardinality at most 7
5LP(G) in

O(|V (G)|3) time.

Proof. We may assume that G is 2-vertex-connected (Proposition 1.4). We
construct a nice ear-decomposition containing a maximum earmuff for the
eardrum M associated with it and T = ∅ (Lemma 5.1). Define Λ(G,M) :=
2
3Lµ(G,M)+ 1

3Lϕ(G). By Corollary 4.1, Theorem 5 and Proposition 1.2 we
have Λ(G,M)≤LP(G)≤OPT(G).

Let G′ be the (2-edge-connected, spanning) subgraph resulting from G
by deleting all 1-ears. Note that ϕ(G′)=ϕ(G), M is also the eardrum asso-
ciated with the (nice) ear-decomposition without the 1-ears and T =∅, and
µ(G′,M) = µ(G,M). Therefore we also have Λ(G′,M) =Λ(G,M), and the
following Claim implies the theorem.

Claim. Given a graphG′ with a nice ear-decomposition without 1-ears, con-
taining a maximum earmuff for the eardrum M associated with it and T =∅,
a tour of cardinality at most 7

5Λ(G′,M) can be constructed in O(|V (G′)|3)
time.

We first prove the Claim in the case that G′ is 2-vertex-connected. We
use our two constructions for a tour.

If π≤ 1
10Λ(G′,M), then we use Lemma 5.3 and |V (G′)|−1≤Λ(G′,M) to

obtain a tour of cardinality at most 4
3Λ(G′,M)+ 2

3π≤
7
5Λ(G′,M).
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If π ≥ 1
10Λ(G′,M), then we apply Theorem 7 to G′, T = ∅ and M : we

obtain a tour of cardinality at most 3
2Λ(G′,M)−π≤ 7

5Λ(G′,M).

The shorter one of the two tours has cardinality at most 7
5Λ(G′,M).

To prove the Claim in the general case, we use induction on |V (G′)|.
Suppose v ∈ V (G′) is a cut-vertex, and G1 and G2 are graphs with G′ =
(V (G1)∪V (G2),E(G1)∪E(G2)) and V (G1)∩V (G2) = {v}. Then the ears
P with in(P ) ⊆ V (Gi) form an ear-decomposition of Gi that contains a
maximum earmuff for the eardrum Mi associated with it and T =∅ (for each
i∈{1,2}). Moreover, |M1|+ |M2|= |M |, µ(G1,M1)+µ(G2,M2) =µ(G′,M),
and |V (G1)|+ |V (G2)|= |V (G′)|+1. Hence

Lµ(G1,M1) + Lµ(G2,M2) = |V (G1)| − 1 + |M1| − µ(G1,M1)

+ |V (G2)| − 1 + |M2| − µ(G2,M2)

= |V (G′)| − 1 + |M | − µ(G′,M) = Lµ(G′,M).

The ear-decompositions of G1 and G2 contain ϕ(G1) and ϕ(G2) even ears,
respectively, and ϕ(G1)+ϕ(G2)=ϕ(G′). Therefore we have

Lϕ(G1) + Lϕ(G2) = |V (G1)|+ ϕ(G1)− 1 + |V (G2)|+ ϕ(G2)− 1

= |V (G′)|+ ϕ(G′)− 1 = Lϕ(G′).

Hence Λ(G1,M1)+Λ(G2,M2)=Λ(G′,M). By the induction hypothesis, a
tour of cardinality at most 7

5Λ(Gi,Mi) can be constructed in Gi in polyno-
mial time (i=1,2). The union of these two tours is a tour in G′ of cardinality
at most 7

5Λ(G1,M1)+ 7
5Λ(G2,M2)= 7

5Λ(G′,M).

This result is tight as Figure 4 shows.

5.3. 4/3-Approximation for 2ECSS

Theorem 11. There is a 4
3 -approximation algorithm for the minimum 2-

edge-connected spanning subgraph problem. For any 2-edge-connected graph
G it finds a 2-edge-connected spanning subgraph with at most 4

3LP(G) edges
in O(|V (G)|3) time.

Proof. We may assume that our graph G is 2-vertex-connected (Propo-
sition 1.4). We construct a nice ear-decomposition containing a maximum
earmuff for the eardrum M associated with it and T =∅ (Lemma 5.1). Let
π denote again the number of pendant ears and π3 the number of (pendant)
3-ears. We have π3≤π.
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Figure 4. Example showing that the computed tour is not necessarily much shorter
than 7

5
times the optimum. For each k∈N, we have a Hamiltonian graph with 10k+1

vertices and 13k+1 edges. The figure shows the case k=3. We have
LP(G)=OPT(G)=10k+1 and ϕ(G)=0. Construct a nice open ear-decomposition,

starting with 2k 5-ears from left to right, each with three vertical edges, and then adding
the k horizontal pendant 3-ears and the 1-ear (the rightmost edge). Let M be the

eardrum associated with this ear-decomposition and T =∅. The 3-ears form a maximum
earmuff. After deleting the 1-ear, the graph remains 2-vertex-connected. We have

Λ(G,M)=10k and π=k= 1
10
Λ(G,M), so we have two choices in our algorithm. If we use

Theorem 7, then our algorithm takes first the 3-ears. Then we could choose the spanning
tree consisting of the 10k black (solid and dashed) edges. The 4k+2 odd degree vertices
of this spanning tree are shown as squares. We then need another 4k edges to make all

degrees even, obtaining a tour of cardinality 14k. If we apply Theorem 9, we could define
the removable set R as the dotted edges (without the 1-ear). We have |R|=5k, and

Theorem 9 provides the bound 4
3
13k− 2

3
5k=14k. (In fact, if we define weights −1 on the

dotted edges and 1 otherwise (cf. the proof of Theorem 9), then the minimum weight of
an odd join in G that contains at most one dotted edge of each ear is k. Therefore,

computing such an odd join does not help here.)

Claim. The number of edges in nontrivial ears is at most 5
4Lϕ(G)+ 1

2π.

Indeed, for any ear P with |E(P )| ≥ 5 we have |E(P )| ≤ 5
4 | in(P )|, for

any 2-ear and 4-ear we have |E(P )| ≤ 5
4 | in(P )|+ 3

4 (with equality for 2-

ears), and for 3-ears we have |E(P )| = 5
4 | in(P )|+ 1

2 . Summing up for all
ears (the sum of 2-ears and 4-ears being at most ϕ(G)), we get at most
5
4(|V (G)|−1)+ 3

4ϕ(G)+ 1
2π3 edges, implying the claim using π3≤π.

We have now two constructions for a 2ECSS, and the better of the two
satisfies the claimed bound:

If π ≤ 1
6LP(G), then we use the Claim and Lϕ(G)≤ LP(G)≤ OPT2EC(G)

(Theorem 5, Proposition 1.2) to obtain a 2ECSS with at most 5
4LP(G)+1

2π≤
4
3LP(G)≤ 4

3OPT2EC(G) edges.

If π ≥ 1
6LP(G), then we apply Theorem 7 to G, T = ∅ and M : using

Theorem 6, Theorem 5 and Proposition 1.2 as before, we obtain a tour, and
hence a 2ECSS, of cardinality at most 3

2LP(G)−π≤ 4
3LP(G)≤ 4

3OPT2EC(G).

We remark that the first case of this proof follows directly from Cheriyan,
Sebő and Szigeti [6]. The result is tight as Figure 5 shows.
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Figure 5. Example showing that the computed 2ECSS is not necessarily much
shorter than 4

3
times the optimum. For each k∈N, we have a Hamiltonian graph with

24k vertices and 44k−2 edges. The figure shows the case k=2. We have
LP(G)=OPT(G)=24k and ϕ(G)=1. Construct a nice ear-decomposition from left to
right, starting with 4k 5-ears (with black and solid grey edges), and finally the 4k−1

pendant 3-ears (with solid black edges), the pendant 2-ear (on the left), and the 1-ears
(dashed grey edges). Then π=4k= 1

6
LP(G), so we have two choices in our algorithm. If

we use the Claim (first case of the proof of Theorem 11), we take all 32k−1 edges of the
8k nontrivial ears. If we apply Theorem 7 (note that the pendant ears constitute a

maximum earmuff), we first take the pendant ears (the 2-ear and all the 3-ears), and then
add edges to obtain a spanning tree, say the one with the 24k−1 black edges. The 8k+2

odd degree vertices are shown as squares. We then need another 8k edges to make all
degrees even, and a possible choice consists of the curved dashed edges. Then the result
is a 2ECSS with 32k−1 edges. In fact, in both cases the computed 2ECSS is minimal.

6. Remarks on Integrality Ratios

For a family P of polyhedra (say P ⊆ RnP for P ∈ P), the integral-
ity ratio of P is the supremum of the ratios min{

∑nP
i=1 cixi : x ∈ P ∩

ZnP }/min{
∑nP

i=1 cixi : x∈P} over all P ∈P and all c∈RnP . In this paper
the objective functions are unit vectors. By the unit integrality ratio of P
we mean the supremum of min{

∑nP
i=1xi : x∈P ∩ZnP }/min{

∑nP
i=1xi : x∈P}

over all P ∈P.
Denote by P (G) and P (G,T ) the polyhedra of feasible solutions of the

linear programs defining LP(G) and LP(G,T ), respectively (see the Introduc-
tion). Note that linear functions can be optimized over these polyhedra in
polynomial time with the ellipsoid method: this follows using optimization
on spanning trees in polynomial time (implying separation on the corre-
sponding polyhedron in polynomial time), and in addition using the max-
flow-min-cut theorem, and the algorithm of Barahona and Conforti [3] for
finding a minimum weight T -even cut for non-negative weight functions in
polynomial time.

Corollary 6.1. For any connected graph G, the integer vectors in P (G)∩
[0,2]E(G) correspond exactly to the 2-edge-connected spanning subgraphs of
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2G. The minimal integer vectors in P (G) correspond exactly to the minimal
2-edge-connected spanning subgraphs of 2G. The unit integrality ratio of
{P (G) : G connected graph} is at most 4

3 .

Proof. The first two statements are obvious, and by Theorem 11 there
always exists a 2ECSS with at most 4

3LP(G) edges.

The integrality ratio of {P (G) : G connected graph} was conjectured by
Carr and Ravi [5] to be 4

3 , and Corollary 6.1 gives some support to this.

Alexander, Boyd and Elliott-Magwood [1] showed that it is at most 3
2 and

at least 6
5 (see the example in Figure 1 of their paper). The same example

with unit weights shows that the unit integrality ratio is at least 9
8 . We know

no better lower bound.

For T -tours it does not seem useful to study the (unit) integrality ratio of
P (G,T ) itself, because in general not all minimal integer vectors in P (G,T )
correspond to T -tours in G, not even in the case T = ∅ (indeed, P (G,∅) =
P (G) and see Corollary 6.1). Therefore we intersect P (2G,T ) with the T -
join polytope Q(2G,T ) of 2G. The T -join polytope of a connected graph
G is

Q(G,T ) =
{
x ∈ RE(G) : 0 ≤ xe ≤ 1 for all e ∈ E(G),

|F | − x(F ) + x(δ(W ) \ F ) ≥ 1

for all W ⊆ V (G) and F ⊆ δ(W ) with |W ∩ T |+ |F | odd
}
.

We get:

Corollary 6.2. For any connected graph G and T ⊆ V (G) with |T | even,
the integer vectors in P (2G,T )∩Q(2G,T ) are exactly the incidence vectors of
T -tours of G. The unit integrality ratio of {P (2G,T )∩Q(2G,T ) : G connected
graph, T ⊆V (G), |T | even} is exactly 3

2 .

Proof. The first statement is obvious, and by Theorem 8 there always exists
a T -tour of cardinality at most 3

2LP(G,T ). This yields the upper bound. For
the lower bound, let n ∈ N and consider a circuit G of length 2n and two
vertices s and t at distance n. The vector with all 4n components equal to 1

2
is in P (2G,{s, t})∩Q(2G,{s, t}), but a minimum {s, t}-tour has 3n edges.

Corollary 6.3. For any connected graph G, the integer vectors in P (2G)∩
Q(2G,∅) are exactly the incidence vectors of tours. The unit integrality ratio
of {P (2G)∩Q(2G,∅) : G connected graph} is at most 7

5 and at least 4
3 .
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Proof. The upper bound follows from Theorem 10.
To prove the lower bound, we consider the standard example: let k ∈N

and define a graph G as the union of three internally vertex-disjoint paths
of length k, all with the same endpoints. Then the vector x∈RE(2G) with
all components 1

2 is in P (2G)∩Q(2G,∅) and has x(E(2G)) = |E(G)|= 3k,
but OPT(G)=4k.

For a connected graph G, let (Ḡ, c̄) again denote the metric closure of

G, and let S(Ḡ) :=
{
x ∈ [0,1]E(Ḡ)∩P (Ḡ) : x(δ(v)) = 2 for all v ∈ V (Ḡ)

}
be

the subtour polytope of Ḡ. Since LP(G)=min
{∑

e∈E(Ḡ) c̄(e)xe : x∈P (Ḡ)
}
≤

min
{∑

e∈E(Ḡ) c̄(e)xe : x ∈ S(Ḡ)
}

, Corollary 6.3 implies an upper bound of
7
5 of the integrality ratio of the subtour polytope restricted to such “graph

metrics” c̄. No better bound than 3
2 (which is due to Wolsey [33]) is known

for general metric weight functions.
For general T -tours we have LP(G,T ) = min

{∑
e∈E(Ḡ) c̄(e)xe : x ∈

P (Ḡ,T )
}

and the ratio 3
2 .3

We conclude with a remark concerning the relation between the 2ECSS
problem and the graph-TSP:

Theorem 12. Let ρ ≥ 1. If there is a ρ-approximation algorithm for the
2ECSS problem, then there is a 2

3(ρ+ 1)-approximation algorithm for the
graph-TSP. If the unit integrality ratio of {P (G) : G connected graph} is ρ,
then the unit integrality ratio of {P (2G)∩Q(2G,∅) : G connected graph} is
at most 2

3(ρ+1).

Proof. Let G be a connected graph, and let G′ be a 2ECSS of 2G.

Claim. G has a tour of cardinality at most 2
3(|E(G′)|+ |V (G)|−1).

We prove the Claim by induction on the number of vertices. If G′ is 2-
vertex-connected, find any ear-decomposition of G′, and define a removable
pairing (R,P) by including one edge of each ear in R and setting P=∅. We
have |R|= |E(G′)|−|V (G′)|+1. By Theorem 9 we get a tour of cardinality
at most 4

3 |E(G′)|− 2
3 |R|=

2
3(|E(G′)|+|V (G′)|−1) as required. If G′ has a cut

3 Added in proof: Very recently, Z. Gao (An LP-based 3
2
-approximation algorithm for

the s-t path graph Traveling Salesman Problem, Operations Research Letters 41 (2013),
615–617) gave a beautiful alternative 3

2
-approximation algorithm for the minimum T -tour

problem for |T | = 2 (s-t-path graph-TSP), with a surprisingly simple proof (but longer
running time, including the solution of an LP).
Note also that for |T | ≤ 2 our lower bound LP(G,T ) is the same as the lower bound of
[2] and of Gao: indeed, the partition constraints of P (G,T ) are then easily implied as the
sum of cut constraints.
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vertex v, we apply the induction hypothesis to two graphs that share only v
and whose union is G′ (as in the proof of Theorem 10). The Claim follows.

The proof is finished easily using the Claim and Proposition 1.2 as follows.
If G′ has at most ρOPT2EC(G) edges, then our tour has cardinality at most
2
3(ρOPT2EC(G)+OPT(G))≤ 2

3(ρ+1)OPT(G). If G′ has at most ρLP(G) edges,

then our tour has cardinality at most 2
3(ρLP(G)+LP(G))= 2

3(ρ+1)LP(G).

This partly strengthens a result of Monma, Munson and Pulleyblank [25]
who gave the bound 4

3ρ instead of 2
3(ρ+ 1); but their result also holds for

the weighted case. We conclude that any ρ-approximate 2ECSS with ρ< 11
10

leads to a tour with less than 7
5OPT(G) edges.
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