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Graphs for which the set of t-joins and t-cuts has "the max-flow-min-eut property", i.e. for 
which the minimal defining system of the t-join polyhedron is totally dual integral, have been 
characterized by Seymour. An extension of this problem is to characterize the (uniquely existing) 
minimal totally dual integral defining system (Schrijver-system) of an arbitrary t-join polyhedron. 
This problem is solved in the present paper. The main idea is to use t-borders, a generalization of 
t-cuts, to obtain an integer minimax formula for the cardinality of a minimum t-join. (A t-border 
is the set of edges joining different classes of a partition of the vertex set into t-odd sets.) It turns 
out that the (uniquely existing) "strongest minimax theorem" involves just this notion. 

Introduction 

A system of  inequalities Ax~_b is called totally dual integral (TDI) if for 
any w 6 Z  n the linear programming problem max {wx: ~4x~_b} has an all integer 
dual optimum solution: provided the optimum exists (Z is the set of integers, A is 
an m •  rational matrix and b is an m dimensional rational vector). 

A. Schrijver has proved in [23] that every full dimensional rational polyhedron 
has a unique minimal TDI defining system with integer left hand sides, which was 
called in [4] the Schriioer-system of the polyhedron. The Schrijver-system can be 
interpreted to yield the "strongest minimax theorem" through the duality theorem 
of linear programming. In [22] Schrijver proved that  the "first Chvfital closure" 
of  polyhedra arises by rounding the right hand sides of  its Schrijver-system. The 
Schrijver-system also shows whether a polyhedron is "integral" or not: it is integral 
if and only if  its Schrijver-system has integer right hand sides. These results (eft [25]) 
show that TDI-ness is not just one of  the tools for proving integrality of polyhedra, 
but a notion that lies in the heart of integer programming. The intriguing problem 
of determining the Schrijver-systems of  some known polyhedra arises. 

For  matching polyhedra this problem is settled by the result of Cunningham 
and Marsh ([5], see also [21], [3]) which says that the minimal defining system of  
matching polyhedra is TDI, i.e. coincides with the Schrijver-system. The most well- 
known non-TDI classes of polyhedra are perhaps the generalizations of matching 
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polyhedra. Cook and Pulleyblank ([20], [21], [1], [2], [3], [4])determine the Schrijver- 
system of b-matching polyhedra. In the present paper we determine the Schrijver- 
system of another generalization of matching polyhedra: that of t-join polyhedra. 

Let G be an undirected graph and V(G), E(G) its vertex-set and edge-set respec- 
tively. Let t: V(G)--,Z. A t-join is a set FcE(G) with dr(x)=t(x) mod 2VxEV(G), 
where dF(x) is the number of edges in F adjacent to x. If t=dg there is a one to 
one correspondance between t-joins and "postman tours". 

t-joins were first studied in [19] and [7]. Edmonds and Johnson's results imply 
the defining system of the dominant (convex hull plus the nonnegative orthant) 
of the characteristic vectors of t-joins (cf. [7], [24], [18]). Such a polyhedron is called 
t-joinpolyhedron. Total dual halfintegrality of t-join polyhedra follows from Edmonds 
and Johnson's result on generalized matching polyhedra [6]. A first proof appeared 
in [16], and in [32] it was proved that an integral dual solution exists provided the 
total weight of any circuit is even. Seymour [31] characterized those graphs for 
which the minimal polyhedral defining system is TDI. For a summary of results 
see e.g. Lov~isz and Plummer [18], and for improved algorithmic proofs of. Koraeh 
[14]. A structure theorem sharpening these results with new proof and algorithm 
can be found in [9] and [26], [27], [28]. 

Since the t-join polyhedron is full dimensional it has a Sehrijver-system. 
The first question that arises is to characterize those (G, t) pairs for which 

the minimal defining system of the t-join polyhedron is TDI. Since the TDI-ness 
of the minimal defining system of a t-join polyhedron (ef. Section 2) is equivalent 
to the max-flow-rain-cut property of the clutters of  t-joins and t-cuts (i.e. to the 
existence of an integer maximum packing of t-cuts for an arbitrary weight function), 
this is the well-known graphic case of  Seymour's celebrated characterization [31]. 

In this paper we are solving the more general question of characterizing the 
inequalities in the Schrijver-system of  the t-join polyhedron of G, for arbitrary 
(G, t)-pairs. We do not use Seymour's theorem in our proof, and do not even know 
any simpler way of proving the main result using Seymour's theorem. On the other 
hand, in Section 3, we deduce a characterization of the max-flow-min-cut property, 
and point out its connection to Seymour's theorem. 

Since the t-join polyhedron is full dimensional it has a Schrijver-system. 
In order to obtain the Schrijver-system of a polyhedron first a strong "integer 

minimax theorem" is needed which is conjectured to yield a Schrijver-system. Then 
the minimality of the system has to be proved. 

Since for t-joins the known minimax theorems may have half-integer values 
on the right hand side, we will first have to find an appropriate integer mfllimax 
theorem to start with. Section 1 is devoted to this task. Then, in Section 2 we sharpen 
this minimax theorem in order to get the strongest possible TDI defining system. 
Finally, in Section 3 we prove that the TDI description found in Section 2 is minimal, 
i.e. it is the Schrijver-system, and point out the connection of the results to Seymour's 
characterization of max-flow-rain-cut binary clutters in the graphic case. 

1. An integer minimax theorem 

The key-notion of this paper is the notion of t-borders defined below. 
Let t: V(G)~Z. We shall always suppose t(V(G))-Omod2, since it is 

necessary (and sutficient) for the existence of t-joins. (If XcV(G) then t(X):= 
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:=Z{t (x) :  xEx}). If XcV(G),  t (X)= l  mod 2 then X is called a t-odd set and 
the coboundary 6(X):={xyEE(G): yCX, xEX} of X is called a t-cut. Clearly, if 
di(X) is a t-cut and Fis  a t-join then [FNfi(X)I->I. 

If # is a partition of V(G) and t ( P ) = l  mod 2 for every P E ~  then it will 
be called a t-partition and cS(#):=U{fi(P): PE~} will be called a t-border (i.e. 
~(#)  is the set of edges that go between different classes of # ;  t cuts are those t- 
borders c5(~) for which I~1 =2). Clearly, if # is a t-partition then I#1 is even, and 
for every t-join F: 

(1.1) IFN~(~)I-~ 121.- 

Let z(G, t )=min  {[FI: F is a t-join} and 

fl(G, t) = max ---~-. ~ is a t-partition ( i= 1 . . . . .  k), and 

(~,) N ~ ( ~ )  = 0 (i ~ j)} 

~ l ~ t l  will be called the value of {~1 . . . .  , ~k}- (1.1) immediately implies z(G, t)~_ 
l=x 2 
--~fl(G, t). The main result of this section is: 

Theorem 1.1. For every (C, t) pair (t(V(G))-0 mod 2) 

�9 (c, t) =/~(c,  t). 

In the proof we shall need the following notation. For x, yEV(G), t ~'y 
denotes the functions defined by 

t(v) if vr 
t~'Y(v):= { t (v)+ 1 if vE{x,y}. 

The following statements are easy to see: If F~ is a h-join and F~ is a t~-join then 
F~/xF~ is a h+t2-join. Specially, the symmetric difference of a minimum t-join 
and a minimum tx, Y-join or of a minimum t~.~-join and a minimum t~'Y-join is the 
union of an (x, y) path and disjoint circuits, where the circuits have the same number 
of edges in the two joins. It follows, that for an arbitrary minimum t~'Y-join F x'y 
there exists an (x, y) path P (i.e. a simple path between x and y) such that F~'YAP 
is a minimum t-join. These facts will be often used in the proofs. 

Proof. Let a, bEV(G) satisfy z(G,t~'~)=min {z(G, t~'0: x, yEV(G)}. Let B be 
the vertex set of a component of the graph induced by the set 

{xEr:(a): z(a, t ~ = ~(a, t~ 

Let :={{I:(G)~B}}U{{x}: xEB}. We shall prove (I) and (II) below: 

(I) For every PE~ and every minimum t-join F: IFN~(P)I=I .  

Clearly, (I) implies 

t(P) = l m o d 2 V P E :  i.e. : isa t-border, 
(I.2) 

and 16(~)NFI = [-~[ for every minimum t-join E 
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Contracting an edge xyEE(G) in (G, t) means identifying them and defining 
t(vxy):=t(x)+t(y) where vxy is the new vertex arising with the identification. 
Contracting a set of edges means contracting all edges of the set. 

(II) For the graph (G*, t*) arising after the contraction of 6(~):  

�9 (G*, t*) t) I:1 
2 " 

Using (I) and (II) our theorem is implied as follows: We have already seen 
z(G, t)~-fl(G, t). We prove now by induction on [V(G)I that there exists pairwise 
disjoint t-borders 6 (~i) (i= 1 . . . .  , k) such tha t  

"c(G, t) _~ k 
,=i 2 " 

Applying the induction hypothesis for (G*, t*) we get pairwise disjoint t*-borders 
6(~1) . . . .  ,6(~k*) in G* with 

k* 
0.3) t*) 2 I ,1 

/=I 2 

Let k : = k * + l  and t~k:=~. (I) implies that 8(~k) is a t-border in G (cf. (1.2))and 
6(~,) (i= 1, ..., k - 1 )  are also t-borders in G. Comparing (II) and (1.3) weget that 

<=  1:,1 </3(a,t), 
i = 1  2 - -  

and ~k is obviously disjoint from ~'t (i= 1, ..., k-- 1) as it was to be proved. 
In order to prove (I) we need Claim I and Claim 2" 

Claim 1. Suppose blbzEE(G) bx, bgEB, F, is a minimum t~ (i=1,2,) and 
P c F I A F  2 is a (bl, b~.) path. Then V(P)cB,  and FxzxP is a minimum t~,b,-join. 

Proof. Since [Fd=IF21, the circuits of FaAF2 and P have the same number of 
edges in /71 and F2, and this implies already that FIAP is a minimum t*,b.-join. 
Let C=PUblbv C is a circuit and [C~,Fd=ICNFd+I. 

Let now x6 V(P) be arbitrary. The above equality implies that for one of 
the (bl, x) paths on C, denote it by C(bl, x), IC(bl, x)~Fll~-lC(bl, x)NFI[ holds. 
Thus IFaAC(bx, x)[ ~lFd='c(G, :'b). FxAC(b,x) is a :'~'-join. By the mini- 
Inality of z(G, t~ equality holds here, i.e. z(G, t~ :'~) forevery x6V(P) 
thatis  V(P)cB.  1 

Claim 2. I f  xEB is arbitrary, and F x is a minimum t*:-join then FXAr(x)=O 
and F~O6(B)=O. 

Proof. Suppose indirectly that xyCFXO6(x). Then F ~ x y  is a ta'Y-join in con- 
tradiction with the minimality of IF~I---z(G, t*'b). If, on the other hand ceflE F"fqS(B) 
(ceCB, fl~B) then let Q be an (x, fl) path V(Q)cB. We prove that for every vertex 
q~V(Q), there exists a minimum t~ F q with cefl~F ~. Applying this for 
q=fl we get a minimum :'#-join F# with cefl6F#, which is a contradiction, since 
F~'N~fl is a :, '-join, IF'I=IF#I-I=z(G, t~ contradicting the minimality 
of z(G, t~ 
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To prove the above statement we use induction on IQ(x, q)[, (Q(x, q) is the 
sequence of  Q between x and q). If  q=x we have it by assumption. Suppose we 
know the statement for qx~ V(Q) and let us prove if for its neighbor q2~ V(Q). 
Let F~ ( i=1,  2) be minimum t",~, joins. Applying Claim 1 we get a (qz, q~) path 
PcF~AF~,V(P)cB and F~AP is a minimum to,q,-join. V(P)cB  implies 

We now prove (I). Let F be a minimum t-join, xEB be arbitrary and let 
F=FxAPwhere F ~ is a minimum t~ and P is an (a, x) path. Since dex(x)=O 
by Claim 2 and dp(x)= 1, we have de (x)=  1. This proves ( I ) fo r  {x}~# (xEB). 
In order to prove (I) we still have to prove IFO6(B)I= I. Let p be the first vertex 
of ,P  in B, starting from a. We show now, that F&P(a,p) is a minimum ta'P-join. 
This will finish the proof of  (I), since then by Claim 2 we have [FA P(a,  p)] (3 6 (B) = 0. 
Suppose indirectly, that [F/,P(a,p)I>IFPl where F p is a minimum t'.P-join. 
By Claim 2 neither F p nor F ~ intersect 6(B), and consequently any (p,x) 
path Q c P / x F  x is entirely in B, whence it is disjoint from P(a,p). Now it is 
straightforward to check that F"zx(QUP(a,p)) is a t-join and by the indirect 
assumption its cardinality is strictly less than [FI. This contradiction shows that 
(I) is true. 

In order to prove (II) we need the following fact: 

Claim 3. The graph G ( B ) induced by B is factorcritical (i.e. G ( B )-- x has aperfeet 
matching for every xE B). 

Proof. Let x6B be arbitrary, and FX=FAP where F is a minimum t-join F x is 
a mifiimum tx-join and P is an (a,x) path. By ( I )we  have de(b)=l for all b~B, 
and it follows that dvx(b)=l for b~B, b#x.  By Claim 2 de~(x)=O, and 
F~N6(B)=O. Thus F ~ matches the vertices of  B - x .  II 

Let now bEB and let F b be a minimum tr176 Denote by (Fb) * the 
edge-set that arises from F b after the contraction of tS(#). We first show that (Fb) * 
is a minimum (ta'b)*-join of G*, where (G*, (/a.b),) arises by contracting 6 (~ )  
in (G, t a'b). Suppose indirectly that there is a circuit C * c  G* such that I(Fb) * ~, C*[ < 
<(Fb)  *. C* becomes in G an (x,y)-path x, y6F(B), (F(B) denotes the set of  
neighbors of  B.) Let yb'EE(G), b'~B, and let F v be a perfect matching of G(B)--b', 
which exists by Claim 3. 

Clearly, [(Fb)*/xC*]LJ{yb'}UFb'cE(G) is a r"X-join of  G and has cardi- 
nality strictly smaller than (Fb) * + 1 + ( I B I -  1)/2, i.e. at most (Fb) * +(IBI--  1)/2= 
=z(G, t~'b), contradicting xCB. Thus (Fb) * is a minimum (t~ 

N o w  let P*cE(G*) be an (a, b*) path for which (Fb) * A P *  is a minimum 
t*-join, where b* is the new vertex that arises after contracting 6 ( P ) = E ( G ( B ) )  U~ (B). 
P* becomes in G an (a, z) path zs Let zb'6E(G), b"6B, and let F b" be a 
maximum matching of G(B)--b". [(Fb)*AP*]U {zb"}DFb'cE(G) is a t-join, and 
has cardinality z(G*, t * ) + l  +(lBl-l)/2=z(G*, t*)+l~l /2 .  Thus z(G, t)~_ 
~_~(G*, t* )+ l~[ /2  whence (II) and Theorem 1.1 are proved. 1 

Remark. Theorem 1.I is a straightforward consequence of  [26, Theorem 3.1, 4.4 or 
5.8]. An algorithmic proof  of  these theorems is given in [27]. Since the presentation 
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of this theorem and the reduction to it are quite lengthy to describe precisely we 
have chosen to use the method of [27] instead. The above proof too can straight- 
forwardly be turned to an algorithm that determines a minimum t-join and a 
maximum packing of t-borders. The same method has been used in [29] to prove 
Seymour's theorem shortly. 

2. Sharpening the minimax theorem 

in this section we show that there exists a packing of t-borders with value 
fl(G, t) with t-borders having special properties. 

Let ~ be a t-partition. We shall say that ~ is a reduced t-partition and 8(~) 
is a reduced t-border if (2.1) and (2.2) are satisfied: 

(2.1) For every P E ~  the graph induced by P is connected. 

(2.2) Contracting every edge that has both endpoints in tke same P E ~  the resulting 
graph G* is bicriticaL 
A graph is called bicritical if deleting any set of two different vertices the 

resulting graph has a perfect matching. Note that in light of (2.1) the contraction 
in (2.2) just means "shrinking" every PE ~.  The result of the present section is that 
there exists always a/~(G, t) element packing of reduced t-borders. In order to obtain 
this result, our main tool will be a powerful decomposition method of Lov~isz and 
Plummer (cf. [15], [17], [18]). 

Let 
k 

max I~1. fl(G,t) = { ~= --~--. ~ is a reduced t-partition ( i =  1, . . . ,k)  and 

a(~,) n ~(~,) = ~ (i # j)}. 

The result we shall prove can be written in the form /~(G, t)=/~(G, t), i.e. combin- 
ing it with Theorem 1.1 : 

Theorem 2.1. "c(G, t)=/~(G, t). 

Proof. We shall suppose that G is connected (otherwise we apply the theorem for 
every component). We shall also suppose that (2.3) holds: 

(2.3) Every edge of G is contained in a minimum t-join. 

(2.3) can be supposed without loss of generality, for if it does not hold we 
contract edges not contained in any minimum t-join (one by one), until (2.3) holds: 

does not change, and obviously disjoint reduced t-borders of the resulting graph 
correspond to disjoint reduced t-borders of G. 

Let now ~1, ..., ~k be t-patitions that satisfy 

(2.4) 6(~i)NtS(~ s) # 0, ~ I~,I = t(G,t).  
t=1 2 

(By Theorem 2.1 this choice can be made.) Note that (2.4) implies 

(2.5) If PE#, (iE{1 . . . .  ,k}) and F is  a minimum t-join: IFOa(/')I = 1. 
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First we prove that ~l (i=1 . . . .  ,k)  satisfies (2.1) (provided (2.3) holds). 
Suppose indirectly that say the graph induced by some PE~x has at least two com- 
ponents. Let V1 and V~ be the vertex set of two of them. Clearly, rS(V~)c6(P), 
6(V2)c~(P) and 6(V1)N6(V2)=O. Both t(VO and t(V,) cannot be odd, because 
then for an arbitrary t-join: [FN3(V~)[=>I, IFN3(Vz)]=>I, whence IFNcS(P)I~_2 
contradicting (2.5). So, say t(V1) is even and therefore for any t-join F, IFN6(V1)I 
is even. Let eC6(V~) be arbitrary and let F be a minimum t-join, e~F. (By (2.3) 
such a t-join exists.) We have now that FN6(V1) is nonempty and has even car- 
dinality, whence IFN6(P)I~=IFN6(Vx)I>=2, again contradicting (2.5). Thus (2.1) 
holds for ~i  (i= 1, ..., k). 

Consider now the t-borders ~1 . . . .  , ~'k which satisfy (2.4) and k is maximum 
under this condition. We prove that for these t-borders (2.2) holds as well. Con- 
sider e.g. ~'x and let H be the graph that arises after shrinking its classes. By (2.5), 
for every minimum t-join F, FN6(~O becomes a perfect matching of H after the 
shrinking. Suppose indirectly, that H is not bicritical, i.e. there exists x, yEV(H): 
H -  {x, y} has no perfect matching. By Tutte's theorem this means that there exists 
an XcV(H)~{x ,y}  such that H - ( X U  {x, y}) has more than [Sl odd compo- 
nents. Let R=XU {x, y}. Since IV(H)[ is even, the number r of odd components 
of H--R has the same parity as ]R[ or IX[. Thus r>=lX[ + 2 = R .  Since/-/has a perfect 
matching, r=lRI. H - R  has no even component, since by (2.3) an edge in the 
coboundary of such a component would be contained in some perfect matching (by 
(2.3)), although every perfect matching must match R to the odd components of 
1-I-R. For the same reason, R must be independent. Thus we have: 

(2.6) IRI ~2, R is independent and H--R has IRI components, all fo them odd. 

Let (71 . . . . .  C, be the components of G - R ,  and ~J':={{x}: xEC~}U 
U{{V(H)\V(Cj)}} ( j = l  ..... ri=lRI). Recall that the vertices o f 'H  correspond 
to t-odd sets of G. Since [V(H)~V(Cj)[ is odd ( j = l  . . . .  , r) the partitions ~ j  of 
I/(G) defined in the natural way from the partitions ~ ( j = l ,  . . . , r)  have t-odd 
classes. Thus 6(~j) ( j = l ,  .... r) are t-borders. Clearly, 6 (~ ' )N3(~J ' )=0  (i~j), 

z(H) = 

0 (5 ( ~ )  (since R is independent) and ~ I~1 = ~! j~" (ICjI + 1) = ~IV(H)! 
.1=1 l=x 2 = 2 

Hence ~5(..~)n3(.~.~)=0 (i#j), 

�9 s r = U 3(Pf) and I I~1 

Thus, the set of vpaaitions { ~ ;  . . . . .  ~ } U { ~  . . . . .  ~'k} satisfies (2.4) and has 
k+r-1  >k classes. This contradicts the choice of k whence shows that H is bi- 
critical. [ 

Now we extend Theorem 2.1 to the weighted case. Let w: E(G)-*Z+ (Z+ is 
the set of nonnegative integers), and x(G, t, w):=min {w(F): F is a t-join}. We 
shall say that {~(#~), ..., ~5(~)} is a w-packing of t-borders if every eEE(G) is 
contained in at most w(e) of its elements. Eg. pairwise disjoint t-borders make up 



110 A. S~BO 

a /-packing where 1 is the all 1 function on E(G). The value of this w-packing is 
1 .  

~ .  Let ]](G, t, w) denote the maximum value of a w-packing of reduced 
l = l  

t-borders. 

Theorem2.2. For an arbitrary graph G, and functions t: V(G)-*Z, (t(V(G))=-O 
mod 2) and w: E(G)--,Z+ we have: 

( c ,  t, w) = f l (c ,  t, w). 

Proof. Replace each edge eEE(G) by a path of (edge-)cardinality w(e) and define 
t on the new vertices to be 0. Denote the result by (G', t'). Clearly, T(G, t, w)= 
=r(G' ,  t ') and fl(G, t, w)=fl(G', t'). Applying Theorem 2.1 to (G', t') we get our 
theorem. I 

Theorem 2.2 immediately implies: 

Theorem 2.3. The system of inequalities 

(A) -> for every reduced t-partition ~ of V(G). 
- T -  

(/3) x(e)~_O for every eEE(G) except if G--e has (two) t-odd components. 
is a TDI defining system of the t-join polyhedron of the graph G. 

Note that every inequality in (A) is a half-integer sum of inequalities of the form 

(C) x(cS(A)):>l, ,4 for every AcV(G)  for which .4 is t-odd and .4 induces a 
connected graph. 

Thus the minimal defining system (B), (C) of t-join Polyhedra and its half 
total dual integrality follows (cf. [6], [7], [16]). If (B) and (C) constitute a TDI system 
of inequalities, then (G, t) is said to have the max-flow-rain-cut property .(of. 
Seymour [32]). This is equivalent to saying that for an arbitrary weight function 
there exists a "maximum w-packing" of t-cuts which has the same cardinality as 
the minimum t-joins. From Theorem 2.3 we get immediately that for (G, t) to 
have the max-flow-rain-cut property, it is sufficient not to contain any reduced 
t-border ~ with I~l=>4. Theorem 3.1 below trivially implies that this condition 
is necessary as well (cf. Theorem 3.3 later). 

3. The Sehri|ver-system 

In this Section we prove the final result of the paper: 

Theorem 3.1. The inequalities (A) and (B) constitute the Schrijver-system of the t-join 
polyhedron of the graph G. 

Remark. In light of Theorem 2.3 we only have to prove: 

(3.1) Every inequality in (A) and (B) must be present in any TDI defining system 
of the t-join polyhedron of G. 

W. Cook [3] pointed out what are the statements to be proved in order to 
check a claim of the type of (3.1) for polyhedra which are the convex hulls of charac- 
teristic vectors of independence systems. ( ~  is an independence system if F1E~" 
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F2cFx implies F2E~.) His framework has been used for matching and b-matching 
polyhedra ([3], [4]). It can also be used for t-join polyhedra, for a t-join polyhedron 
is the convex hull of the characteristic vectors of edge-sets containing t-joins, which 
edge-sets make up a "coindependence system". Below (in "Proof of Theorem 3.1"), 
we are making use of Cook's method even without explicitly using his notions and 
Lemma. 

This method reduces the polyhedral question to questions about bicritical 
graphs. In the proof of some properties of bicritical graphs we shall repeatedly use 
the "brick decomposition" method of Lov~isz and Plummer (cf. [15], [17], [18], [8]), 
in order to reduce the statements to 3-connected bicritical graphs. Hence the fol- 
lowing deep result of [8] on 3-connected bicritical graphs will play a crucial role: 

Lemma 1. I f  G is a 3-connected bicritical graph then it does not contain a nontrivial 
tight cut. 

. (G is 3-connected if for every x, yE V(GO, G-- {x, y} is connected. 
J(X) ( X c  V(G)) is called a tight cut if every matching of G intersects 6(X) in exactly 
1 edge. If IXI = 1 then the tight cut is called trivial, otherwise nontrivial.) For a proof 
of Lemma 1 we refer to [8]. For the generalization of this statement to the weighted 
case with a new proof cf. [30]. 

If G is a connected graph and {x,y}cV(G) is a cutset, then there exist 
connected graphs G1, G~ with 

(3.2) V(G1) (] V(G2) = {x, y}, E(GI) U E(G2) = E(G). 

If moreover G is bicritical, then it is straightforward to see (cf. [18]) that 

(3.3) 6i:=GtO{xy} are bicritical and IV(G31=IV(G31~=4 (i=1,2). Moreover, 
if M t is an arbitrary perfect matching of G1 and M2 is an arbitrary perfect 
matching of G~ and xy is contained is exactly 1 of M1 and M~ then 
(Mt UM2)'~{xy} is a perfect matching of G, and every perfect matching of G 
arises in this way. 

(3.3) and the following lemma play a technical role in reducing Theorem 3.1 
to Lemma 1. We shall say that XcV(G)  separates xEV(G) and yEV(G) if xEX 
and y~ X or yCX and xC X. 

Lemma 2. Suppose that G is bicriticaland {x,y}cV(G) is a cutset. Let G,,G2 
be as in 0.2), and let 6(X) (XcV(G)) be a tight cut of  G. Then exactly one of  the 
following possibilities holds. 
a) X separates x and y and [XNV(G~)[ (i=1, 2) are both odd. 
b) X does not separate x and y. Then i f  x, yCX: X c V ( G t ) ~ { x , y } ,  or 

X~V(G~)~{x,y},  andi f  x ,y~X: X~V(Ga) or XDV(G~). 

Proof. Note that IX[ is odd, for 6(X) is tight. Suppose first x, yCX and suppose 
indirectly Xf~V(Gx)~O and XNV(G2)#O. One of IXNV(G~)I (i=1, 2) is even, 
say IXNV(Ga)I. Clearly, O~6(XNV(G,))c6(X).  (6(X)=6(XfqV(Ga))U 
U6(XMV(G2))). Since G is bicritical e~6(XNV(G~)) is contained in a perfect 
matching, which perfect matching must contain another edge of 6(XNV(Ga)). 
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This contradicts the tightness of fi(X). Thus X c  v (a l )~{x ,  y} or X c  V(G2)~{x, y}. 
If x, yEX then x, y~ V(G)~X and applying the just proved statement for V(G)~X 
we get the desired result claimed in b. 

Suppose now that xEX and y e X  and suppose indirectly that [XNV(Gx) [ 
and [XNV(G~)[ are even. Let 6i=G~U{xy} (i=1, 2). For quantities and sets in 
G~ we shall write subscript G~, (eg. r (Xc  V(61)) means the coboundary of 
X in 6x). Since fi(X) is a tight cut, every perfect matching M with MN 
N 6a, (XN V (G1)) # 0 must contain exactly 2 edges in 66, (X G V (Gx)) one of which 
is xy.We shall prove below that if G~ is bicritical, then this is not possible. 

If H is a graph which has a perfect matching, X c  V(H), IX[ is even, and 
eEl(X) then (3(X), e) will be called a tight pair if every perfect matching M with 
M N ~ ( X ) r  intersects ~(X) in exactly 2 edges one of which is e. 

Claim 1. Let A cV(H) ,  eCcS(A), e=ab, aEA, b~A. The following statements are 
equivalent: 

(i) (6(A, e), is a tight pair. 
(ii) ~(AXN{a}) is a tight cut and fi(A)N3(a)-- {e}. 
(iii) For every perfect matching M of H: [MNr <= 1. 

(i)=(iii), (iii)=~(ii) and (ii)=~(i) are all immediate. Above we have reduced 
the proof of Lemma 2 to the following claim: 

Claim 2. In a bieritical graph H, [V(H)I-_>4, there is no tight pair. 

To prove Claim 2 we use induction on [V(/-/)I. Suppose indirectly that (fi(A), e) 
is a tight pair, e=ab, aEA, beA. H is not 3-connected, for by Claim 1 (ii) ~5(A~a) 
is a strict cut, and if H was 3-connected we would have by Lemma 1 [A~a[ = 1. 
Thus A = {a, c} for some eE F(H) would hold. By the second part of (ii) the only 
neighbors of a can be b and c. So a would be an isolated vertex in H-- {b, e} con- 
tradicting the 3-connectedness (and bicriticality) of H. Thus there exists a cutset 
{x, y} (x, y~V(H)) in H. Let Gx and C,1, Gl and Gs be as in (3.2), (3.3). Since 

e ~ ( A ) =  U ~5(ANV(G3), eE~(ANV(GD) say. 

Case 1. A does not separate x and y, say x, yeA. (Fig. 1.) 

Fig. 1 

If ANV(Gj) ( j = l , 2 )  are odd, then a matching containing e '#e ,  e'E 
E6a,(AOV(G1)) contradicts the tightness of (6(A),e). So, suppose IAnV(a,) l  
( j - : l ,  2) are even. In this case we have from the induction hypothesis that 
(6a,(A N V(Ga), e) is not a tight pair, and it follows that (6(A), e) is not a tight pair 
either. 
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Case 2. A separates x and y, say xrA, y~A. (Fig. 2.) 

Fig. 2 

Then IANV(G1)I and IAAV(G2)I have different parity. If IAAV(G~)I 
is even then we get from the induction hypothesis, that (rcl(ANV(GO), e) is not 
strict, and if IANV(G~)I is even we get that (6c~(ANV(G2)),xy) is not strict. 
In the first case we get by Claim 1 Off) a perfect matching MxcE(Gx): 
34"1 n re, (An V(G1))\e => 2 and in the second case a perfect matching Ms c E(Gz): 
M Ar ,(A n v(Gp)\{xy}[ ~_2. Extending/14"1 and M~ resp. to a perfect matching 

of G (cf. (3.3)) we get a perfect matching M of G: IMNf(A)\eI~_2, a contradic- 
tion. Thus Claim 2 and Lemma 2 are proved. 1 

Proof of Theorem 3.1. For every inequality in (A) and (B) we shall define a weight 
function w on the edges of G in such a way that this specified inequality will be needed 
in order to get an integer optimum for the dual of 

max {wx: x satisfies (A) and (B)}. 

Suppose that fEE(G) is such that x(f)>=O is in (B). Let w(e):=l if e = f a n d  
w(e):=0 otherwise. Since G - f  has a t-join, "c(G, t, w)=0. But then any optimal 
dual solution must use the dual variable corresponding to x(f)_->.0. 

Suppose now that ~ is a reduced t-border (i.e. x(6(~))>=1~1/2 is in (A)). 
Let now w(e)=l  if eEr(~)  and w(e)=0 otherwise. We can suppose without 
loss of generality that ~={{x}, xEV(G)} and thus 6(~)=E(G), G is bicritical, 
and t is the all 1 function (otherwise we shrink the classes of ~). Clearly, 
z(G, t, w)=[V(G)I/2. Since every e~6(t~) is contained in an optimal t-join (i.e. 
matching), by complementary slackness it follows that the positive dual variables 
of any integer optimal dual solution correspond to inequalities in (A), that is they 
determine a set of t-borders 6 (~1) . . . . .  6 (t~) such that 

I~'~1 V(6') (3.4) E(G)=a(~0U...U~(~) ~(~,)n~(~)=0 (~# j ) ,Z- -T-=  2 

All we have to prove is that k =  1 in (3.4). 
We proceed by induction on Iv(G)I. If indirectly k~_2 then there exists 

an i and P E ~  suck that [PI=>2. 6(P) is Obviously strict (by complementary 
slackness), thus, by Lemma 1 G cannot be 3-connected. Let {x, y} be a cutset, and 
let G~, Gs, G~, G2 be as in (3.2), (3.3). I f ~  is a partition of V(G) define the partition 
~NG~ on V(Gt) as follows: 

n G,:= {e n v(G,) o: (i  = 1, 2) .  
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Furhermore let and aC=={iE{1 . . . .  ,k}: 
#ffqG~#{V(G2)}} and let s=loC, Oa~,[. By Lemma 2 ~ifqG, and ~ifqG2 (i= 
=1 . . . . .  k) are t-borders of Gx and G2 resp., and iCocxf~.r = if and only if x and y 
are in different classes of 8 ,  (see Figure 3). 

Fig. 3 
Thus, 

(3.5) z~ [ga, CI GI] 
iE.~ t 2 iCa,~ 2 i=,  

We prove that s = l .  s=>l, for s is the number o f ~ : s  in which x and y are 
in different classes, and if they were in the same class in every ~ (i=1 . . . .  , k), then 

z(G-{x,y},t,w)~ ~ W,I =,(G,t,w) 
- -  i = 1  2 

would hold, since then St would determine a t-partition of V(G)- {x, y} (i= 1 . . . . .  k). 
But this is a contradiction, because z(G-- {x, y}, t, w)=z(G, t, w)-- 1. In order to 
prove s ~ l  consider the following weighting on E(G~) (i=1, 2). The weight #(e) 
of every edge is 1 except for ~(xy):=s. Since Gt ( i=1,2)  are bicritical, they 
have a perfect matching not containing xy, and thus z(Gi, t, #)=IV(G~)I/2. Con- 

aS < ~ ,  Z l & n G d  < IV(G2)I 
i~.q 2 - 2 ~EJ', 2 2 

Adding the two inequalities in (3.6) we have: 

(3.7) Z l : ,nsd l&na~l  IV(G)I 
~a, 1 2 +- ~ '  ' _~ + 1. ~a,, 2 2 

Comparing (3.5) and (3.7) we get that s=  1 and equality holds everywhere 
in (3.5), (3.6) and (3.7). This means that (3.4) is satisfied for G1 and G~, whence by 
the induction hypothesis I~[=[or This implies k = l  as it was 
claimed. | 

sequently, by (the trivial part of) Theorem 1.1 : 

(3.6) 1~', n Gd IV(G0[ 
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Note that Theorem 3.1 provides a polynomial algorithm for deciding whether 
a given inequality is in the minimal TDI defining system for the t-join polyhedron of  
a given graph. (The properties in the definition of (A) and (B) can be checked in 
polynomial time.) This problem is NP-complete in general, say for "solvable" 
classes of polyhedra (in the sense of [13], as it was recently proved by 1~. Tardos [33]. 
It is not difficult to combine the results of the present paper with those of [26] to 
get an integer primal and dual solution of linear programming problems defined 
by (A), (B) (cf. [30]). 

Also note that by [11] this system is "locally strongly unimodular" as well. 
Finally let us relate the Schrijver system (A), (B) to binary clutters with the 

max-flow-rain-cut property. (G, t) is said to have the max-flow-rain-cut property 
if the system of inequalities (B), (C) is TDI (cf. [31]). Noting that the only bicritical 
graph on 4 vertices is K,, Seymour's characterization [31] of (G, t) pairs with the 
max-flow-min-cut property can be written in the following form: 

Theorem 3.2. [31] (G, t) has the max-flow-rain-cut property i f  and only i f  there does 
not exist a reduced t-partition ~ with I~l =4. 

Theorem 3.1 immediately implies the following characterization: 

Theorem 3.3. (G, t) has not the max-flow-min-cut property i f  and only i f  there exists 
a reduced t-partition ~ with 1~1->4. 

Comparing Theorems 3.2 and 3.3 it is apparent that: 

Theorem 3.4. I f  G is a bicritical graph, IV(G)I->4 and t is the all 1 function on 
V(G), then there exists a reduced t-partition ~ with 1~1=4. 

(This can easily be proved using Theorem 3.2 only.) 
In other words every bicritical graph can be contracted to K4, in such a way 

that the number of vertices "failing" to any x~ V(K4) is odd. Note that conversely 
Theorem 3.3 and Theorem 3.4 imply Theorem 3.2. Bert Gerards and Lfiszl6 Lov~isz 
have remarked that both [18, Theorem 5.4.11, and 10, Theorem 2.1] immediately 
imply Theorem 3.4, furthermore Gerards [12] has recently found a direct elementary 
proof. Knowing this, Theorem 3.3 implies Theorem 3.2, thus providing a new proof 
of Seymour's characterization of the max-flow-min-cut (G, 0 pairs. 

Acknowledgement. I am grateful to Bill Cook for having drawn my attention to this 
problem, and for the very useful discussions on the topic. I am also indebted to 
Bert Gerards who pointed at a simple argument replacing the use of Kotzig's theorem 
in the proof of Theorem 2.1, and for other useful remarks. 
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